
Logic in AI
Chapter 7

Mausam

(Based on slides of Dan Weld, Stuart Russell,
Subbarao Kambhampati, Dieter Fox,

Henry Kautz…)

2

Knowledge Representation

• represent knowledge about the world in a manner that facilitates
inferencing (i.e. drawing conclusions) from knowledge.

• Example: Arithmetic logic
– x >= 5

• In AI: typically based on

– Logic

– Probability

– Logic and Probability

3

Common KR Languages

4

Prop logic

First order predicate logic

(FOPC)

Prob. Prop. logic

Objects,

relations
Degree of

belief

First order Prob. logic

Objects,

relations

Degree of

belief

Degree of

truth

Fuzzy Logic

Time

First order Temporal logic

(FOPC)

Epistemological
commitment

Ontological
commitment

t/f/u Deg
belief

facts

Facts
Objects
relations

Prop
logic

Prob
prop
logic

FOPC Prob
FOPC

KR Languages

• Propositional Logic

• Predicate Calculus

• Frame Systems

• Rules with Certainty Factors

• Bayesian Belief Networks

• Influence Diagrams

• Ontologies

• Semantic Networks

• Concept Description Languages

• Non-monotonic Logic 5

Basic Idea of Logic

• By starting with true assumptions, you can
deduce true conclusions.

6

Truth
•Francis Bacon (1561-1626)
No pleasure is comparable to the
standing upon the vantage-ground
of truth.

•Thomas Henry Huxley (1825-
1895)
Irrationally held truths may be
more harmful than reasoned
errors.

•John Keats (1795-1821)
Beauty is truth, truth beauty; that
is all ye know on earth, and all ye
need to know.

•Blaise Pascal (1623-1662)
We know the truth, not only by
the reason, but also by the heart.

•François Rabelais (c. 1490-1553)
Speak the truth and shame the
Devil.

•Daniel Webster (1782-1852)
There is nothing so powerful as
truth, and often nothing so
strange.

7

Components of KR

• Syntax: defines the sentences in the language

• Semantics: defines the “meaning” to sentences

• Inference Procedure

– Algorithm

– Sound?

– Complete?

– Complexity

• Knowledge Base

8

9

Knowledge bases

• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent (or other system):
– Tell it what it needs to know

• Then it can Ask itself what to do - answers should follow from the KB

• Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

• Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

Propositional Logic
• Syntax

– Atomic sentences: P, Q, …

– Connectives:  , , , 

• Semantics
– Truth Tables

• Inference
– Modus Ponens
– Resolution
– DPLL
– GSAT

10

Propositional Logic: Syntax
• Atoms

–P, Q, R, …
• Literals

–P, P
• Sentences

–Any literal is a sentence
– If S is a sentence

• Then (S  S) is a sentence
• Then (S  S) is a sentence

• Conveniences
P  Q same as P  Q

11

Semantics
• Syntax: which arrangements of symbols are legal

– (Def “sentences”)

• Semantics: what the symbols mean in the world

– (Mapping between symbols and worlds)

12

Sentences

FactsFacts

Sentences

Representation

World

S
em

a
n
tics

S
em

a
n
tics

Inference

Propositional Logic: SEMANTICS

• “Interpretation” (or “possible world”)

– Assignment to each variable either T or F

– Assignment of T or F to each connective via defns

13

P
T

T

F

F

Q

P
T

T

F

F

Q

P  Q P  Q

T

F F

F

F

T T

T

Satisfiability, Validity, & Entailment

• S is satisfiable if it is true in some world

• S is unsatisfiable if it is false in all worlds

• S is valid if it is true in all worlds

• S1 entails S2 if wherever S1 is true S2 is also true

14

Examples

R  R

S  (W  S)

T  T

X  X

15

P  Q

Notation

• Sound

• Complete

• (all truth & nothing but the truth) =
16









=

Inference
Entailment

}
Proves: S1 |-ie S2 if `ie’ algorithm says `S2’ from S1

Entails: S1 |= S2 if wherever S1 is true S2 is also true

  =

=  

Implication (syntactic symbol)

Reasoning Tasks
• Model finding

KB = background knowledge

S = description of problem

Show (KB  S) is satisfiable

A kind of constraint satisfaction

• Deduction

S = question

Prove that KB |= S

Two approaches:

17

• Rules to derive new formulas from old (inference)

• Show (KB   S) is unsatisfiable

Special Syntactic Forms
• General Form:

((q r)  s))   (s  t)

• Conjunction Normal Form (CNF)

