
GOALNET: Interleaving Neural Goal Predicate Inference with Classical Planning
for Generalization in Robot Instruction Following

Jigyasa Gupta1, 2*, Shreya Sharma1 *, Shreshth Tuli1, 3, Rohan Paul1, Mausam1

1Indian Institute of Technology Delhi, India
2Samsung R&D Institute India, Delhi

3Happening Technology, UK

Abstract

Our goal is to enable a robot to learn how to sequence its
actions to perform high-level tasks specified as natural
language instructions, given successful demonstrations
from a human partner. Our novel neuro-symbolic so-
lution GOALNET builds an iterative two-step approach
that interleaves (i) inferring next subgoal predicate im-
plied by the language instruction, for a given world
state, and (ii) synthesizing a feasible subgoal-reaching
plan from that state. The agent executes the plan, and
the two steps are repeated. GOALNET combines (i)
learning, where dense representations are acquired for
language instruction and the world state via a neu-
ral network prediction model, enabling generalization
to novel settings and (ii) planning, where the cause-
effect modeling by a classical planner eschews irrele-
vant predicates, facilitating multi-stage decision mak-
ing in large domains. GOALNET obtains 78% improve-
ment in the goal reaching rate in comparison to sev-
eral state-of-the-art approaches on benchmark data with
multi-stage instructions. Further, GOALNET can gener-
alize to novel instructions for scenes with unseen ob-
jects. Source code available at https://github.
com/reail-iitd/goalnet .

1 Introduction
Robots may be placed in scenarios where they learn from hu-
mans on how to perform tasks. Hence, they must possess the
ability to understand high-level task specifications, commu-
nicated in natural language (NL) by humans, and success-
fully generate goal-reaching plans, possibly in novel envi-
ronments. A popular paradigm for training a robot is imita-
tion learning, wherein models are trained directly from such
demonstrations (Tuli et al. 2022; Mei, Bansal, and Walter
2016; Suhr and Artzi 2018). However, prior work highlights
that such methods tend to lack the ability to scale with envi-
ronment complexity (Misra et al. 2018).

On the other hand, symbolic planners allow us to scale
well, while circumventing the challenges posed by side-
effect or irrelevant predicates (Misra et al. 2018). However,
planners need symbolic goal predicates and cannot directly

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Near(robot, pillow)

MoveTo(robot, pillow)
World State

Instruction GoalNet

Simulator
New State

Classical Planner

“Place pillow on bed”
Goal predicate

Action

Figure 1: GOALNET infers goal predicates (red), which are for-
warded to a classical planner (blue) and actions are executed in a
simulator (green) to reach a goal state.

take NL instructions as input. We can decompose the prob-
lem into first predicting the final goal predicates and using
them to generate actions via a planner. This will entail train-
ing a model to output intended goal predicates for a given
NL instruction. Preliminary experiments show that this ap-
proach faces limitations. First, the hypothesis space of con-
junctive goals is exponential (powerset of all predicates).
Second, irrelevant predicates or side-effects in demonstrated
plans can lead to inaccurate predictions. Finally, there may
be stochasticity or erroneous plan executions that may not
exactly lead to the intended goal state.

In response, we propose an interleaved strategy (see
Fig. 1). Here, a neuro-symbolic model, namely GOALNET,
predicts a subgoal predicate (one each for positive and neg-
ative) from the current world state, which is forwarded to a
classical planner that outputs a sequence of actions. The plan
is executed to obtain the next world state. This is repeated
iteratively till the final goal state is reached. GOALNET’s ar-
chitecture has several benefits: prediction of single subgoals
reduces hypothesis space, prediction of intermediate goals
makes it more robust to side-effects, and interleaving allows
the model to recover from execution errors and earlier mis-
takes in subgoal prediction. Furthermore, to handle scenes
with unseen objects, we extend GOALNET to be agnostic to
the object set in the world state – we call this GOALNET*.

We experiment on a benchmark dataset by Misra et al.
(2015) collected from a mobile manipulator in a kitchen or
living-room environment possessing a rich set multi-stage
interactions. Our evaluation shows that the interleaved ar-
chitecture of GOALNET outperforms state-of-the-art meth-
ods that use (i) a non-neural subgoal predictor with a similar
interleaving, (ii) a conjunctive goal predictor without inter-
leaving, and (iii) a pure imitation learner. Our results demon-

https://github.com/reail-iitd/goalnet
https://github.com/reail-iitd/goalnet

strate a significant improvement in the task completion rate
of at least 77.8% compared to our baselines. Further, GOAL-
NET and GOALNET* outperform baselines by giving up to
1.36 times higher task completion rate in settings with un-
seen objects and novel paraphrased instructions.

2 Related Work
Robot instruction following (also called language ground-
ing) considers the task of synthesizing a context-dependent
robot plan from varied natural language instructions from a
human partner. These approaches learn an association be-
tween language constructs and an action specification for
the robot to execute. For example, Tellex et al. (2011) maps
verbs in instructions to robot trajectories where as Paul et al.
(2018) infer motion constraints from manipulation instruc-
tions. These approaches require explicit supervision for lin-
guistic phrases in terms of robot actions; often requiring ex-
pert annotators. Note that, unlike semantic parsing, this work
does not consider the presence of instruction annotations
with precise logical forms, which is the case in standard se-
mantic parsers such as SEMPRE (Berant et al. 2013).

