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Knowledge Representation

• represent knowledge about the world in a manner that facilitates 
inferencing (i.e. drawing conclusions) from knowledge.

• Example: Arithmetic logic
– x >= 5

• In AI: typically based on

– Logic

– Probability

– Logic and Probability
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Common KR Languages
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KR Languages

• Propositional Logic

• Predicate Calculus

• Frame Systems

• Rules with Certainty Factors

• Bayesian Belief Networks

• Influence Diagrams

• Ontologies

• Semantic Networks

• Concept Description Languages

• Non-monotonic Logic 5



Basic Idea of Logic

• By starting with true assumptions, you can 
deduce true conclusions.
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Truth
•Francis Bacon (1561-1626)
No pleasure is comparable to the 
standing upon the vantage-ground 
of truth. 

•Thomas Henry Huxley (1825-
1895) 
Irrationally held truths may be 
more harmful than reasoned 
errors. 

•John Keats (1795-1821)
Beauty is truth, truth beauty; that 
is all ye know on earth, and all ye 
need to know. 

•Blaise Pascal (1623-1662) 
We know the truth, not only by 
the reason, but also by the heart.

•François Rabelais (c. 1490-1553)
Speak the truth and shame the 
Devil. 

•Daniel Webster (1782-1852) 
There is nothing so powerful as 
truth, and often nothing so 
strange.

7



Components of KR

• Syntax: defines the sentences in the language

• Semantics: defines the “meaning” to sentences

• Inference Procedure

– Algorithm

– Sound?

– Complete?

– Complexity

• Knowledge Base
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Knowledge bases

• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent (or other system):
– Tell it what it needs to know

• Then it can Ask itself what to do - answers should follow from the KB

• Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

• Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them



Propositional Logic
• Syntax

– Atomic sentences: P, Q, …

– Connectives:  , , , 

• Semantics
– Truth Tables

• Inference
– Modus Ponens
– Resolution
– DPLL
– GSAT
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Propositional Logic: Syntax
• Atoms

–P, Q, R, …
• Literals

–P, P
• Sentences

–Any literal is a sentence
– If S is a sentence

• Then (S  S) is a sentence
• Then (S  S) is a sentence

• Conveniences
P  Q    same as P  Q
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Semantics
• Syntax: which arrangements of symbols are legal

– (Def “sentences”)

• Semantics: what the symbols mean in the world

– (Mapping between symbols and worlds)
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Propositional Logic: SEMANTICS

• “Interpretation”  (or “possible world”)

– Assignment to each variable either T or F

– Assignment of T or F to each connective via defns
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Satisfiability, Validity, & Entailment

• S is satisfiable if it is true in some world

• S is unsatisfiable if it is false in all worlds

• S is valid if it is true in all worlds

• S1 entails S2 if wherever S1 is true S2 is also true
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Examples

R  R

S  (W  S)

T  T

X  X
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P  Q



Notation

• Sound

• Complete

• (all truth & nothing but the truth) =
16









=

Inference 
Entailment

} 
Proves:  S1 |-ie S2 if `ie’  algorithm says `S2’ from S1

Entails:  S1 |= S2 if wherever S1 is true S2 is also true

  =

=  

Implication (syntactic symbol)



Reasoning Tasks
• Model finding

KB = background knowledge

S = description of problem

Show (KB  S) is satisfiable

A kind of constraint satisfaction

• Deduction

S = question

Prove that KB |= S

Two approaches:
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• Rules to derive new formulas from old (inference)

• Show (KB   S) is unsatisfiable



Special Syntactic Forms
• General Form:

((q r)  s))   (s  t)

• Conjunction Normal Form (CNF)

( q  r  s )  ( s   t)

Set notation: { ( q, r, s ),  ( s,  t) }

empty clause () = false 

• Binary clauses: 1 or 2 literals per clause

( q  r)               ( s   t)

• Horn clauses: 0 or 1 positive literal per clause

( q   r  s )     ( s   t)

(qr)  s               (st)  false
18



Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward & Forward Chaining 

2. Resolution (Proof by Contradiction)

3. SAT

1. Davis Putnam

2. WalkSat
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Inference 1: Forward Chaining 

Forward Chaining 
Based on rule of modus ponens

If know P1, …, Pn & know (P1 ...  Pn )  Q

Then can conclude Q

Backward Chaining: search

start from the query and go backwards
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Analysis

• Sound?

• Complete?

• If KB has only Horn clauses & query is a single literal 

– Forward Chaining is complete

– Runs linear in the size of the KB
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Can you prove 
{ }  |=  Q  Q
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Propositional Logic: Inference
A mechanical process for computing new sentences

1. Backward & Forward Chaining 

2. Resolution (Proof by Contradiction)

3. SAT

1. Davis Putnam

2. WalkSAT

31



Conversion to CNF
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Inference 2: Resolution
[Robinson 1965]

{ (p  ), ( p    ) }  |-R (    )
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Correctness

If S1 |-R S2 then S1 |= S2 
Refutation Completeness:

If S is unsatisfiable then S |-R ()



Resolution subsumes Modus Ponens

A  B, A |= B
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( A  B) (A)

(B)



Don’t need to use other
equivalences if we use
resolution in refutation style
~J ~W
~W V J
W V J J

If Will goes, Jane will go
~W V J

If doesn’t go, Jane will still go
W V J

Will Jane go?
|= J?