( q  r  s)  ( s   t)

Set notation: { ( q, r, s), ( s,  t) }

empty clause () = false

• Binary clauses: 1 or 2 literals per clause

( q  r) ( s   t)

• Horn clauses: 0 or 1 positive literal per clause

( q   r  s) ( s   t)

(qr)  s (st)  false
18

Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward & Forward Chaining

2. Resolution (Proof by Contradiction)

3. SAT

1. Davis Putnam

2. WalkSat

19

Inference 1: Forward Chaining

Forward Chaining
Based on rule of modus ponens

If know P1, …, Pn & know (P1 ...  Pn)  Q

Then can conclude Q

Backward Chaining: search

start from the query and go backwards

20

Analysis

• Sound?

• Complete?

• If KB has only Horn clauses & query is a single literal

– Forward Chaining is complete

– Runs linear in the size of the KB

21

Can you prove
{ } |= Q  Q

Example

2

2

2

1

2

22

Example

1

2

2

1

1

23

Example

1

1

2

1

0

24

Example

1

1

2

1

0

25

Example

1

0

1

1

0

26

Example

1

0

1

1

0

27

Example

1

0

0

1

0

28

Example

0

0

0

0

0

29

Example

0

0

0

0

0

30

Propositional Logic: Inference
A mechanical process for computing new sentences

1. Backward & Forward Chaining

2. Resolution (Proof by Contradiction)

3. SAT

1. Davis Putnam

2. WalkSAT

31

Conversion to CNF

32

Inference 2: Resolution
[Robinson 1965]

{ (p  ), ( p    ) } |-R (    )

33

Correctness

If S1 |-R S2 then S1 |= S2
Refutation Completeness:

If S is unsatisfiable then S |-R ()

Resolution subsumes Modus Ponens

A  B, A |= B

34

( A  B) (A)

(B)

Don’t need to use other
equivalences if we use
resolution in refutation style
~J ~W
~W V J
W V J J

If Will goes, Jane will go
~W V J

If doesn’t go, Jane will still go
W V J

Will Jane go?
|= J?

J V J =J

Resolution

36

If the unicorn is mythical, then it is immortal, but if
it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

( A  H)

(M  A)

( H) (I  H)

( M)

( M  I)(I)(A)

(M)

()

M = mythical
I = immortal
A = mammal
H = horned

Search in Resolution
• Convert the database into clausal form Dc

• Negate the goal first, and then convert it into clausal
form DG

• Let D = Dc+ DG

• Loop
– Select a pair of Clauses C1 and C2 from D

• Different control strategies can be used to select C1 and C2
to reduce number of resolutions tries

– Resolve C1 and C2 to get C12
– If C12 is empty clause, QED!! Return Success (We proved

the theorem;)
– D = D + C12

• Out of loop but no empty clause. Return “Failure”
– Finiteness is guaranteed if we make sure that:

• we never resolve the same pair of clauses more than
once;

• we use factoring, which removes multiple copies of
literals from a clause (e.g. QVPVP => QVP)

SAT: Model Finding

• Find assignments to variables that makes a
formula true

39

Why study Satisfiability?

• Canonical NP complete problem.

– several hard problems modeled as SAT

• Tonne of applications

• State-of-the-art solvers superfast

Tonne of Applications

Testing Circuit Equivalence

• Do two circuits compute
the same function?

• Circuit optimization

• Is there input for which the
two circuits compute
different values?

A B

nand

A B

C C’

Testing Circuit Equivalence

A B

nand

A B

C C’

D E

 

()

()

C A B

C D E

D A

E B

C C

 

   

 

 

 

Testing Circuit Equivalence

A B

nand

A B

C C’

D E

 

()

()

C A B

C D E

D A

E B

C C

 

   

 

 

 

SAT Translation of N-Queens

• At least one queen each column:
(Q11 v Q12 v Q13 v ... v Q18)

(Q21 v Q22 v Q23 v ... v Q28)

…

• No attacks:
(~Q11 v ~Q12)

(~Q11 v ~Q22)

(~Q11 v ~Q21)

...