Alternative approaches leverage human demonstrations to
learn a model for translating language to plans. Boularias
et al. (2015) use Inverse RL to infer a latent reward func-
tion for an instruction from human labelled trajectories of
navigation. Liao et al. (2019); Tuli et al. (2021) propose an
object-centric model of the world to inferring plans involv-
ing rich agent-object interactions. Branavan et al. (2012);
Misra et al. (2016) learn symbolic plan strategies from tex-
tual plan descriptions, incorporating a classical planner to
assess goal reach-ability in order to score candidate plans.
(Silver et al. 2022) learns action operators grounded in the
continuous action space allowing reasoning over the metric
space. Such approaches have been successful in grounding
instructions amenable to direct translation to short-horizon
robot plans. In contrast, this work assumes access to low-
level skills and focuses on inferring multi-step plans with
rich inter-object interactions; particularly in novel scenes.

Within classical planning, works such as (Sebastia, On-
aindia, and Marzal 2006) discover sub-goals for a com-
plex planning problem by analyzing negative/positive in-
teractions. Further, Lipovetzky and Geffner (2012) intro-
duce a notion of planning width to characterize the com-
plexity of planning problems. In this work, we adopt a
learning-to-plan paradigm that leverages demonstrations to
learn which sub-goals are important for goal reach-ability.
Further, the iterative planning and execution approach al-
lows goal-attainment even in problems with higher width.

Others factorize the problem of interpreting plans from
language instructions as that of inferring a goal specifica-
tion (Meneguzzi and Pereira 2021) and delegate the task of
determining action sequences to a planner. Lesh and Etzioni
(1995) introduced a goal recognizer that observes human ac-
tions to prune inconsistent actions or goals from an input
graph state. Dragan et al. (2015) present a robot motion plan-
ner that generate legible plans using human-robot collabora-
tion by uncovering latent goals from a task demonstration.
She and Chai (2016) use linguistic and environment fea-
tures to induce a hypothesis set of goal predicates that can be

handed to a planner. hese approaches have demonstrated the
ability to infer goals in small-sized domains (grid-world like
domains) and their scalability to large environments with re-
alistic interactions is limited. The reliance on hand-crafted
features limits generalization to novel scenes and phrases.

3 Problem Formulation
Robot and Environment Models. We are interested in
robots that have the ability to navigate domains and ma-
nipulate multiple objects in natural confined environments
such as a kitchen or living room. We consider objects
as symbolic entities that consist of (i) identifying tokens
such as “apple”, “stove” and “pillow”, (ii) object states
such as Open/Closed, On/Off , and (iii) properties such
as IsSurface, IsContainer, IsGraspable, etc. Relations be-
tween object pairs are also present, such as OnTop, Near,
Inside and ConnectedTo. Let s denote the world state – it
has symbolic objects O(s) including their identifiers, states
and properties. We denote the set of spatial-relation predi-
cates and object state predicates by S. Let R(s) denote the
set of object relations in s. A state variable r ∈ R(s) is
denoted by R(o1, o2) that represents a relation predicate of
type R ∈ S between objects o1 ∈ O(s) and o2 ∈ O(s),
or as R(o1) in case of r being an object state, for example
OnTop(pillow0, shelf0), ConnectedTo(fork0, robot) and
stateIsOpen(tap0). Let s0 denote the initial state.
Action and Transition Models. We denote the set of all
possible symbolic actions by A. An action a ∈ A is rep-
resented in its symbolic form as I(o1) or I(o1, o2) where
the interaction (action predicate) I ∈ I affects the state
or the relation between o1 and o2. Examples of interactions
in I include Grasp, MoveTo, stateOn, and PlaceOn. In-
teraction effects are considered to be deterministic. For in-
stance, a stateOn action applies to an IsTurnable object,
such as a tap, to swap its state between On and Off . Sim-
ilarly, a PlaceOn(pillow0, couch0) action establishes the
OnTop(pillow0, couch0) relation. Interactions are also as-
sociated with pre-conditions in the form of relations or prop-
erties. For instance, PlaceOn is allowed only when the ob-
ject has a grasped relation with the agent. For more details
see Appendix
Instructions and Goals. Given an initial state of the en-
vironment s0 and transition model T , the robot needs to
perform a task expressed as a natural language instruction
l – it is encoded in the form of a sequence ⟨l0, . . . , lz⟩
where each element is a word token. Each instruction l is
assumed to represent a goal, expressed as conjunctions over
state variables (relations/object states). Based on which vari-
ables should be present or absent in the final goal state,
we split them into two sets, ∆+

l (positive) and ∆−
l (nega-

tive). For a successful execution, the final goal state must
have all state variables from ∆+

l , and none from ∆−
l . For

example, for the input state s with a pillow on the shelf
and another inside a cupboard, the declarative goal, l =
“put the shelf pillow on the couch” can be expressed as
sets of relations ∆+

l = {OnTop(pillow0, couch0)} and
∆−

l = {OnTop(pillow0, shelf0)}. To successfully execute
an input instruction l from an initial state s0, the agent must

Figure 2: Using a symbolic planner and GOALNET in tandem.

synthesize a plan, as a sequence of actions ⟨a0, . . . , aT ⟩,
such that the final state sT = T (. . . T (s0, a0) . . . , aT) is
a goal state. Let G(s, l) denote the goal check function that
determines if the intended goal l is achieved by a state s.

Training Data and Task Definition. We wish to learn mod-
els through human demonstrations denoted as DTrain of N
goal-reaching trajectories (tr), where the ith datum con-
sists of the initial state si0, the instruction li and a trajectory
tri = ⟨si0, ai0, . . . , siTi−1, a

i
Ti−1, s

i
Ti
⟩ that achieves the goal

intended by li. The task is to train a model, which given an
instruction l and the current state, outputs the next action to
execute towards achieving the goal intended in the instruc-
tion. To facilitate the use of symbolic planners, we also pro-
vide the PDDL description Λ of the domain .

