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Abstract

A recent state-of-the-art neural open informa-
tion extraction (OpenIE) system generates ex-
tractions iteratively, requiring repeated encod-
ing of partial outputs. This comes at a signif-
icant computational cost. On the other hand,
sequence labeling approaches for OpenIE are
much faster, but worse in extraction quality.
In this paper, we bridge this trade-off by pre-
senting an iterative labeling-based system that
establishes a new state of the art for OpenIE,
while extracting 10× faster. This is achieved
through a novel Iterative Grid Labeling (IGL)
architecture, which treats OpenIE as a 2-D grid
labeling task. We improve its performance fur-
ther by applying coverage (soft) constraints on
the grid at training time.

Moreover, on observing that the best OpenIE
systems falter at handling coordination struc-
tures, our OpenIE system also incorporates a
new coordination analyzer built with the same
IGL architecture. This IGL based coordina-
tion analyzer helps our OpenIE system han-
dle complicated coordination structures, while
also establishing a new state of the art on the
task of coordination analysis, with a 12.3 pts
improvement in F1 over previous analyzers.
Our OpenIE system, OpenIE61, beats the pre-
vious systems by as much as 4 pts in F1, while
being much faster.

1 Introduction

Open Information Extraction (OpenIE) is an
ontology-free information extraction paradigm that
generates extractions of the form (subject; rela-
tion; object). Built on the principles of domain-
independence and scalability (Mausam, 2016),
OpenIE systems extract open relations and argu-
ments from the sentence, which allow them to be

*Equal Contribution
1https://github.com/dair-iitd/openie6

used for a wide variety of downstream tasks like
Question Answering (Yan et al., 2018; Khot et al.,
2017), Event Schema Induction (Balasubramanian
et al., 2013) and Fact Salience (Ponza et al., 2018).

Figure 1: The extractions (Rome; [is] the capital of;
Italy) and (Rome; is known for; it’s rich history) can
be seen as the output of grid labeling. We additionally
introduce a token [is] to the input.

End-to-end neural systems for OpenIE have been
found to be more accurate compared to their non-
neural counterparts, which were built on manually
defined rules over linguistic pipelines. The two
most popular neural OpenIE paradigms are gener-
ation (Cui et al., 2018; Kolluru et al., 2020) and
labeling (Stanovsky et al., 2018; Roy et al., 2019).

Generation systems generate extractions one
word at a time. IMoJIE (Kolluru et al., 2020) is
a state-of-the-art OpenIE system that re-encodes
the partial set of extractions output thus far when
generating the next extraction. This captures de-
pendencies among extractions, reducing the overall
redundancy of the output set. However, this re-
peated re-encoding causes a significant reduction
in speed, which limits use at Web scale.

On the other hand, labeling-based systems like
RnnOIE (Stanovsky et al., 2015) are much faster
(150 sentences per second, compared to 3 sentences
of IMoJIE) but relatively less accurate. They label
each word in the sentence as either S (Subject), R
(Relation), O (Object) or N (None) for each ex-
traction. However, as the extractions are predicted
independently, this does not model the inherent
dependencies among the extractions.

We bridge this trade-off though our proposed
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Sentence Other signs of lens subluxation include mild conjunctival redness, vitreous humour degeneration,
and an increase or decrease of anterior chamber depth .

IGL (Other signs of lens subluxation; include; mild conjunctival redness, vitreous humour degeneration)
IGL
+Constraints

(Other signs of lens subluxation; include; mild conjunctival redness, vitreous humour degeneration,
and an increase or decrease of anterior chamber depth)

IGL
+Constraints
+Coordination
Analyzer

(Other signs of lens subluxation; include; mild conjunctival redness)
(Other signs of lens subluxation; include; vitreous humour degeneration)
(Other signs of lens subluxation; include; an increase of anterior chamber depth)
(Other signs of lens subluxation; include; an decrease of anterior chamber depth)

Table 1: For the given sentence, IGL based OpenIE extractor produces an incomplete extraction. Constraints
improve the recall by covering the remaining words. Coordination Analyzer handles hierarchical conjunctions.

OpenIE system that is both fast and accurate. It con-
sists of an OpenIE extractor based on a novel iter-
ative labeling-based architecture — Iterative Grid
Labeling (IGL). Using this architecture, OpenIE
is modeled as a 2-D grid labeling problem of size
(M,N) where M is a pre-defined maximum num-
ber of extractions and N is the sentence length, as
shown in Figure 1. Each extraction corresponds to
one row in the grid. Iterative assignment of labels
in the grid helps IGL capture dependencies among
extractions without the need for re-encoding, thus
making it much faster than generation-based ap-
proaches.

While IGL gives high precision, we can fur-
ther improve recall by incorporating (soft) global
coverage constraints on this 2-D grid. We use con-
strained training (Mehta et al., 2018) by adding
a penalty term for all constraint violations. This
encourages the model to satisfy these constraints
during inference as well, leading to improved ex-
traction quality, without affecting running time.

Furthermore, we observe that existing neural
OpenIE models struggle in handling coordination
structures, and do not split conjunctive extractions
properly. In response, we first design a new coor-
dination analyzer (Ficler and Goldberg, 2016b). It
is built with the same IGL architecture, by inter-
preting each row in the 2-D grid as a coordination
structure. This leads to a new state of the art on this
task, with a 12.3 pts improvement in F1 over previ-
ous best reported result (Teranishi et al., 2019), and
a 1.8 pts gain in F1 over a strong BERT baseline.