Graph Coloring

• A new SAT Variable for var-val pair

XWA-r, XWA-g, XWA-b, XNT-r…

• Each var has at least 1 value

– XWA-r v XWA-g v XWA-b

• No var has two values

– ~XWA-r v ~XWA-g

– ~XWA-r v ~XWA-b

• Constraints

– ~XWA-r v ~XNT-r

Application: Diagnosis

• Problem: diagnosis a malfunctioning device

– Car

– Computer system

– Spacecraft

• where

– Design of the device is known

– We can observe the state of only certain parts of
the device – much is hidden

Model-Based, Consistency-Based Diagnosis

• Idea: create a logical formula that describes how
the device should work

– Associated with each “breakable” component C is a
proposition that states “C is okay”

– Sub-formulas about component C are all conditioned on
C being okay

• A diagnosis is a smallest of “not okay” assumptions
that are consistent with what is actually observed

Consistency-Based Diagnosis

1. Make some Observations O.

2. Initialize the Assumption Set A to assert that
all components are working properly.

3. Check if the KB, A, O together are inconsistent
(can deduce false).

4. If so, delete propositions from A until
consistency is restored (cannot deduce false).
The deleted propositions are a diagnosis.

There may be many possible diagnoses

Example: Automobile Diagnosis
• Observable Propositions:

EngineRuns, GasInTank, ClockRuns

• Assumable Propositions:

FuelLineOK, BatteryOK, CablesOK, ClockOK

• Hidden (non-Assumable) Propositions:

GasInEngine, PowerToPlugs

• Device Description F:

(GasInTank  FuelLineOK)  GasInEngine

(GasInEngine  PowerToPlugs)  EngineRuns

(BatteryOK  CablesOK)  PowerToPlugs

(BatteryOK  ClockOK)  ClockRuns

• Observations:

 EngineRuns, GasInTank, ClockRuns

Example
• Is F  Observations  Assumptions consistent?

• F  {EngineRuns, GasInTank, ClockRuns}

 { FuelLineOK, BatteryOK, CablesOK, ClockOK }  false

– Must restore consistency!

• F  {EngineRuns, GasInTank, ClockRuns}

 { BatteryOK, CablesOK, ClockOK }  false

–  FuelLineOK is a diagnosis

• F  {EngineRuns, GasInTank, ClockRuns}

 {FuelLineOK, CablesOK, ClockOK }  false

–  BatteryOK is not a diagnosis

Complexity of Diagnosis

• If F is Horn, then each consistency test takes
linear time – unit propagation is complete for
Horn clauses.

• Complexity = ways to delete propositions from
Assumption Set that are considered.

– Single fault diagnosis – O(n2)

– Double fault diagnosis – O(n3)

– Triple fault diagnosis – O(n4)

…

Deep Space One

• Autonomous diagnosis & repair “Remote
Agent”

• Compiled systems schematic to 7,000 var
SAT problem

Started: January 1996

Launch: October 15th, 1998

Experiment: May 17-21

Deep Space One

• a failed electronics unit
– Remote Agent fixed by reactivating the unit.

• a failed sensor providing false information
– Remote Agent recognized as unreliable and therefore correctly ignored.

• an attitude control thruster (a small engine for controlling the
spacecraft's orientation) stuck in the "off" position
– Remote Agent detected and compensated for by switching to a mode that

did not rely on that thruster.

Inference 3: Model Enumeration

for (m in truth assignments){

if (m makes  true)

then return “Sat!”

}

return “Unsat!”

58

Inference 4: DPLL
(Enumeration of Partial Models)
[Davis, Putnam, Loveland & Logemann 1962]

Version 1

dpll_1(pa){

if (pa makes F false) return false;

if (pa makes F true) return true;

choose P in F;

if (dpll_1(pa  {P=0})) return true;

return dpll_1(pa  {P=1});

}

Returns true if F is satisfiable, false otherwise

59

DPLL Version 1

60

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL Version 1

61

a

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

F

DPLL Version 1

62

a

(F  b  c)

(F  ¬b)

(F  ¬c)

(T  c)

F

DPLL Version 1

63

a

(F  F  c)

(F  T)

(F  ¬c)

(T  c)

F

b

DPLL Version 1

64

a

(F  F  F)

(F  T)

(F  T)

(T  F)

F

b

c

DPLL Version 1

65

a

F

T

T

T

F

b

c

DPLL Version 1

66

a

b

c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL Version 1

67

a

b b

c
c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL as Search

• Search Space?

• Algorithm?

68

Improving DPLL

69

1 1 2

1 1 2 3

2 3

1

If literal is true, then clause (...) is true

If clause is true, then ... has the

Therefore: Okay to delete clauses containing

 s

tr

ame

value as ...

If lit

ue lit

eral is

erals!

L L L

C C C C

C C

L

 

  

 

1 2 3

2 3

1 1

Therefore: Okay to delete shorten containing false liter

false, then clause (...) has

the same value as (...)