4 Technical Approach

We design a neuro-symbolic approach where language
grounding is done via a neural module, and planning is done
symbolically. A natural approach is to create a pipeline,
where a neural function fθ(·) outputs the final goal as a
conjunction of positive and negative state variables, i.e.,
fθ(s0, l) = ⟨∆+

l ,∆
−
l ⟩. These state variables are then pro-

vided as a goal to a classical planner P(·), along with the
domain Λ, which outputs a plan a⃗. This plan is executed to
reach final state sT and success of the model is determined
based on whether G(sT , l) = 1.

While this pipeline architecture is intuitive, our initial ex-
periments showed it not to be effective. The prediction of
variable-sized sets ∆l made the learning problem hard, and
a single pipeline added robustness issues in execution, over-
all leading to low task completion rates. In response, we de-
sign a novel architecture GOALNET– the key idea is to in-
terleave next subgoal prediction, planning and execution. In
particular, subgoal predictor fθ outputs a single positive and
negative subgoal variable (instead of two variable-sized con-
junctive sets). I.e., fθ(st, l) = ⟨δ+l , δ

−
l ⟩. This is provided to

planner P as the next goal, and the resulting plan a⃗t is exe-
cuted to reach next state st+1. This state is given to fθ for the
next prediction, and the whole process continues iteratively.

Before we describe the design of the subgoal predictor,
we recognize that we ought to postprocess DTrain to make
it suitable as supervision for its input-output characteristics.
For this, given a state sit in training trajectory i, we generate
its target subgoals using a single-step difference over the sets

of variables between the two consecutive states:

⟨δ̂+t , δ̂−t ⟩ = ⟨sit+1 \ sit, sit \ sit+1⟩ ∀t < Ti,

⟨δ̂+Ti
, δ̂−Ti

⟩ = ⟨∅, ∅⟩.

The data (sit, l
i, ⟨δ̂+t , δ̂−t ⟩) is used as supervision to train fθ.

If |δ̂+t |+ |δ̂−t | > 1, we only use one predicate for training as
planner compensates for side effects predicates.

Subgoal Predictor
While, in principle, st is the world state, and has all the
information for planning and subgoal prediction, previous
research has found that explicitly maintaining some his-
tory (in their case, action history) aids model learning (Tuli
et al. 2021). For our subgoal predictor at time t, as addi-
tional input, we provide an explicit subgoal history: ηt =
{(δ+0 , δ

−
0), . . . , (δ+t−1, δ

−
t−1)}. I.e., fθ(st, l, ηt) = ⟨δ+t , δ−t ⟩.

At a high level (see Fig. 2), the subgoal predictor takes in
the world state st in the form of an object-centric graph. The
object encodings in the state are generated by fstate

θ (·). The
subgoal history is encoded as fhist

θ (·). Next, it attends over
the object encodings conditioned on the input task instruc-
tion via f task

θ (·). Finally, the positive and negative subgoals
are decoded autoregressively by fgoal

θ (·). Overall:

⟨δ+t , δ−t ⟩ = fθ(st, l, ηt) = fgoal
θ

(
f task
θ (fstate

θ (st), l) , f
hist
θ (ηt)

)
.

We now describe each components of the subgoal predictor.
World State Encoder. The current world state st is encoded
as an object-centric graph Gt = (O(st),R(st)) where each
node represents an object o ∈ O(st). Each relation r ∈
R(st) of the form R(o1, o2) is encoded as a directed edge
from o1 to o2 with predicate as R. To represent the object
states of an object o, GOALNET generates a binary feature
vector qo = {0, 1}u that represents the discrete object states
for each of u state predicates that include Open/Closed,
On/Off , etc. Similarly, it generates a binary feature vector
po = {0, 1}v that represents the presence of various object
properties (1 if present and 0 otherwise) for each of v prop-
erties such as isSurface and isContainer.

It also incorporates a function C(·) that generates a dense
vector representation for the input token of an object. For
an object o, we represent this by eo = C(o) ∈ Rw as a
w-dimensional embedding. We assume that C(o) of seman-
tically similar objects (such as “apple” and “orange”) ap-
pear close, whereas semantically different objects appear far
apart (such as “fork” and “table”) (Mikolov et al. 2018).
Unless stated otherwise, we utilize ConceptNet embed-
dings (Speer, Chin, and Havasi 2019) to facilitate general-
ization to unseen objects (Tuli et al. 2021).

GOALNET concatenates the embeddings qo, po and eo for
each object o to form the feature vector that initializes each
node of the Gt. The relations of each object o in the edges
R(st) are represented as an adjacency vector ro. This rela-
tional information is first encoded using a d-layer Fully Con-
nected Network (FCN) with Parameterized ReLU (PReLU)
(He et al. 2015) activation to generate a relational embed-
ding for each object o as rdo . Next, it fuses the semantic and

Figure 3: GOALNET subgoal predictor encodes the world state and NL instruction to attend over objects, and decodes the next subgoals to
send to a symbolic planner. Dashed arrows represent factored score prediction in GOALNET* for generalizing to unseen objects.

relational embeddings to generate an embedding of each ob-
ject o as [qo, po, eo, r

d
o]. Late fusion of the relational infor-

mation enables the downstream predictors to exploit the se-
mantic and relational information independently, improving
inference performance as demonstrated in prior work (Tuli
et al. 2021). Thus, the output of the state-encoder becomes

fstate
θ (st) = {s̃ot =[po, qo, eo, r

d
o]| ∀o ∈ O(st)}. (1)

Temporal Context Encoder. As discussed above, the
model is explicitly informed of the local context, which
may suggest the objects to manipulate in the future, since
often sequential actions are temporally correlated. For
instance, in the task of placing pillows on the couch, the
agent first moves towards a pillow, grasps it and then
places it on the couch. This entails that the sequence
of subgoals would initially have Near(robot,pillow0),
followed by ConnectedTo(pillow0, robot) and then
OnTop(pillow0, couch0). This example demonstrates the
high correlation between the interactions and manipulated
objects in two adjacent time steps.