We then combine the output of our coordination
analyzer with our OpenIE extractor, resulting in a
further increase in performance (Table 1). Our final
OpenIE system — OpenIE6 — consists of IGL-
based OpenIE extractor (trained with constraints)
and IGL-based coordination analyzer. We evaluate
OpenIE6 on four metrics from the literature and
find that it exceeds in three of them by at least
4.0 pts in F1. We undertake manual evaluation to

reaffirm the gains. In summary, this paper describes
OpenIE6, which
• is based on our novel IGL architecture,
• is trained with constraints to improve recall,
• handles conjunctive sentences with our new state-

of-art coordination analyzer, which is 12.3 pts
better in F1, and
• is 10× faster compared to current state of the art

and improves F1 score by as much as 4.0 pts.

2 Related Work

Banko et al. (2007) introduced the Open Informa-
tion Extraction paradigm (OpenIE) and proposed
TextRunner, the first model for the task. Follow-
ing this, many statistical and rule-based systems
have been developed (Fader et al., 2011; Etzioni
et al., 2011; Christensen et al., 2011; Mausam et al.,
2012; Del Corro and Gemulla, 2013; Angeli et al.,
2015; Pal and Mausam, 2016; Stanovsky et al.,
2016; Saha et al., 2017; Gashteovski et al., 2017;
Saha and Mausam, 2018; Niklaus et al., 2018).

Recently, supervised neural models have been
proposed, which are either trained on extractions
bootstrapped from earlier non-neural systems (Cui
et al., 2018), or on SRL annotations adapted for
OpenIE (Stanovsky and Dagan, 2016). These sys-
tems are primarily of three types, as follows.

Labeling-based systems like RnnOIE
(Stanovsky et al., 2018), and SenseOIE (Roy et al.,
2019) identify words that can be syntactic heads
of relations, and, for each head word, perform a
single labeling to get the extractions. Jiang et al.
(2020) extend these to better calibrate confidences
across sentences. Generation-based systems (Cui
et al., 2018; Sun et al., 2018) generate extractions
sequentially using seq2seq models. IMoJIE
(Kolluru et al., 2020), the current state of art
in OpenIE, uses a BERT-based encoder and an
iterative decoder that re-encodes the extractions
generated so far. This re-encoding captures



dependencies between extractions, increasing
overall performance, but also makes it 50x slower
than RnnOIE. Recently, span-based models (Jiang
et al., 2020) have been proposed, e.g., SpanOIE
(Zhan and Zhao, 2020), which uses a predicate
module to first choose potential candidate relation
spans, and for each relation span, classifies all
possible spans of the sentence as subject or object.

Concurrent to our work (Ro et al., 2020) pro-
posed Multi2OIE, a sequence-labeling model for
OpenIE, which first predicts all the relation argu-
ments using BERT, and then predicts subject and
object arguments associated with each relation us-
ing multi-head attention blocks. Their model can-
not handle nominal relations and conjunctions in
arguments, which can be extracted in our iterative
labeling scheme.

OpenIE Evaluation: Several datasets have been
proposed to automatically evaluate OpenIE sys-
tems. OIE2016 (Stanovsky and Dagan, 2016) in-
troduced an automatically generated reference set
of extractions, but it was found to be too noisy
with significant missing extractions. Re-OIE2016
(Zhan and Zhao, 2020) manually re-annotated the
corpus, but did not handle conjunctive sentences
adequately. Wire57 (Léchelle et al., 2018) con-
tributed high-quality expert annotations, but for a
small corpus of 57 sentences. We use the CaRB
dataset (Bhardwaj et al., 2019), which re-annotated
OIE2016 corpus via crowd-sourcing.

The benchmarks also differ in their scoring func-
tions along two dimensions: (1) computing similar-
ity for each (gold, system) extraction pair, (2) defin-
ing a mapping between system and gold extractions
using this similarity. OIE16 computes similarity by
serializing the arguments into a sentence and find-
ing the number of matching words. It maps each
system extraction to one gold (one-to-one mapping)
to compute both precision and recall. Wire57 uses
the same one-to-one mapping but computes simi-
larity at an argument level. CaRB uses one-to-one
mapping for precision but maps multiple gold to
the same system extraction (many-to-one mapping)
for recall. Like Wire57, CaRB computes similarity
at an argument level.

OpenIE for Conjunctive Sentences: Perfor-
mance of OpenIE systems can be further improved
by identifying coordinating structures governed by
conjunctions (e.g., ‘and’), and splitting conjunctive
extractions (see Table 1). We follow CalmIE (Saha
and Mausam, 2018), which is part of OpenIE5 sys-

tem – it splits a conjunctive sentence into smaller
sentences based on detected coordination bound-
aries, and runs OpenIE on these split sentences to
increase overall recall.

For detecting coordination boundaries, Ficler
and Goldberg (2016a) re-annotate the Penn Tree
Bank corpus with coordination-specific tags. Neu-
ral parsers trained on this data use similarity and
replacability of conjuncts as features (Ficler and
Goldberg, 2016b; Teranishi et al., 2017). The
current state-of-the-art system (Teranishi et al.,
2019) independently detects coordinator, begin,
and end of conjuncts, and does joint inference us-
ing Cocke–Younger–Kasami (CYK) parsing over
context-free grammar (CFG) rules. Our end-to-end
model obtains better accuracy than this approach.

Figure 2: 2-D grid for OpenIE with extraction as rows
and words as columns. The values represent the la-
bels (S)ubject, (R)elation, (O)bject. The empty cells
represent (N)one. Constraints are applied across rows
(HVE) and columns (POSC).

Constrained Training: Constraining outputs of
the model is a way to inject prior knowledge into
deep neural networks (Hu et al., 2016; Xu et al.,
2018; Nandwani et al., 2019). These constraints
can be applied either during training or inference or
both. We follow Mehta et al. (2018), which models
an output constraint as a differentiable penalty term
defined over output probabilities given by the net-
work. This penalty is combined with the original
loss function for better training.