If literal is false, then clause () is fals

als!

Therefore: th

e

e empty clau

L L L

L L

L L

  

 

se means false!

DPLL version 2

dpll_2(F, literal){

remove clauses containing literal

if (F contains no clauses)return true;

shorten clauses containing literal

if (F contains empty clause)
return false;

choose V in F;

if (dpll_2(F, V))return true;

return dpll_2(F, V);

}

70

DPLL Version 2

71

a

(F  b  c)

(F  ¬b)

(F  ¬c)

(T  c)

F

DPLL Version 2

72

a

(b  c)

(¬b)

(¬c)

DPLL Version 2

73

a

(F  c)

(T)

(¬c)

b

DPLL Version 2

74

a

(c)

(¬c)

b

DPLL Version 2

75

a

(F)

(T)

b

c

DPLL Version 2

76

a

()

b

c

Structure in Clauses

• Pure Literals

– A symbol that always appears with same sign

– {{a b c}{c d e}{a b e}{d b}{e a c}}

77

• Unit Literals (unit propagation)
A literal that appears in a singleton clause
{{b c}{c}{a b e}{d b}{e a c}}

Might as well set it true! And simplify
{{a b c} {a b e} {e a c}}

Might as well set it true! And simplify
{{b} {a b e}{d b}}

{{d}}

In Other Words

78

2 3

Therefore: Branch immediately on unit litera

Formula () ... is only true when literal is true

If literal does not appear negated in formula , then setting

 true preserves satisfiability o

ls!

L C C L

L F

L

  

Therefore: Branch immediately on pure liter

f

als!

F

May view this as adding
constraint propagation
techniques into play

In Other Words

79

2 3

Therefore: Branch immediately on unit litera

Formula () ... is only true when literal is true

If literal does not appear negated in formula , then setting

 true preserves satisfiability o

ls!

L C C L

L F

L

  

Therefore: Branch immediately on pure liter

f

als!

F

May view this as adding
constraint propagation
techniques into play

DPLL (previous version)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

remove clauses containing literal

if (F contains no clauses) return true;

shorten clauses containing literal
if (F contains empty clause)

return false;

if (F contains a unit or pure L)
return dpll(F, L);

choose V in F;

if (dpll(F, V))return true;

return dpll(F, V);

}

80

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

remove clauses containing literal

if (F contains no clauses) return true;

shorten clauses containing literal
if (F contains empty clause)

return false;

if (F contains a unit or pure L)
return dpll(F, L);

choose V in F;

if (dpll(F, V))return true;

return dpll(F, V);

}

81

DPLL (for real)

82

a

b c

c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

remove clauses containing literal

if (F contains no clauses) return true;

shorten clauses containing literal
if (F contains empty clause)

return false;

if (F contains a unit or pure L)
return dpll(F, L);

choose V in F;

if (dpll(F, V))return true;

return dpll(F, V);

}

83

Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

• Idea: identify a most constrained variable

– Likely to create many unit clauses

• MOM’s heuristic:

– Most occurrences in clauses of minimum length

84

GSAT

• Local search (Hill Climbing + Random Walk) over
space of complete truth assignments

–With prob p: flip any variable in any unsatisfied clause

–With prob (1-p): flip best variable in any unsat clause

• best = one which minimizes #unsatisfied clauses

• SAT encodings of N-Queens, scheduling

• Best algorithm for random K-SAT

–Best DPLL: 700 variables

–Walksat: 100,000 variables

86

Refining Greedy Random Walk

• Each flip

– makes some false clauses become true

– breaks some true clauses, that become false

• Suppose s1s2 by flipping x. Then:

#unsat(s2) = #unsat(s1) – make(s1,x) + break(s1,x)

• Idea 1: if a choice breaks nothing, it is very likely to
be a good move

• Idea 2: near the solution, only the break count
matters

– the make count is usually 1

Walksat
state = random truth assignment;
while ! GoalTest(state) do

clause := random member { C | C is false in state };
for each x in clause do compute break[x];
if exists x with break[x]=0 then var := x;
else

with probability p do
var := random member { x | x is in clause };

else (probability 1-p)
var := argminx { break[x] | x is in clause };

endif
state[var] := 1 – state[var];

end
return state; Put everything inside of a restart loop.

Parameters: p, max_flips, max_runs

Advs of WalkSAT over GSAT

• WalkSat guaranteed to make at least 1 false
clause (in random walk also)

• Number of evaluations small per move

– does not iterate over all variables

– only variables in the sampled clause