Formally, GOALNET encodes the temporal history of
subgoals ηt using an LSTM (Hochreiter and Schmidhuber
1997). For each subgoal r = Rt−1(o

1
t−1, o

2
t−1) ∈ R(st−1)

predicted in the previous time step t − 1 in δ+t−1 ∪ δ−t−1, it
defines an encoding r̃ = [R⃗t−1, C(o1t−1), C(o2t−1)], where
R⃗t−1 is a one-hot encoding for the predicate Rt−1 ∈ S of
the form {0, 1}|S|. C(o1t−1) and C(o2t−1) are the dense em-
beddings of the tokens of objects or state of o1t−1. At each
time step t, the subgoal history ηt is encoded as η̃t where

fhist
θ = η̃t = LSTM([R⃗t−1, C(o1t−1), C(o2t−1)], η̃t−1).

Instruction Conditioned Attention. This component aligns
the information of the input instruction with the scene to
learn task-relevant context by allocating appropriate atten-
tion weights to objects. This relieves the downstream pre-
dictors from dealing with all objects, which can focus only
on the ones related to the task, allowing the model to scale
with the number of objects in the input world state.

Specifically, instruction l is encoded using a sentence em-
bedding model B(·) to generate the encoding l̃ = B(l).

GOALNET uses SentenceBERT as its B(·) function – a pre-
trained model, it is a modification of the pre-trained BERT
model (Devlin et al. 2019) to derive semantically meaning-
ful sentence embeddings (Reimers et al. 2019).

GOALNET uses the language instruction encoding l̃ as
query to attend over the world objects using a Bahadanau at-
tention mechanism (Bahdanau, Cho, and Bengio 2014) and
generates a final state embedding s̃t as an attended summary
over object embeddings s̃ot . Using a tokenizer (Bird, Klein,
and Loper 2009), GOALNET also extracts the set of objects
Ol in instruction l. It then generates the encoding l̃obj of
these objects by using self-attention with s̃t as the query.
Overall, f task

θ (s̃ot , l) = [s̃t, l̃obj , l̃]. The equations for com-
puting l̃obj are as follows (those for s̃t are similar).

αo = softmax(Wl[C(o), s̃t] + bl), l̃obj =
∑
o∈Ol

αo · C(o).

Subgoal decoder. GOALNET takes the instruction attended
world state s̃t, encoding of the subgoal history η̃t, instruction
objects encoding l̃obj and the sentence encoding l̃ to pre-
dict a pair of positive and negative subgoals R+

t (o
1
t , o

2
t) and

R−
t (o

3
t , o

4
t). To predict each of the three components, i.e., re-

lation and the two objects, it computes the likelihood score
for each relation predicate from S and objects in O(st). It
then selects the relation or object with the highest likelihood
scores, decoded in an auto-regressive fashion. For instance,
to predict R+

t (o
1
t , o

2
t), the likelihood scores of R+

t are for-
warded to predict o1t , and likelihood scores of both R+

t and
o1t to predict o2t . Instead of using an argmax of the like-
lihood vector, it forwards the Gumbel-Softmax of the vec-
tor (Jang, Gu, and Poole 2017) (denoted by ϕ(·)). This is a
variation of softmax function that allows us to generate a
one-hot vector while also allowing gradients to backpropa-
gate (as argmax is not differentiable). It generates the scores
using a fully connected network with PreLU activation.

R̃+
t = softmax(FCN([s̃t, η̃t, l̃obj , l̃])),

õ1t = softmax(FCN([s̃t, η̃t, l̃obj , l̃, ϕ(R̃
+
t)])),

õ2t = softmax(FCN([s̃t, η̃t, l̃obj , l̃, ϕ(R̃
+
t), ϕ(õ

1
t)])).

(2)

Initial State
Instr.: “fill water in mug”

ConnectedTo(mug0, robot)

{MoveTo(robot,mug0),
Grasp(robot,mug0)}

Near(robot, sink0)

{MoveTo(robot, sink0)}
OnTop(mug0, sink0)

{PlaceOn(mug0, sink0)}
stateIsOn(tap0)

{stateOn(tap0)}

Initial State
Intr.: “place beer and soda
on top of the coffee-table”

ConnectedTo(beer0, robot)

{MoveTo(robot, beer0),
Grasp(robot, beer0)}

OnTop(beer0, table0)

{MoveTo(robot, table0),
PlaceOn(beer0, table0)}

ConnectedTo(soda0, robot)

{MoveTo(robot, soda0),
Grasp(robot, soda0)}

OnTop(soda0, table0)

{MoveTo(robot, table0),
PlaceOn(soda0, table0)}

Figure 4: Sample plan in kitchen (top) and living-room (bottom) domains. Visualizations developed using the VirtualHome Simulator (Puig
et al. 2018) and a human-like agent with functionality akin to a single-arm manipulator. Predicted goal predicates shown in red. Executed
plan at each time step shown in blue. soda is unseen at training time and GOALNET* reaches a goal state. Only positive predicates shown.