J V J =J



Resolution
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If the unicorn is mythical, then it is immortal, but if 
it is not mythical, it is a mammal.  If the unicorn is 
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

( A  H)

(M  A)

( H) (I  H)

( M)

( M  I)(I)(A)

(M)

()

M = mythical
I = immortal
A = mammal
H = horned



Search in Resolution
• Convert the database into clausal form Dc

• Negate the goal first, and then convert it into clausal 
form  DG

• Let D = Dc+ DG

• Loop 
– Select a pair of Clauses C1 and C2 from D

• Different control strategies can be used to select C1 and C2 
to reduce number of resolutions tries

– Resolve C1 and C2 to get C12
– If C12 is empty clause, QED!! Return Success (We proved 

the theorem; )
– D = D + C12

• Out of loop but no empty clause. Return “Failure”
– Finiteness is guaranteed if we make sure that:

• we never resolve the same pair of clauses more than 
once; 

• we use factoring, which removes multiple copies of 
literals from a clause (e.g. QVPVP => QVP)



SAT: Model Finding

• Find assignments to variables that makes a 
formula true
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Why study Satisfiability?

• Canonical NP complete problem.

– several hard problems modeled as SAT

• Tonne of applications

• State-of-the-art solvers superfast



Tonne of Applications



Testing Circuit Equivalence

• Do two circuits compute 
the same function?

• Circuit optimization

• Is there input for which the 
two circuits compute 
different values?

A B

nand

A B

C C’
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Testing Circuit Equivalence

A B

nand

A B

C C’

D E

 

( )

( )

C A B

C D E

D A

E B

C C

 

   

 

 

 



SAT Translation of N-Queens

• At least one queen each column:
(Q11 v Q12 v Q13 v ... v Q18)

(Q21 v Q22 v Q23 v ... v Q28)

…

• No attacks:
(~Q11 v ~Q12)

(~Q11 v ~Q22)

(~Q11 v ~Q21)

...



Graph Coloring

• A new SAT Variable for var-val pair

XWA-r, XWA-g, XWA-b, XNT-r…

• Each var has at least 1 value

– XWA-r v XWA-g v XWA-b

• No var has two values

– ~XWA-r v ~XWA-g

– ~XWA-r v ~XWA-b

• Constraints

– ~XWA-r v ~XNT-r



Application: Diagnosis

• Problem: diagnosis a malfunctioning device

– Car

– Computer system

– Spacecraft

• where

– Design of the device is known

– We can observe the state of only certain parts of 
the device – much is hidden



Model-Based, Consistency-Based Diagnosis

• Idea: create a logical formula that describes how 
the device should work

– Associated with each “breakable” component C is a 
proposition that states “C is okay”

– Sub-formulas about component C are all conditioned on 
C being okay

• A diagnosis is a smallest of “not okay” assumptions 
that are consistent with what is actually observed



Consistency-Based Diagnosis

1. Make some Observations O.

2. Initialize the Assumption Set A to assert that 
all components are working properly.

3. Check if the KB, A, O together are inconsistent
(can deduce false).

4. If so, delete propositions from A until 
consistency is restored (cannot deduce false).  
The deleted propositions are a diagnosis.

There may be many possible diagnoses



Example: Automobile Diagnosis
• Observable Propositions:

EngineRuns,    GasInTank,     ClockRuns

• Assumable Propositions:

FuelLineOK,     BatteryOK,      CablesOK,     ClockOK

• Hidden (non-Assumable) Propositions:

GasInEngine,   PowerToPlugs

• Device Description F:

(GasInTank  FuelLineOK)  GasInEngine

(GasInEngine  PowerToPlugs)   EngineRuns

(BatteryOK  CablesOK)  PowerToPlugs

(BatteryOK  ClockOK)  ClockRuns

• Observations:

 EngineRuns,     GasInTank,     ClockRuns



Example
• Is F  Observations  Assumptions consistent?

• F  {EngineRuns, GasInTank, ClockRuns}

 { FuelLineOK, BatteryOK, CablesOK, ClockOK }  false

– Must restore consistency!

• F  {EngineRuns, GasInTank, ClockRuns}

 { BatteryOK, CablesOK, ClockOK }  false

–  FuelLineOK is a diagnosis

• F  {EngineRuns, GasInTank, ClockRuns}

 {FuelLineOK, CablesOK, ClockOK }  false

–  BatteryOK is not a diagnosis



Complexity of Diagnosis

• If F is Horn, then each consistency test takes 
linear time – unit propagation is complete for 
Horn clauses.

• Complexity = ways to delete propositions from 
Assumption Set that are considered.

– Single fault diagnosis – O(n2)

– Double fault diagnosis – O(n3)

– Triple fault diagnosis – O(n4)

…



Deep Space One

• Autonomous diagnosis & repair “Remote 
Agent”

• Compiled systems schematic to 7,000 var 
SAT problem

Started:  January 1996

Launch: October 15th, 1998

Experiment: May 17-21



Deep Space One

• a failed electronics unit
– Remote Agent fixed by reactivating the unit.