Bhutani et al. (2019) propose an OpenIE sys-
tem to get extractions from question-answer pairs.
Their decoder enforces vocabulary and structural
constraints on the output both during training and
inference. In contrast, our system uses constraints
only during training.

3 Iterative Grid Labeling for OpenIE

Given a sentence with word tokens
{w1, w2, . . . , wN} the task of OpenIE is to
output a set of extractions, say {E1, E2, . . . , EM},



Figure 3: Model architecture for IGL. BERT-
embeddings of the words are iteratively passed through
self-attention layers. st1, st2, st3 refer to the appended
tokens [is], [of], [from], respectively. At every itera-
tion, we get an extraction by labeling the words using a
fully-connected layer. Embeddings of the generated la-
bels are added to the iterative layer embeddings before
passing them to the next iteration.

where each extraction is of the form (subject;
relation; object). For a labeling-based system,
each word is labeled as S (Subject), R (Relation),
O (Object), or N (None) for every extraction. We
model this as a 2-D grid labeling problem of size
(M,N), where the words represent the columns
and the extractions represent the rows (Figure 2).
The output at position (m,n) in the grid (Lm,n)
represents the label assigned to the nth word in the
mth extraction.

We propose a novel Iterative Grid Labeling
(IGL) approach to label this grid, filling up one row
after another iteratively. We refer to the OpenIE
extractor trained using this approach as IGL-OIE.

IGL-OIE is based on a BERT encoder, which
computes contextualized embeddings for each
word. The input to the BERT encoder is {w1,
w2, . . . , wN , [is], [of], [from]}. The last three to-
kens (referred as sti in Figure 3) are appended
because, sometimes, OpenIE is required to predict
tokens that are not present in the input sentence.2

E.g., “US president Donald Trump gave a speech
on Wednesday.” will have one of the extractions
as (Donald Trump; [is] president [of]; US). The
appended tokens make such extractions possible in
a labeling framework.

The contextualized embeddings for each word
or appended token are iteratively passed through

2‘is’, ‘of’ and ‘from’ are the most frequent such tokens.

a 2-layer transformer to get their IL embeddings
at different levels, until a maximum level M , i.e.
a word wn has a different contextual embedding
ILm,n for every row (level) m. At every level m,
each ILm,n is passed though a fully-connected la-
beling layer to get the labels for words at that level
(Figure 3). Embeddings of the predicted labels are
added to the IL embeddings before passing them
to the next iteration. This, in principle, maintains
the information of the extractions output so far, and
hence can capture dependencies among labels of
different extractions. For words that were broken
into word-pieces by BERT, only the embedding
of the first word-piece is retained for label predic-
tion. We sum the cross-entropy loss between the
predicted labels and the gold labels at every level
to get the final loss, denoted by JCE .

OpenIE systems typically assign a confidence
value to an extraction. In IGL, at every level, the
respective extraction is assigned a confidence value
by adding the log probabilities of the predicted
labels (S, R, and O), and normalizing this by the
extraction length.

We believe that IGL architecture has value be-
yond OpenIE, and can be helpful in tasks where a
set of labelings for a sentence is desired, especially
when labelings have dependencies amongst them.3

We showcase another application of IGL for the
task of coordination analysis in Section 5.

4 Grid Constraints

Our preliminary experiments revealed that IGL-
OIE has good precision, but misses out important
extractions. In particular, we observed that the set
of output extractions did not capture all the informa-
tion from the sentence (Table 1). We formulate con-
straints over the 2-D grid of extractions (as shown
in Figure 2) which act as an additional form of su-
pervision to improve the coverage. We implement
these as soft constraints, by imposing additional
violation penalties in the loss function. This biases
the model to learn to satisfy the constraints, without
explicitly enforcing them at inference time.

To describe the constraints, we first define the
notion of a head verb as all verbs except light verbs
(do, be, is, has, etc.). We run a POS tagger on
the input sentence, and find all head verbs in the
sentence by removing all light verbs.4 For example,

3IGL is a generalization of Ju et al. (2018). Their model
can only label spans which are subsets of one another.

4We used the light verbs listed by Jain and Mausam (2016).



Figure 4: The final OpenIE system. IGL-CA identifies conjunct boundaries by labeling a 2-D grid. This generates
simple sentences and CIGL-OIE emits the final extractions.

for the sentence, “Obama gained popularity after
Oprah endorsed him for the presidency”, the head
verbs are gained and endorsed. In order to cover all
valid extractions like (Obama; gained; popularity)
and (Oprah; endorsed him for; the presidency), we
design the following coverage constraints:

• POS Coverage (POSC): All words with POS
tags as nouns (N), verbs (V), adjectives (JJ), and
adverbs (RB) should be part of at least one extrac-
tion. E.g. the words Obama, gained, popularity,
Oprah, endorsed, presidency must be covered in
the set of extractions.
• Head Verb Coverage (HVC): Each head verb

should be present in the relation span of some
(but not too many) extractions. E.g. (Obama;
gained; popularity), (Obama; gained; presi-
dency) is not a comprehensive set of extractions.
• Head Verb Exclusivity (HVE): The relation span

of one extraction can contain at most one head
verb. E.g. gained popularity after Oprah en-
dorsed is not a good relation as it contains two
head verbs.
• Extraction Count (EC): The total number of ex-

tractions with head verbs in the relation span
must be no fewer than the number of head verbs
in the sentence. In the example, there must be at
least two extractions containing head verbs, as
the sentence itself has two head verbs.