The predicted relation predicate R+
t is argmaxR∈SR̃

+
t ,

the first object o1t is argmaxo∈O(st)Ω(õ
1
t , R

+
t) and o2t as

argmaxo∈O(st)Ω(õ
2
t , R

+
t , o

1
t). A similar mechanism is fol-

lowed to predict the negative subgoal R−
t (o

3
t , o

4
t). Here, Ω

denotes PDDL-based grammar mask, which forces the like-
lihood scores of infeasible objects to 0. For instance, the
OnTop relation only accepts the objects as the second ar-
gument that have the isSurface property. We also mask out
the likelihood scores of õ2t and õ4t if R+

t and R−
t are pred-

icates on the object states (which only need one argument).
Thus, the predicted subgoals are represented as

⟨δ+t , δ−t ⟩ = ⟨R+
t (o

1
t , o

2
t), R

−
t (o

3
t , o

4
t)⟩ = fgoal

θ (s̃t, η̃t, l̃obj , l̃).
(3)

Generalization to unseen objects. GOALNET assumes a
fixed-size likelihood vector and only works on the fixed
number (and type) of objects. We extend it to GOALNET*,
which can predict relations grounded over any number of
(unseen) scene objects. To generalize to objects unseen at
training time, GOALNET* predicts likelihood scores of ob-
jects independently for each object o using their embed-
dings C(o). This is depicted using the dotted loop-arrows
in Fig. 3. GOALNET has constant inference time with the
size of the input world state (O(1)). Factored prediction
in GOALNET* has an inference time that varies linearly
(O(|O(st)|+ |R(st)|).
Training and Inference. The predicted subgoals are passed
on to a planner P as goals for it to generate a plan, which
is then executed by the agent. All pre-conditions and effects
are encoded in Λ, which uses a classical Planning Domain
Definition Language (PDDL) representation. This allows the
planner to utilize the symbolic domain information.

The whole subgoal predictor fθ(·) is trained using the sum
of binary cross-entropy loss with ground-truth subgoals for
the six predictors in Equation 3. We initially used teacher

Objects: (kitchen) sink, stove, mug, microwave, fridge, icecream, kettle, coke,
plate, boiledegg, salt, stovefire, sinkknob. (living room) loveseat, armchair,
coffeetable, tv, pillow, bagofchips, bowl, garbagebag, shelf, book, coke, beer.

Object States: Open/Closed, On/Off , HasWater/HasChocolate/IsEmpty,
DoorOpen/DoorClosed.

Object Properties: IsSurface, IsTurnable, IsGraspable, IsPressable,
IsOpenable, IsSqueezeable, IsContainer.

Actions: Grasp, Release, MoveTo, PlaceOn, PlaceIn, Press, Pour,
Squeeze, stateOn, stateOff , stateOpen, stateClose.

Relations: OnTop, Near, ConnectedTo.

Table 1: Sample set of objects, states, properties, actions and rela-
tions (for complete description see Appendix

forcing, i.e., irrespective of predicted subgoal, always input
the correct next state for training the model. However, at in-
ference time, as we do not have ground-truth subgoals, we
need to find the next state through simulation, causing the
model to enter state regions it may not be exposed to, dur-
ing training. To alleviate the effects of this exposure bias, we
use teacher forcing with probability 1−p, and utilize a plan-
ner to generate next state with probability p (with the same
target labels). The recurrent predicate prediction stops when
δ+t ∪ δ−t =∅ ∨ t ≥ Ti.

This mitigates exposure bias, but running a planner can
be slow. So, we use planners at two levels of fidelity: a low-
fidelity symbolic simulator (that we call SYMSIM) and a
high-fidelity planner by Rintanen (2012). In training, SYM-
SIM emulates the effects of executing actions correspond-
ing to the subgoal ⟨δ+t , δ−t ⟩, to generate the next state as
ŝit+1 = sit∪ δ+t \ δ−t . Here ∪ and \ operations are performed
on the relation set of the graph sit to generate a new graph
ŝit+1. SYMSIM reduces training time significantly. At test
time, we use RINTANEN for better performance.

5 Evaluation and Results
Dataset. For evaluation, we use a benchmark data set from
Misra et al. (2015) consisting of NL instructions and as-

She&Chai Tango GN-SymSim Pipeline GoalNet GoalNet*She&Chai Tango GN-SymSim Pipeline GoalNet GoalNet*She&Chai Tango GN-SymSim Pipeline GoalNet GoalNet*She&Chai Tango GN-SymSim Pipeline GoalNet GoalNet*

2 4 6 8 10
Size of the Goal Constraint Set

0.0

0.2

0.4

0.6

0.8
F1

(a) F1 Score

2 4 6 8 10
Size of the Goal Constraint Set

0.0

0.2

0.4

0.6

0.8

GR
R

(b) GRR Score

Figure 5: Performance of baseline and GOALNET model
with the size of aggregate goal-predicate sets.

sociated trajectories collected through crowd-sourcing. The
dataset has two domains: kitchen and living room, each con-
taining 40 objects, with up to 4 instances of each object
class. It consists of diverse instruction types ranging from
short-horizon tasks such as “go to the sink” to tasks involv-
ing multiple extended interactions such as “cook ramen in a
pot of water”. See Table 1 for a list of sample objects in the
domain with the set of possible robot actions.