• a failed sensor providing false information
– Remote Agent recognized as unreliable and therefore correctly ignored.

• an attitude control thruster (a small engine for controlling the 
spacecraft's orientation) stuck in the "off" position 
– Remote Agent detected and compensated for by switching to a mode that 

did not rely on that thruster.



Inference 3: Model Enumeration

for (m in truth assignments){

if (m makes  true) 

then return “Sat!”

}

return “Unsat!”
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Inference 4: DPLL 
(Enumeration of Partial Models)
[Davis, Putnam, Loveland & Logemann 1962]

Version 1

dpll_1(pa){

if (pa makes F false) return false;

if (pa makes F true) return true;

choose P in F;

if (dpll_1(pa  {P=0})) return true;

return dpll_1(pa  {P=1});

}

Returns true if F is satisfiable, false otherwise
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DPLL Version 1
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DPLL Version 1
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DPLL Version 1
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DPLL Version 1

63

a

(F  F  c)

(F  T)

(F  ¬c)

(T  c)

F

b



DPLL Version 1
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DPLL Version 1
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DPLL Version 1
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DPLL Version 1
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DPLL as Search

• Search Space?

• Algorithm?
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Improving DPLL
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DPLL version 2

dpll_2(F, literal){

remove clauses containing literal

if (F contains no clauses)return true;

shorten clauses containing literal

if (F contains empty clause)
return false;

choose V in F;

if (dpll_2(F, V))return true;

return dpll_2(F, V);

}
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DPLL Version 2
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DPLL Version 2
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DPLL Version 2
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DPLL Version 2
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DPLL Version 2
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DPLL Version 2
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Structure in Clauses 

• Pure Literals

– A symbol that always appears with same sign

– {{a b c}{c d e}{a b e}{d b}{e a c}}

77

• Unit Literals (unit propagation)
A literal that appears in a singleton clause
{{b c}{c}{a b e}{d b}{e a c}}

Might as well set it true!   And simplify
{{a b c}               {a b e}       {e a c}}

Might as well set it true!   And simplify
{{b}         {a b e}{d b}}

{{d}}



In Other Words

78

2 3

Therefore: Branch immediately on unit litera

Formula ( ) ... is only true when literal  is true

If literal  does not appear negated in formula , then setting

 true preserves satisfiability o

ls!

L C C L

L F

L

  

Therefore: Branch immediately on pure liter

f 

als!

F

May view this as adding 
constraint propagation 
techniques into play



In Other Words
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DPLL (previous version)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

remove clauses containing literal

if (F contains no clauses) return true;

shorten clauses containing literal
if (F contains empty clause)

return false;

if (F contains a unit or pure L)
return dpll(F, L);

choose V in F;

if (dpll(F, V))return true;

return dpll(F, V);

}
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DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

remove clauses containing literal

if (F contains no clauses) return true;

shorten clauses containing literal
if (F contains empty clause)

return false;

if (F contains a unit or pure L)
return dpll(F, L);

choose V in F;

if (dpll(F, V))return true;

return dpll(F, V);

}
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DPLL (for real)
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DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

remove clauses containing literal

if (F contains no clauses) return true;

shorten clauses containing literal
if (F contains empty clause)

return false;

if (F contains a unit or pure L)
return dpll(F, L);

choose V in F;

if (dpll(F, V))return true;

return dpll(F, V);

}
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Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

• Idea: identify a most constrained variable

– Likely to create many unit clauses

• MOM’s heuristic:

– Most occurrences in clauses of minimum length

84



GSAT

• Local search (Hill Climbing + Random Walk) over 
space of complete truth assignments

–With prob p: flip any variable in any unsatisfied clause

–With prob (1-p): flip best variable in any unsat clause

• best = one which minimizes #unsatisfied clauses

• SAT encodings of N-Queens, scheduling

• Best algorithm for random K-SAT

–Best DPLL: 700 variables

–Walksat: 100,000 variables
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Refining Greedy Random Walk

• Each flip

– makes some false clauses become true

– breaks some true clauses, that become false

• Suppose s1s2 by flipping x.  Then:

#unsat(s2) = #unsat(s1) – make(s1,x) + break(s1,x)

• Idea 1: if a choice breaks nothing, it is very likely to 
be a good move

• Idea 2: near the solution, only the break count 
matters 

– the make count is usually 1



Walksat
state = random truth assignment;
while ! GoalTest(state) do

clause := random member { C | C is false in state };
for each x in clause do compute break[x];
if exists x with break[x]=0 then var := x;
else

with probability p do
var := random member { x | x is in clause };

else (probability 1-p)
var := argminx { break[x] | x is in clause };

endif
state[var] := 1 – state[var];

end
return state; Put everything inside of a restart loop.

Parameters: p, max_flips, max_runs



Advs of WalkSAT over GSAT

• WalkSat guaranteed to make at least 1 false 
clause (in random walk also)

• Number of evaluations small per move

– does not iterate over all variables

– only variables in the sampled clause