Notation: We now describe the penalty terms
for these constraints. Let pn be the POS tag of
wn. We define an indicator ximp

n = 1 if pn ∈
{N, V, JJ, RB}, and 0 otherwise. Similarly, let
xhvn = 1 denote that wn is a head verb. At each
extraction level m, the model computes Ymn(k),
the probability of assigning the nth word the la-
bel k ∈ {S, R, O, N}. We formulate the penalties
associated with our constraints as follows:

• POSC - To ensure that the nth word is covered,
we compute its maximum probability (poscn)
of belonging to any extraction. We introduce

a penalty if this value is low. This penalty is
aggregated over words with important POS tags,
Jposc =

∑N
n=1 x

imp
n · poscn, where

poscn = 1− max
m∈[1,M ]

(
max

k∈{S,R,O}
Ymn(k)

)
• HVC - A penalty is imposed for the nth word,

if it is not present in relation of any extrac-
tion or if it is present in relation of many ex-
tractions. This penalty is aggregated over head
verbs, Jhvc =

∑N
n=1 x

hv
n · hvcn, where hvcn =∣∣∣1−∑M

m=1 Ymn(R)
∣∣∣.

• HVE - A penalty is imposed if the relation span
of an extraction contains more than one head
verb. This penalty is summed over all extractions.
I.e., Jhve =

∑M
m=1 hvem, where

hvem = max

(
0,

(
N∑

n=1

xhvn · Ymn(R)

)
− 1

)
• EC - ecm denotes the score ∈ [0, 1] of the mth

extraction containing a head verb, i.e. ecm =
maxn∈[1,N ]

(
xhvn · Ymn(R)

)
. A penalty is im-

posed if the sum of these scores is less than the
actual number of head verbs in the sentence.

Jec = max

(
0,

N∑
n=1

xhvn −
M∑

m=1

ecm

)
Ideally, no constraint violations of HVC and

HVE would imply that EC would also never gets
violated. However, as these are soft constraints,
this scenario is never materialized in practice. We
find that our model performs better and results
in fewer constraint violations when trained with
POSC, HVC, HVE and EC combined. The full
loss function is J = JCE+λposcJposc+λhvcJhvc+
λhveJhve + λecJec, where λ? are hyperparameters.
We refer to the OpenIE extractor trained using this
constrained loss as Constrained Iterative Grid La-
beling OpenIE Extractor (CIGL-OIE).

The model is initially trained without constraints
for a fixed warmup number of iterations, followed
by constrained training till convergence.



5 Coordination Boundary Detection

Coordinated conjunctions (CC) are conjunctions
such as “and”, “or” that connect, or coordinate
words, phrases, or clauses (they are called the con-
juncts). The goal of coordination analysis is to
detect coordination structures — the coordinating
conjunctions along with their constituent conjuncts.
In this section we build a novel coordination ana-
lyzer and use its output downstream for OpenIE.

Sentences can have hierarchical coordinations,
i.e., some coordination structures nested within
the conjunct span of others (Saha and Mausam,
2018). Therefore, we pose coordination analysis
as a hierarchical labeling problem, as illustrated
in Figure 4. We formulate a 2-D grid labeling
problem, where all coordination structures at the
same hierarchical level are predicted in the same
row.

Specifically, we define a grid of size (M,N),
where M is the maximum depth of hierarchy and
N is the number of words in the sentence. The
value at (m,n)th position in the grid represents the
label assigned to the nth word in the mth hierar-
chical level, which can be CC (coordinated con-
junction), CONJ (belonging to a conjunct span),
or N (None). Using IGL architecture for this grid
gives an end-to-end Coordination Analyzer that can
detect multiple coordination structures, with two
or more conjuncts. We refer to this Coordination
Analyzer as IGL-CA.
Coordination Analyzer in OpenIE: Conjuncts in
a coordinate structure exhibit replaceability – a sen-
tence is still coherent and consistent, if we replace
a coordination structure with any of its conjuncts
(Ficler and Goldberg, 2016b). Following CalmIE’s
approach, we generate simple (non-conjunctive)
sentences using IGL-CA. We then run CIGL-OIE
on these simple sentences to generate extractions.
These extractions are de-duplicated and merged
to yield the final extraction set (Figure 4). This
pipelined approach describes our final OpenIE sys-
tem — OpenIE6.

For a conjunctive sentence, CIGL-OIE’s confi-
dence values for extractions will be with respect
to multiple simple sentences, and may not be cali-
brated across them. We use a separate confidence
estimator, consisting of a BERT encoder and an
LSTM decoder trained on (sentence, extraction)
pairs. It computes a log-likelihood for every extrac-
tion w.r.t. the original sentence — this serves as a
better confidence measure for OpenIE6.

6 Experimental Setup

We train OpenIE6 using the OpenIE4 training
dataset used to train IMoJIE5. It has 190,661 extrac-
tions from 92,774 Wikipedia sentences. We convert
each extraction to a sequence of labels over the sen-
tence. This is done by looking for an exact string
match of the words in the extraction with the sen-
tence. In case there are multiple string matches for
one of the arguments of the extraction, we choose
the string match closest to the other arguments.
This simple heuristic covers almost 95% of the
training data. We ignore the remaining extractions
that have multiple string matches for more than one
argument.

We implement our models using Pytorch Light-
ning (Falcon, 2019). We use pre-trained weights
of “BERT-base-cased”6 for OpenIE extractor and
“BERT-large-cased”6 for coordination analysis. We
do not use BERT-large for OpenIE extractor as we
observe almost same performance with a signifi-
cant increase in computational costs. We set the
maximum number of iterations, M=5 for OpenIE
and M=3 for Coordination Analysis. We use the
SpaCy POS tagger7 for enforcing constraints. The
various hyper-parameters used are mentioned in
Appendix B.

