
Advanced Satisfiability

Mausam
(Based on slides of Carla Gomes, Henry Kautz,

Subbarao Kambhampati, Cristopher Moore,
Ashish Sabharwal, Bart Selman, Toby Walsh)

2

Real-World Reasoning
Tackling inherent computational complexity

100

200

10K

50K

50K

200K

0.5M

1M

1M

5M

Variables

1030

10301,020

10150,500

1015,050

103010

W
o

rs
t

C
a
s
e
 c

o
m

p
le

x
it

y

Car repair diagnosis

Deep space

mission control

Chess

Hardware/Software

Verification

Multi-Agent

Systems

200K

600K

Military Logistics

Seconds until heat

death of sun

Protein folding

calculation

(petaflop-year)

No. of atoms

on earth 1047

100 10K 20K 100K 1M

Rules (Constraints)Example domains cast in propositional reasoning system (variables, rules).

• High-Performance Reasoning

• Temporal/ uncertainty reasoning

• Strategic reasoning/Multi-player

Technology Targets

DARPA Research

Program

Symbolic Model Checking

• Any finite state machine is characterized by a transition function
– CPU
– Networking protocol

• Wish to prove some invariant holds for any possible inputs
• Bounded model checking: formula is sat iff invariant fails k steps in the future

   
1

1
0

 vector of Booleans representing

state of machine at time

:

: {0,1}

(,

t

k

i i i o k
i

S

t

State Input State

State

S S I S S





 







 



 
   

 


A “real world” example

i.e. ((not x1) or x7)

and ((not x1) or x6)

and … etc.

Bounded Model Checking instance

(x177 or x169 or x161 or x153 …

or x17 or x9 or x1 or (not x185))

clauses / constraints are getting more interesting…

10 pages later:

…

4000 pages later:

…

!!!
a 59-cnf

clause…

Finally, 15,000 pages later:

The Chaff SAT solver (Princeton) solves

this instance in less than one minute.

Note that: … !!!

What makes this possible?

Progress in Last 20 years

• Significant progress since the 1990’s. How much?

• Problem size: We went from 100 variables, 200 constraints (early 90’s)

to 1,000,000+ variables and 5,000,000+ constraints in 20 years

• Search space: from 10^30 to 10^300,000.

[Aside: “one can encode quite a bit in 1M variables.”]

• Is this just Moore’s Law? It helped, but not much…

• – 2x faster computers does not mean can solve 2x larger instances

• – search difficulty does not scale linearly with problem size!

• Tools: 50+ competitive SAT solvers available

Forces Driving Faster, Better SAT Solvers

• From academically interesting to practically relevant “Real”
benchmarks, with real interest in solving them

• Regular SAT Solver Competitions (Germany-89, Dimacs-93, China-
96, SAT-02, SAT-03, …, SAT-07, SAT-09, SAT-2011)

– “Industrial-instances-only” SAT Races (2008, 2010)

– A tremendous resource! E.g., SAT Competition 2014:

• 137 solvers submitted, downloadable, mostly open source
– 79 teams, 14 countries

• 500+ industrial benchmarks, 1000+ other benchmarks

• 50,000+ benchmark instances available on the Internet

• This constant improvement in SAT solvers is the key to the success
of, e.g., SAT-based planning and verification

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
there is a satisfying
assignment

Cost of solving
(either by finding
a solution or showing
there ain’t one)

p=0.5
You would
expect this

This is what
happens!

~4.3

Random 3-SAT

• Random 3-SAT

– sample uniformly from
space of all possible 3-
clauses

– n variables, l clauses

• Which are the hard
instances?