We extract intermediate states and target δ labels from this
dataset, as described in previous section, yielding 1,117 dat-
apoints, where we split 70%-15%-15% for our train, dev and
test datasets as per She and Chai (2016). We also do data
augmentation by perturbing the world states (and actions)
via related object replacement based on ConceptNet em-
beddings. We perform this only for training and validation
sets, wherein the replaced object is unseen in the original
data. This allows us to increase the number of training data-
points by 25%, giving a total of 633 unique starting states in
the dataset. At inference time, the prediction of goals (inter-
leaved with the planner) continues till δ+t ∪δ−t = ∅∨t ≥ 30.
Baselines. We evaluate using the following comparison
baselines. (1) SHE&CHAI (She and Chai 2016) is a non-
neural system that determines the hypothesis space for goals
using hand-crafted rules and features. (2) TANGO (Tuli et al.
2021), an imitation learning model (which is adapted to
take in NL instructions) that directly predict next actions.
(3) GN-SYMSIM is a variation of GOALNET that uses the
same interleaved architecture as GOALNET, but during test
time, instead of RINTANEN, it uses SYMSIM planner. (4)
PIPELINE is a variation of GOALNET where we infer the fi-
nal goal at once (as a conjunctive set), and run RINTANEN
once with this goal to generate the plan. (5) GAT is another
variation of GOALNET, where we use a graph attention net-
work (GAT) to encode the world state in lieu of an FCN. (6)
GPT-3.5 TURBO follows ProgPrompt (Singh et al. 2023),
wherein we prompt the GPT-3.5 Turbo model with natural
language description of the world state knowledge of ob-
jects, relations and robot actions. Few shot context as 3 ex-
amples of language and goal predicates are also provided.
Evaluation Metrics. For ith test datapoint, let the final state
reached in gold trajectory be siTi

, and similarly, in a model
m’s execution be siTm

i
, where Tm

i is the number of execution
steps for m. We compute aggregate state differences:

∆̂+
i = siTi

\ si0, ∆̂−
i = si0 \ siTi

,

∆+
i = s̄iTm

i
\ si0, ∆−

i = si0 \ s̄iTm
i
.

Model SJI IED F1 GRR
SHE&CHAI 0.448 0.450 0.512 0.370
TANGO 0.299 0.429 0.427 0.182
PIPELINE 0.364 0.291 0.483 0.340
GN-SYMSIM 0.366 0.294 0.487 0.344
GAT 0.176 0.327 0.223 0.149
GPT-3.5 TURBO 0.106 0.105 0.099 0.126

GOALNET 0.606 0.636 0.678 0.499

Model Ablations
w/o Relational information 0.583 0.612 0.661 0.459
w/o Instance grounding 0.550 0.601 0.625 0.445
w/o δ− prediction 0.425 0.448 0.534 0.450
w/o δ+ prediction 0.191 0.223 0.252 0.134
w/o Temporal context encoding 0.282 0.349 0.344 0.188
w/o Grammar mask 0.578 0.612 0.655 0.459

GOALNET* 0.473 0.502 0.561 0.377

Training using RINTANEN 0.713 0.726 0.778 0.658

Table 2: A comparison of goal-prediction and goal-reaching per-
formance for the baselines, GOALNET, and ablations. Two-sample
t-tests comparing GoalNet/GoalNet* with baselines gives the p-
values ≤0.0001, showing statistical significance.

Following She and Chai (2016), for a dataset of size N ,
we use the following evaluation metrics:
• SJI (State Jaccard Index) is overlap between the pre-

dicted (∆+
i , ∆−

i) and ground-truth (∆̂+
i , ∆̂−

i) predicates

SJI =
1

N

N∑
i=1

∥∆̂+
i ∩∆+

i ∥+ ∥∆̂−
i ∩∆−

i ∥
∥∆̂+

i ∪∆+
i ∥+ ∥∆̂−

i ∪∆−
i ∥

.

• IED (Instruction Edit Distance): is the similarity be-
tween the predicted {āi0, . . . , āiTm

i −1} and ground-truth
plan {ai0, . . . aiTi−1}, using the edit distance di

IED =
1

N

N∑
i=1

1− di

max(Ti, Tm
i)

.

• GRR (Goal Reaching Rate) is a proxy to evaluate if the
intended goal was reached:

GRR =
1

N

N∑
i=1

1(∆+
i ⊆ ∆̂+

i ∧∆−
i ⊆ ∆̂−

i).

• F1 evaluates the average of the F1 scores between the
positive and negative aggregate state differences.

Training Details. We use Adam optimizer (Kingma and Ba
2014) with a learning rate of 5 × 10−4. We use early stop-
ping based on loss over validation set. We also decay the
learning rate by 1/5 every 50 epochs. We use a constant
teacher-forcing probability of p = 0.2 of using the planner-
generated next state during training.
Baseline Comparisons. Table 2 presents the scores for
baselines and GOALNET. For fair comparison, all models
include the instance groundings for all objects in the in-
put instruction as part of the goal-object set Ol (see Sec-
tion 4). GOALNET outperforms all baselines in all metrics
by large (statistically significant) margins, obtaining 13 pt
GRR improvement over the next best model. We addition-
ally experiment with training GOALNET directly with RIN-
TANEN planner, instead of SYMSIM. Even though it is 13x
slower to train , we get further boost in all metrics including

Model Verb Replacement Paraphrasing Unseen Objects
SJI IED F1 GRR SJI IED F1 GRR SJI IED F1 GRR

SHE&CHAI 0.134 0.137 0.146 0.138 0.124 0.127 0.136 0.128 0.138 0.163 0.164 0.103
TANGO 0.193 0.249 0.287 0.084 0.176 0.267 0.270 0.171 0.082 0.110 0.113 0.098
PIPELINE 0.249 0.226 0.339 0.242 0.210 0.115 0.306 0.250 0.113 0.145 0.123 0.127
GN-SYMSIM 0.263 0.220 0.355 0.250 0.201 0.098 0.294 0.237 0.091 0.082 0.121 0.123
GPT-3.5 TURBO 0.078 0.087 0.083 0.087 0.037 0.038 0.053 0.053 0.070 0.078 0.066 0.086
GOALNET 0.398 0.422 0.476 0.236 0.376 0.489 0.464 0.303 0.138 0.153 0.153 0.130
GOALNET* 0.316 0.339 0.393 0.253 0.206 0.322 0.272 0.184 0.276 0.286 0.332 0.196

Table 3: GOALNET demonstrates the ability to generalize in case of verb replacement and paraphrasing relative to the baseline. GOALNET*
has the ability to generalize to scenes with a-priori unseen objects. Best results in bold.