Comparison Systems: We compare OpenIE6
against several recent neural and non-neural sys-
tems. These include generation (IMoJIE and
Cui et al. (2018)8), labeling (RnnOIE, SenseOIE)
and span-based (SpanOIE) systems. We also
compare against non-neural baselines of MinIE
(Gashteovski et al., 2017), ClausIE (Del Corro
and Gemulla, 2013), OpenIE4 (Christensen et al.,
2011)9 and OpenIE5 (Saha et al., 2017; Saha and
Mausam, 2018).10 We use open-source implemen-
tations for all systems except SenseOIE, for which
the code is not available and we use the system
output provided by the authors.

Evaluation Dataset and Metrics: We evaluate all
systems against CaRB’s reference extractions, as
they have higher coverage and quality compared
to other datasets. Apart from CaRB’s scoring func-
tion, we also use scoring functions of OIE16 and

5Available from github:dair-iitd/imojie
6github:huggingface/transformers
7https://spacy.io
8We use the BERT implementation available at github:dair-

iitd/imojie
9github:allenai/openie-standalone

10github:dair-iitd/openie-standalone

https://github.com/dair-iitd/imojie
https://github.com/huggingface/transformers
https://spacy.io
https://github.com/dair-iitd/imojie
https://github.com/dair-iitd/imojie
https://github.com/allenai/openie-standalone
https://github.com/dair-iitd/OpenIE-standalone


System CaRB CaRB(1-1) OIE16-C Wire57-C Speed

F1 AUC F1 AUC F1 AUC F1 Sentences/sec.

MinIE 41.9 - 38.4 - 52.3 - 28.5 8.9
ClausIE 45.0 22.0 40.2 17.7 61.0 38.0 33.2 4.0
OpenIE4 51.6 29.5 40.5 20.1 54.3 37.1 34.4 20.1
OpenIE5 48.0 25.0 42.7 20.6 59.9 39.9 35.4 3.1

SenseOIE 28.2 - 23.9 - 31.1 - 10.7 -
SpanOIE 48.5 - 37.9 - 54.0 - 31.9 19.4
RnnOIE 49.0 26.0 39.5 18.3 56.0 32.0 26.4 149.2
(Cui et al., 2018) 51.6 32.8 38.7 19.8 53.5 37.0 33.3 11.5
IMoJIE 53.5 33.3 41.4 22.2 56.8 39.6 36.0 2.6
IGL-OIE 52.4 33.7 41.1 22.9 55.0 36.0 34.9 142.0
CIGL-OIE 54.0 35.7 42.8 24.6 59.2 40.0 36.8 142.0
CIGL-OIE + IGL-CA (OpenIE6) 52.7 33.7 46.4 26.8 65.6 48.4 40.0 31.7

Table 2: Evaluation of OpenIE. Using constrained learning, CIGL-OIE gives better scores on all metrics compared
to IMoJIE. Adding a coordination analyzer, CIGL-OIE + IGL-CA (OpenIE6) gives the best scores in 3 of the 4
metrics. MinIE, SenseOIE, SpanOIE do not output confidences. Code of SenseOIE is not available to compute
speed.

System Precision Yield Total
Extrs

CIGL-OIE 77.9 131 174
OpenIE6 78.8 222 291

Table 3: Manual comparison of Precision and Yield on
100 random conjunctive sentences from CaRB Gold.

Wire57 benchmarks on the CaRB reference set,
which we refer to as OIE16-C and Wire57-C. Addi-
tionally we use CaRB(1-1), a variant of CaRB that
retains CaRB’s similarity computation, but uses a
one-to-one mapping for both precision and recall
(similar to OIE16-C, Wire57-C).

For each system, we report a final F1 score us-
ing precision and recall computed by these scoring
functions. OpenIE systems typically associate a
confidence value with each extraction, which can
be varied to generate a precision-recall (P-R) curve.
We also report the area under P-R curve (AUC) for
all scoring functions except Wire57-C, as its match-
ing algorithm is not naturally compatible with P-R
curves. We discuss details of these four metrics in
Appendix A.

For determining the speed of a system, we an-
alyze the number of sentences it can process per
second. We run all the systems on a common set
of 3,200 sentences (Stanovsky et al., 2018), using
a V100 GPU and 4 cores of Intel Xeon CPU (the
non-neural systems use only the CPU).

7 Experiments and Results

7.1 Speed and Performance
How does OpenIE6 compare in speed and perfor-
mance?

Table 2 reports the speed and performance com-
parisons across all metrics for OpenIE. We find that
the base OpenIE extractor — IGL-OIE — achieves
a 60× speed-up compared to IMoJIE, while being
lower in performance by 1.1 F1, and better in AUC
by 0.4 pts, when using CaRB scoring function.

We find that training IGL-OIE along with con-
straints (CIGL-OIE), helps to improve the perfor-
mance without affecting inference time. This sys-
tem is better than all previous systems over all the
considered metrics. It beats IMoJIE by (0.5, 2.4)
in CaRB (F1, AUC) and 0.8 F1 in Wire57-C.

Further, adding the coordination analyzer mod-
ule (IGL-CA) gives us OpenIE6, which is 10×
faster than IMoJIE (32 sentences/sec) and achieves
significant improvements in performance in 3 of
the 4 metrics considered. It improves upon IMoJIE
in F1 by 5.0, 8.8, 4.0 pts in CaRB(1-1), OIE16-C
and Wire57-C, respectively. However, in the CaRB
metric, adding this module leads to a decrease of
(1.5, 0.9) pts in (F1, AUC).