– around l/n = 4.3

21

Random 3-SAT

• Varying problem size, n

• Complexity peak appears
to be largely invariant of
algorithm

22

Random 3-SAT

• Complexity peak coincides
with solubility transition

– l/n < 4.3 problems under-
constrained and SAT

– l/n > 4.3 problems over-
constrained and UNSAT

– l/n=4.3, problems on “knife-
edge” between SAT and
UNSAT

23

24

Random 3-SAT as of 2005

Random Walk

DP

DP’

Walksat

SP

GSAT

Phase

transition

Mitchell, Selman, and Levesque ’92

25

Results: Random 3-SAT

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
empirically up to 2.5

• Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) ‘
empirically up to 3.6
approx. 400 vars at phase transition

• GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02)
approx. 1,000 vars at phase transition

• Walksat up till ratio 4.1 (empirical, Selman et al. ’93)
approx. 100,000 vars at phase transition

• Survey propagation (SP) up till 4.2
(empirical, Mezard, Parisi, Zecchina ’02)
approx. 1,000,000 vars near phase transition

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

E[X] = 0.p(X=0) + 1.p(X=1) + 2.p(X=2) + 3.p(X=3) + …

>= 1.p(X=1) + 1.p(X=2) + 1.p(X=3) + …

>= p(X>=1)

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

No assumptions about the distribution of X except non-
negative!

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

The expected value of X can be easily calculated

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

E[X] = 2^n * (7/8)^l

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

E[X] = 2^n * (7/8)^l

If E[X] < 1, then prob(X>=1) = prob(SAT) < 1

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

E[X] = 2^n * (7/8)^l

If E[X] < 1, then 2^n * (7/8)^l < 1

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

E[X] = 2^n * (7/8)^l

If E[X] < 1, then 2^n * (7/8)^l < 1

n + l log2(7/8) < 0

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

E[X] = 2^n * (7/8)^l

If E[X] < 1, then 2^n * (7/8)^l < 1

n + l log2(7/8) < 0

l/n > 1/log2(8/7) = 5.19…

Average vs Number

• But the transition is much lower at l/n ~ 4.27.
What going on?

• In the range 4.27 < l/n < 5.19,

– the average no. of solutions is exponentially large.

• Occasionally, there are exponentially many...

– ...but most of the time there are none!

• Large average doesn’t prove satisfiability!

38

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’14)

5.19

5.081

4.762

4.506

4.4898

4.596

4.643

2+p-SAT

Morph between 2-SAT and
3-SAT

– fraction p of 3-clauses

– fraction (1-p) of 2-clauses

[Monasson et al 1999]

2+p-SAT

• Maps from P to NP

– NP-complete for any p>0

– Insight into change from P to
NP [Monasson et al 1999]

2+p-SAT

Computational Cost: 2+p-SAT
Tractable substructure can dominate!

> 40% 3-SAT --- exponential scaling

<= 40% 3-SAT --- linear scaling

Mixing 2-SAT (tractable)

& 3-SAT (intractable) clauses.

(Monasson et al. 99; Achlioptas ‘00)

M
e
d

ia
n

 c
o

s
t

Num variables

Real versus Random

• Real graphs tend to be sparse

– dense random graphs contains lots of (rare?) structure

• Real graphs tend to have short path lengths

– as do random graphs

• Real graphs tend to be clustered

– unlike sparse random graphs

Small world graphs

• Sparse, clustered, short path lengths

• Six degrees of separation
– Stanley Milgram’s famous 1967

postal experiment

– recently revived by Watts & Strogatz

– shown applies to:
• actors database

• US electricity grid

• neural net of a worm

• ...

An example

• 1994 exam timetable at
Edinburgh University
– 59 nodes, 594 edges so

relatively sparse

– but contains 10-clique

• less than 10^-10 chance in a
random graph
– assuming same size and

density

• clique totally dominated
cost to solve problem

52
(Gomes et al. 1998; 2000)

Observation: Complete backtrack style search SAT solvers

(e.g. DPLL) display a remarkably wide range of run times.

Even when repeatedly solving the same problem instance; variable

branching is choice randomized.

Run time distributions are often “heavy-tailed”.

Orders of magnitude difference in run time on different runs.

Real World DPLL

Number backtracks (log)

U
ns

ol
ve

d
fr

ac
ti
on

50% runs:

1 backtrack

10% runs:

> 100,000

backtracks

100,0001

Heavy Tails on Structured Problems

54

Randomized Restarts
Solution: randomize the backtrack strategy

Add noise to the heuristic branching (variable choice) function
Cutoff and restart search after a fixed number of backtracks

Provably Eliminates heavy tails

In practice: rapid restarts with low cutoff can dramatically improve
performance (Gomes et al. 1998, 1999)

Exploited in many current SAT solvers combined with clause learning
and non-chronological backtracking. (e.g., Chaff etc.)