16 pt GRR gain. This highlights the importance of training
with all action side-effects and conflicts, handled by a sym-
bolic planner. Fig. 4 shows sample trajectories generated by
GOALNET in kitchen and living room domain, respectively.

Performance with size of aggregate goal set. Figure 5
characterizes the variation in performance, as the size of
ground truth state difference ((∥∆+

i ∥+∥∆−
i ∥) increases. We

observe that all performances degrade, suggesting that more
work is needed in training models that are agnostic to result-
ing plan length. GOALNET performs better for most cases,
and this performance gap widens for larger constraint sets,
suggesting that the neural approach in GOALNET is able to
effectively encode the temporal context, enabling it to out-
perform the baseline in multi-stage long-horizon tasks. The
imitation learning baseline, TANGO, is unable to perform in
long-horizon cases as it needs to additionally learn cause-
effect rules. SHE&CHAI is unable to generalize due to the
hypothesis space being restricted to the objects in training
data. Further, GN-SYMSIM performs poorly due to errors
and noise in plan execution. Finally, one shot pipelined ap-
proach without interleaving performs poorly due to the low
quality predictions and the model ignoring execution errors.
The interleaved solution is more robust and can potentially
recover from erroneous predictions at a previous step.

Ablations. Table 2 also presents scores corresponding to
GOALNET ablations. For a fair comparison, all ablation
models have nearly same number of parameters. Each ab-
lation performs worse, indicating that all model features add
some value to the model. We find that without the rela-
tional information R(st) as input, the model is unable to
capture change in the spatial relations among world objects
and GRR drops by 4 pts. Similarly, the instance grounding
of the objects also helps. For instance, without knowing that
coffee-table in the instruction “place beer on top of coffee-
table” is mapped to table0, the agents needs to additionally
infer the specific instance that needs to be manipulated (see
Fig. 4). A drop of 5.5 pts is observed in this case.

Further, when we only predict positive subgoals (w/o δ−

prediction), GRR drops by 5 pts. Such a model is unable
to predict the required subgoals when only relations are re-
moved from the state (e.g., dropping objects). Unsurpris-
ingly, without δ+ prediction, GRR drops by a mammoth 37
pts. The inclusion of temporal context allows easier learn-
ing of correlated and commonly repeated action sequences.
Ablating this component drops GRR by 31 pts. Without
the grammar mask Ω, the GRR drops marginally (4 pts),
indicating, to a certain extent, the model’s ability to learn

grammar-semantics from data. Finally, GOALNET* shows a
drop in performance due to factored prediction, albeit with
improved generalization, as discussed next.
Generalization. Next, we evaluate model generalization to
unseen instruction by constructing three generalization data
sets (see Table 3). We test the performance when replacing
verb frames in the training data with those absent in the data
set. For instance, we replace boil in “boil milk” with heat.
Next, we paraphrase the language input to test instruction-
level generalization. For example, we paraphrase “gather
all used plates and glasses, place into sink” to “collect all
used dishes and glasses, keep in wash basin”. Finally, all
objects references in test data points are replaced by seman-
tically similar objects not in training set. Table 3 presents
the performance scores of baselines, GOALNET and GOAL-
NET*. We observe that GOALNET generalizes much better
in both paraphrasing and unseen verbs relative to the base-
lines. The performance over SHE&CHAI baseline is mainly
due to the presence of dense token (ConceptNet) and in-
struction (SBERT) representations as opposed to storing
observed verb-frame hypotheses. Further, GOALNET* gen-
eralizes in the case of unseen objects due to its prediction
pipeline being agnostic to the object set (Fig. 4).
Limitations. GOALNET struggles where there are multiple
plausible subgoals, causing imperfect scores. Further, our
models assume cause-effect modelling as PDDL input. Fu-
ture work will investigate (i) use of learned symbolic actions
models instead of formal PDDL input and (ii) modelling
state and goal uncertainty inherent in realistic domains and
(iii) resolving the rare cases (7 of 181 plans) where the sub-
goal predicts the same goal in loops.

6 Conclusions
We propose GOALNET, a novel neuro-symbolic architecture
that learns to infer goal predicates for an input language in-
struction and world state, which when passed to an under-
pinning symbolic planner enables reaching goal states. As
a departure from both pure imitation learning or a direct
prediction of goal sets underlying the task, GOALNET in-
terleaves subgoal prediction and symbolic planner in a loop
combining the benefits of both. The use of neural world state
and language encoding facilitates generalization to new in-
structions and scenes with new object types. Interleaving al-
lows for potentially correcting subgoal predictor mistakes.
We demonstrate significant gains in goal-reaching perfor-
mance in both a-priori known and unknown instruction-
environment settings compared to state-of-the-art baselines.