On closer analysis, we notice that the current
scoring functions for OpenIE evaluation do not han-
dle conjunctions properly. CaRB over-penalizes
OpenIE systems for incorrect coordination splits
whereas other scoring functions under-penalize
them. This is also evidenced in the lower CaRB
scores of for both OpenIE-511 (vs. OpenIE4) and

11OpenIE5 uses CalmIE for conjunctive sentences.



System Wire57-C CaRB Constraint Violations Num. of
ExtrsF1 F1 AUC POSC HVC HVE EC HVC+HVE+EC

IMoJIE 36.0 53.5 33.3 687 521 105 330 957 1354
IGL-OIE 34.9 52.4 33.7 1494 375 128 284 787 1401
IGL-OIE (POSC) 36.7 49.6 33.4 396 303 200 243 746 1577
IGL-OIE (HVC,HVE,EC) 35.8 53.2 32.7 1170 295 144 246 655 1509
CIGL-OIE 36.8 54.0 35.7 766 274 157 237 668 1531

Gold 100 100 100 371 324 272 224 820 2714

Table 4: Performance and number of constraint violations for training with different sets of constraints. CIGL-OIE
represents training IGL architecture based OpenIE extractor with all the constraints - POSC, HVC, HVE and EC

OpenIE6 (vs. CIGL-OIE) — the two systems that
focus on conjunctive sentences. We trace this issue
to the difference in mapping used for recall compu-
tation (one-to-one vs many-to-one). We refer the
reader to Appendix A.3 for a detailed analysis of
this issue.

To resolve this variation in different scoring func-
tions, we undertake a manual evaluation. Two anno-
tators (authors of the paper), blind to the underlying
systems (CIGL-OIE and OpenIE6), independently
label each extraction as correct or incorrect for a
subset of 100 conjunctive sentences. Their inter-
annotator agreement is 93.46% (See Appendix C
for details of manual annotation setup). After re-
solving the extractions where they differ, we report
the precision and yield in Table 3. Here, yield is
the number of correct extractions generated by a
system. It is a surrogate for recall, since its denom-
inator, number of all correct extractions, is hard to
annotate for OpenIE.

We find that OpenIE6 significantly increases the
yield (1.7×) compared to CIGL-OIE along with
a marginal increase in precision. This result un-
derscores the importance of splitting coordination
structures for OpenIE.

7.2 Constraints Ablation

How are constraint violations related to model per-
formance?

We divide the constraints into two groups: one
which is dependent on head verb(s): {HVC, HVE
and EC}, and the other which is not – POSC. We
separately train IGL architecture based OpenIE
extractor with these two groups of constraints, and
compare them with no constraints (IGL-OIE), all
constraints (CIGL-OIE) and IMoJIE. In Table 4,
we report the performance on Wire57-C and CaRB,
and also report the number of constraint violations
in each scenario.

Training IGL architecture based OpenIE ex-

tractor with POSC constraint (IGL-OIE (POSC)),
leads to a reduction in POSC violations. How-
ever, the number of violations of (HVC+HVE+EC)
remains high. On the other hand, training only
with head verb constraints (HVC,HVE,EC) reduces
their violations but the POSC violations remains
high. Hence, we find that training with all the con-
straints achieves the best performance. Compared
to IGL-OIE, it reduces the POSC violation from
1494 to 766 and (HVC+HVE+EC) violations from
787 to 668. The higher violations of Gold may be
attributed to an overall larger number of extractions
in the reference set.

7.3 Coordination Analysis

How does our coordination analyzer compare
against other analyzers? How much does the coor-
dination analyzer benefit OpenIE systems?

Following previous works (Teranishi et al., 2017,
2019), we evaluate two variants of our IGL archi-
tecture based coordination analyzer (IGL-CA) – us-
ing BERT-Base and BERT-Large, on coordination-
annotated Penn Tree Bank (Ficler and Goldberg,
2016a). We compute the Precision, Recall and F1
of the predicted conjunct spans. In Table 5, we
find that both BERT-Base and BERT-Large vari-
ants outperform the previous state-of-art (Teranishi
et al., 2019) by 9.4 and 12.3 F1 points respectively.
For fair comparison, we train a stronger variant
of Teranishi et al. (2019), replacing the LSTM en-
coder with BERT-Base and BERT-Large. Even in
these settings, IGL-CA performs better by 1.8 and
1.3 F1 points respectively, highlighting the signifi-
cance of our IGL architecture. Overall, IGL-CA
establishes a new state of the art for this task.

To affirm that the gains of better coordination
analysis help the downstream OpenIE task, we ex-
periment with using different coordination analyz-
ers with CIGL-OIE and IMoJIE. From Table 6, we
see a considerable improvement in the downstream



System Precision Recall F1

(Teranishi et al., 2017) 71.5 70.7 71.0
(Teranishi et al., 2019) 75.3 75.6 75.5

BERT-Base:
(Teranishi et al., 2019) 83.1 83.2 83.1
IGL-CA 86.3 83.6 84.9

BERT-Large:
(Teranishi et al., 2019) 86.4 86.6 86.5
IGL-CA 88.1 87.4 87.8

Table 5: P, R, F1 of the system evaluated on Penn Tree
Bank for different systems. We use both BERT-Base
and BERT-Large as the encoder

Coordination Analyzer IMoJIE CIGL-OIE
None 36.0 36.8
CalmIE 37.7 38.0
(Teranishi et al., 2019) 36.1 36.5
IGL-CA 39.5 40.0

Table 6: Wire57 F1 scores of IMoJIE and CIGL-OIE
with addition of different coordination analyzers. IGL-
CA improves both of the OpenIE extractors.