Restarts

70%

unsolved

1
-
F
(x

)
U
ns

ol
ve

d
 f

ra
ct

io
n

Number backtracks (log)

no restarts

restart every 4 backtracks

250 (62 restarts)

0.001%

unsolved

Example of Rapid Restart Speedup

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log(cutoff)

lo
g

 (
 b

a
c
k

tr
a

c
k
s

)

20

2000 ~100

restarts

Cutoff (log)

N
um

b
e
r

b
a
ck

tr
a
ck

s
(l
og

)

~10 restarts

100000

Intuitively: Exponential penalties hidden in backtrack

search, consisting of large inconsistent subtrees in

the search space.

But, for restarts to be effective, you also need

short runs.

Where do short runs come from?

BACKDOORS
Subset of “critical” variables such

that once assigned a value the instance simplifies to a

tractable class.

Real World Problems are characterized

by Hidden Tractable Substructure

Backdoors: intuitions

Explain how a solver can get “lucky” and solve
very large instances

Backdoors

Informally:

A backdoor to a given problem is a subset of the variables such
that once they are assigned values, the polynomial propagation
mechanism of the SAT solver solves the remaining formula.

Formal definition includes the notion of a “subsolver”:
a polynomial simplification procedure with certain general
characteristics found in current DPLL SAT solvers.

Backdoors correspond to “clever reasoning shortcuts” in the

search space.

Backdoors (for satisfiable instances) (wrt subsolver A):

Strong backdoors (apply to satisfiable or inconsistent instances):

Given a combinatorial problem C

Reminder: Cycle-cutset

• Given an undirected graph, a cycle cutset is a subset of nodes in
the graph whose removal results in a graph without cycles

• Once the cycle-cutset variables are instantiated, the remaining
problem is a tree solvable in polynomial time using arc
consistency;

• A constraint graph whose graph has a cycle-cutset of size c can
be solved in time of O((n-c) k (c+2))

• Important: verifying that a set of nodes is a cutset can be done
in polynomial time (in number of nodes).

(Dechter 93)

Backdoors vs. Cutsets

•Can be viewed as a generalization of cutsets;

•Backdoors use a general notion of tractability based on a polytime

sub-solver --- backdoors do not require a syntactic characterization

of tractability.

•Backdoors factor in the semantics of the constraints wrt sub-solver and

values of the variables;

•Backdoors apply to different representations, including different

semantics for graphs, e.g., network flows --- CSP, SAT, MIP, etc;

Note: Cutsets and W-cutsets – tractability based solely on the structure of
the constraint graph, independently of the semantics of the constraints;

Backdoors can be surprisingly small

Most recent: Other combinatorial domains. E.g. graphplan planning,

near constant size backdoors (2 or 3 variables) and log(n) size

in certain domains. (Hoffmann, Gomes, Selman ’04)

Backdoors capture critical problem resources (bottlenecks).

Backdoors --- “seeing is believing”

Logistics_b.cnf planning formula.

843 vars, 7,301 clauses, approx min backdoor 16

(backdoor set = reasoning shortcut)

Constraint graph of

reasoning problem.

One node per variable:

edge between two variables

if they share a constraint.

Logistics.b.cnf after setting 5 backdoor vars.

After setting just 12 (out of 800+) backdoor vars – problem almost solved.

MAP-6-7.cnf infeasible planning instances. Strong backdoor of size 3.

392 vars, 2,578 clauses.

Another example

After setting 2 (out of 392) backdoor vars. ---

reducing problem complexity in just a few steps!

Inductive inference problem --- ii16a1.cnf. 1650 vars, 19,368 clauses.

Backdoor size 40.

Last example.

After setting 6 backdoor vars.

After setting 38 (out of 1600+)

backdoor vars:

Some other intermediate stages:

So: Real-world structure

hidden in the network.

Can be exploited by

automated reasoning

engines.

(Williams, Gomes, and Selman ’03)

Current

solvers

Size

backdoor

n = num. vars.

k is a constant