Acknowledgments
The work is supported by grants from Google, IBM, Verisk,
Microsoft, and Huawei, and the Jai Gupta chair fellowship
and Pankaj Gupta Young Faculty Fellowship by IIT Delhi.
We thank the IIT-D HPC facility. We also thank Microsoft
Accelerate Foundation Models Research (AFMR) program
that helps provide access to OpenAI models.

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Berant, J.; Chou, A.; Frostig, R.; and Liang, P. 2013. Se-
mantic parsing on freebase from question-answer pairs. In
Proceedings of the 2013 conference on empirical methods in
natural language processing, 1533–1544.
Bird, S.; Klein, E.; and Loper, E. 2009. Natural language
processing with Python: analyzing text with the natural lan-
guage toolkit. ” O’Reilly Media, Inc.”.
Boularias, A.; Duvallet, F.; Oh, J.; and Stentz, A. 2015.
Grounding spatial relations for outdoor robot navigation. In
ICRA, 1976–1982. IEEE.
Branavan, S.; Kushman, N.; Lei, T.; and Barzilay, R. 2012.
Learning high-level planning from text. ACL.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In ACL, volume 1, 4171–4186.
Dragan, A. D.; Bauman, S.; Forlizzi, J.; and Srinivasa, S. S.
2015. Effects of robot motion on human-robot collaboration.
In HRI), 51–58. IEEE.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on ima-
genet classification. In CVPR, 1026–1034.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical reparame-
terization with gumbel-softmax. ICLR.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Lesh, N.; and Etzioni, O. 1995. A sound and fast goal rec-
ognizer. In IJCAI, volume 95, 1704–1710. Citeseer.
Liao, Y.-H.; Puig, X.; Boben, M.; Torralba, A.; and Fidler, S.
2019. Synthesizing environment-aware activities via activity
sketches. In CVPR, 6291–6299.
Lipovetzky, N.; and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In ECAI 2012, 540–545.
IOS Press.
Mei, H.; Bansal, M.; and Walter, M. R. 2016. What to talk
about and how? Selective Generation using LSTMs with
Coarse-to-Fine Alignment. In ACL, 720–730.
Meneguzzi, F. R.; and Pereira, R. F. 2021. A Survey on Goal
Recognition as Planning. In IJCAI.

Mikolov, T.; Grave, É.; Bojanowski, P.; Puhrsch, C.; and
Joulin, A. 2018. Advances in Pre-Training Distributed Word

Representations. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evaluation
(LREC 2018).
Misra, D.; Bennett, A.; Blukis, V.; Niklasson, E.; Shatkhin,
M.; and Artzi, Y. 2018. Mapping Instructions to Actions in
3D Environments with Visual Goal Prediction. In EMNLP,
2667–2678.
Misra, D.; Tao, K.; Liang, P.; and Saxena, A. 2015.
Environment-driven lexicon induction for high-level instruc-
tions. In ACL, 992–1002.
Misra, D. K.; Sung, J.; Lee, K.; and Saxena, A. 2016. Tell
me dave: Context-sensitive grounding of natural language
to manipulation instructions. The International Journal of
Robotics Research, 35(1-3): 281–300.
Paul, R.; Arkin, J.; Aksaray, D.; Roy, N.; and Howard, T. M.
2018. Efficient grounding of abstract spatial concepts for
natural language interaction with robot platforms. The Inter-
national Journal of Robotics Research, 37(10): 1269–1299.
Puig, X.; Ra, K.; Boben, M.; Li, J.; Wang, T.; Fidler, S.;
and Torralba, A. 2018. Virtualhome: Simulating household
activities via programs. In CVPR, 8494–8502.
Reimers, N.; Gurevych, I.; Reimers, N.; et al. 2019.
Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In EMNLP, 671–688.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tificial Intelligence, 193: 45–86.
Sebastia, L.; Onaindia, E.; and Marzal, E. 2006. Decompo-
sition of planning problems. Ai Communications, 19: 49–81.
She, L.; and Chai, J. 2016. Incremental acquisition of verb
hypothesis space towards physical world interaction. In
ACL, 108–117.
Silver, T.; Athalye, A.; Tenenbaum, J. B.; Lozano-Perez, T.;
and Kaelbling, L. P. 2022. Learning Neuro-Symbolic Skills
for Bilevel Planning. arXiv:2206.10680.
Singh, I.; Blukis, V.; Mousavian, A.; Goyal, A.; Xu, D.;
Tremblay, J.; Fox, D.; Thomason, J.; and Garg, A. 2023.
Progprompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), 11523–11530. IEEE.
Speer, R.; Chin, J.; and Havasi, C. 2019. ConceptNet Num-
berbatch, the best pre-computed word embeddings you can
use. GitHub repository.
Suhr, A.; and Artzi, Y. 2018. Situated Mapping of Sequen-
tial Instructions to Actions with Single-step Reward Obser-
vation. In ACL, 2072–2082.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M. R.; Banerjee,
A. G.; Teller, S.; and Roy, N. 2011. Approaching the symbol
grounding problem with probabilistic graphical models. AI
magazine, 32(4): 64–76.
Tuli, S.; Bansal, R.; Paul, R.; and , M. 2021. TANGO: Com-
monsense Generalization in Predicting Tool Interactions for
Mobile Manipulators. In IJCAI, 4197–4205.
Tuli, S.; Bansal, R.; Paul, R.; et al. 2022. TOOLTANGO:
Common sense Generalization in Predicting Sequential Tool
Interactions for Robot Plan Synthesis. Journal of Artificial
Intelligence Research, 75: 1595–1631.

	Introduction
	Related Work
	Problem Formulation
	Technical Approach
	Subgoal Predictor

	Evaluation and Results
	Conclusions