OpenIE task using IGL-CA for both IMoJIE and
CIGL-OIE, which we attribute to better conjunct-
boundary detection capabilities of the model. For
CIGL-OIE, this gives a 2 pts increase in Wire57-C
F1, compared to CalmIE’s coordination analyzer
(CalmIE-CA).

8 Error Analysis

We examine extractions from a random sample of
50 sentences from CaRB validation set, as output
by OpenIE6. We identify three major sources of
errors in these sentences:
Grammatical errors: (24%) We find that the sen-
tence formed by serializing the extraction is not
grammatically correct. We believe that combining
our extractor with a pre-trained language model
might help reduce such errors.
Noun-based relations: (16%) These involve intro-
ducing additional words in the relation span. Al-
though our model can introduce [is], [of], [from]
in relations (Section 3), it may miss some words
for which it was not trained. E.g. [in] in (First
Security; based [in]; Salt Lake City) for the phrase
Salt Lake City-based First Security.
Lack of Context: (10%) Neural models for Ope-
nIE including ours, do not output extraction context
(Mausam et al., 2012). E.g. for “She believes aliens
will destroy the Earth”, the extraction (Context(She
believes); aliens; will destroy; the Earth) can be
misinterpreted without the context.

We also observe incorrect boundary identifica-
tion for relation argument (13%), cases in which
coordination structure in conjunctive sentences are
incorrectly split (11%), lack of coverage (4%) and
other miscellaneous errors (18%).

9 Conclusion

We propose a new OpenIE system – OpenIE6,
based on the novel Iterative Grid Labeling archi-
tecture, which models sequence labeling tasks with
overlapping spans as a 2-D grid labeling problem.
OpenIE6 is 10x faster, handles conjunctive sen-
tences and establishes a new state of art for Ope-
nIE. We highlight the role of constraints in train-
ing for OpenIE. Using the same architecture, we
achieve a new state of the art for coordination pars-
ing, with a 12.3 pts improvement in F1 over pre-
vious analyzers. We plan to explore the utility of
this architecture in other NLP problems. OpenIE6
is available at https://github.com/dair-iitd/
openie6 for further research.
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A Metrics

A.1 Introduction

Designing an evaluation benchmark for an under-
specified and subjective task like OpenIE has gath-
ered much attention. Several benchmarks, consist-
ing of gold labels and scoring functions have been
contributed. While coverage and quality of gold
labels of these benchmarks have been extensively
studied, differences in their scoring functions is
largely unexplored. We evaluate all our systems on
the CaRB reference set, which has 641 sentences
and corresponding human annotated extractions in
both dev and test set. As the underlying gold la-
bels, is the same, system performances differ only
due to difference in design choices of these scoring
functions, which we explore in detail here.

A.2 Scoring Functions of Benchmarks

OIE201612 creates a one-to-one mapping between
(gold, system) pairs by serializing the extractions
and comparing the number of common words
within them. Hence the system is not penalized for
misidentifying parts of an one argument in another.
Precision and recall for the system are computed us-
ing the one-to-one mapping obtained, i.e. precision
is (no. of system extractions mapped to gold extrac-
tions)/ (total no. of system extractions) and recall
is (no. of gold extractions mapped to system extrac-
tions)/(total no. of gold extractions). These design
choices have several implications (Léchelle et al.,
2018; Bhardwaj et al., 2019). Overlong system
extractions which are mapped, are not penalized,
and extractions with partial coverage of gold ex-
tractions, which are not mapped, are not rewarded
at all.
Wire5713 attempts to tackle the shortcomings of
OIE2016. For each gold extraction, a set of candi-
date system extractions are chosen on the basis of
whether they share at least one word for each of the
arguments14 of the extraction, with the gold. It then
creates a one-to-one mapping by greedily matching
gold with one of the candidate system extraction
on the basis of token-level F1 score. Token level
precision and recall of the matches are then aggre-
gated to get the score for the system. Computing
scores at token level helps in penalizing overly long

12https://github.com/gabrielStanovsky/
oie-benchmark

13https://github.com/rali-udem/WiRe57
14We refer to subject, relation and object as arguments of

the extraction.

extractions.
Wire57 ignores the confidence of extraction and

reports just the F1 score (F1 at zero confidence).
One way to generate AUC for Wire57 is by ob-
taining precision and recall scores at various con-
fidence levels by passing a subset of extractions
to the scorer. However, due to Wire57’s criteria
of matching extractions on the basis of F1 score,
the recall of the system does not decrease mono-
tonically with increasing confidence, which is a
requirement for calculating AUC.

OIE2016 and Wire57 both use one-to-one map-
ping strategy, due to which a system extraction,
that contains information from multiple gold ex-
tractions, is unfairly penalized.
CaRB15 also computes similarity at a token level,
but it is slightly more lenient than Wire57 — it con-
siders number of common words in (gold,system)
pair for each argument of the extraction. How-
ever, it uses one-to-one mapping for precision and
many-to-one mapping for computing recall. While
this solves the issue of penalizing extractions with
information from multiple gold extractions, it in-
advertently creates another one — unsatisfactorily
evaluating systems which split on conjunctive sen-
tences. We explore this in detail in the next section.

A.3 CaRB on Conjunctive Sentences

Coordinate structure in conjunctive sentences are
of two types:
• Combinatory, where splitting the sentence by

replacing the coordinate structure with one of
the conjuncts can lead to incoherent extractions.
E.g. splitting “Talks resumed between USA and
China” will give (Talks; resumed; between USA).
• Segregatory, where splitting on coordinate struc-

ture can lead to shorter and coherent extractions.
E.g. splitting “I ate an apple and orange.” gives
(I; ate; an apple) and (I; ate; an orange).

Combinatory coordinate structures are hard to de-
tect (in some cases even for humans). Some sys-
tems (ClausIE, CalmIE and ours) use some heuris-
tics such as not splitting if coordinate structure is
preceded by “between”. In all other cases, coor-
dinate structure is treated as segregatory, and is
split.

The human-annotated gold labels of CaRB
dataset correctly handle conjunctive sentences in
most of the cases. However, we find that com-
pared to scoring function of OIE2016 and Wire57,

15https://github.com/dair-iitd/CaRB
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System 1 (P, R, F1) System 2 (P, R, F1)

Talks resumed between USA and China
Gold:

(Talks; resumed; between USA and China)

(Talks; resumed; between USA)
(Talks; resumed; between China)

CaRB: (50.0, 66.7, 57.1)
CaRB (1-1): (50.0, 66.7, 57.1)

(Talks; resumed; between USA and China)

CaRB: (100, 100, 100)
CaRB (1-1): (100, 100, 100)

I ate an apple and orange
Gold:

(I; ate; an apple)
(I; ate; an orange)

(I; ate; an apple)
(I; ate; an orange)

CaRB: (100, 100, 100)
CaRB (1-1): (100, 100, 100)

(I; ate; an apple and an orange)

CaRB: (57.1, 100, 72.7)
CaRB (1-1): (53.5, 50.0, 57.1)

Table 7: Evaluation of CaRB and CaRB (1-1) on two sentences.

CaRB over-penalizes systems for incorrectly split-
ting combinatory coordinate structures.

We trace this issue to the difference in mapping
used for recall computation (one-to-one vs many-
to-one).

Consider two systems – System 1, which splits
on all conjunctive sentences (without any heuris-
tics), and System 2, which does not. For the sen-
tence “I ate an apple and orange”, the set of gold
extractions are {(I; ate; an apple), (I; ate; orange)}.
System 2, which (incorrectly) doe not split on the
coordinate structure, gets a perfect recall score of
1.0, similar to System 1, which correctly splits the
extractions (Table 7). On the other hand, when
System 2 incorrectly splits extractions for the sen-
tence “Talks resumed between USA and China”, it
is penalized on both precision and recall by CaRB,
giving it a much lower score than System 2.

Due to this phenomena, we find that the gains
obtained by our system on splitting the segregatory
coordinate structures correctly is overshadowed
by penalties of incorrectly splitting the coordinate
structures. To re-affirm this, we evaluate all the
systems on CaRB(1-1), a variant of CaRB which
retains all the properties of CaRB, except that it
uses one-to-one mapping for computing recall.

We notice that our CIGL-OIE+IGL-CA shows
improvements in CaRB(1-1) and other metrics
which use one-to-one mapping (OIE16, Wire57)
(Table 2). But it shows a decrease in CaRB score.
This demonstrates that the primary reason for the
decrease in performance is the many-to-one map-
ping in CaRB.

However, we also observe that this is not the
best strategy for evaluation as it assigns equal score
to both the cases — splitting a combinatory co-
ordinate structure, and not splitting a segregatory
coordinate structure (Table 7). This is also not de-
sirable as a long extraction which is not split is
better than two incorrectly split extractions. Hence,

we consider that one-to-one mapping for comput-
ing recall under-penalizes splitting a combinatory
coordinate structure.

Determining the right penalty in this case is an
open-ended problem. We leave it to further re-
search to design an optimal metric for evaluating
conjunctive sentences for OpenIE.

B Reproducibility

Compute Infrastructure: We train all of our
models using a Tesla V100 GPU (32 GB).

Hyper-parameter search: The final hyper-
parameters used during train our model are listed
in Table 8. We also list the search-space, which
was manually tuned. We select the model based on
the best CaRB (F1) score on validation set.

Validation Scores: We report the best validation
scores in Table 9.

Number of parameters: The CIGL-OIE model
contains 110 million parameters and IGL-CA con-
tains 335 million parameters. The difference is
because they use BERT-base and BERT-large mod-
els, respectively.

C Manual Comparison

The set of extractions from both the systems, CIGL-
OIE and OpenIE6 were considered for a random
100 conjunctive sentences from the validation set.
We identify a conjunctive sentence, based on the
predicted conjuncts of coordination analyzer. The
annotators are instructed to check if the extraction
has well formed arguments and is implied by the
sentence.

A screenshot of the process is shown in Figure 5.



Hyperparameters Best Values Grid Search

Training:
Batch Size 24 {16,32,24}
Optimizer AdamW {AdamW, Adam}
Learning Rate 2× 10−5 {1× 10−3, 2× 10−4, 5× 10−5}

Model:
Iterative Layers 2 {1,2,3}
λposc 3 {0.1, 1, 3, 5, 10}
λhvc 3 {0.1, 1, 3, 5, 10}
λhve 3 {0.1, 1, 3, 5, 10}
λec 3 {0.1, 1, 3, 5, 10}

Table 8: Hyperparameter settings.

System CaRB CaRB(1-1) OIE16-C Wire57-C

F1 AUC F1 AUC F1 AUC F1

IMoJIE 55.2 35.2 43.1 23.4 59.0 42.5 38.7
IGL-OIE 53.4 32.7 41.8 22.0 56.8 36.6 36.9
CIGL-OIE 55.2 35.5 43.9 23.9 62.3 42.4 39.1
CIGL-OIE + IGL-CA (OpenIE6) 53.8 35.0 47.5 27.7 67.7 51.9 42.4

Table 9: Evaluation of OpenIE systems on validation set

Figure 5: Process for manual comparison. Each extraction from both the systems are presented to the annotator in
a randomized order. The annotator checks if the extraction can be inferred from the original sentence and marks it
accordingly.


