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“Intuition, like the rays of the sun, acts only 
in an inflexibly straight line; it can guess 
right only on condition of never diverting 
its gaze; the freaks of chance disturb it.”
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Informed (Heuristic) Search

Idea: be smart

about what paths

to try.
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Blind Search vs. Informed Search

• What’s the difference?   

• How do we formally specify this?

A node is selected for expansion based on an 
evaluation function that estimates cost to goal.
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General Tree Search Paradigm

function tree-search(root-node)

fringe  successors(root-node)

while ( notempty(fringe) )

{node  remove-first(fringe) //lowest f value

state  state(node)

if goal-test(state) return solution(node)

fringe  insert-all(successors(node),fringe) }

return failure

end tree-search
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General Graph Search Paradigm

function tree-search(root-node)

fringe  successors(root-node)

explored  empty

while ( notempty(fringe) )

{node  remove-first(fringe)

state  state(node)

if goal-test(state) return solution(node)

explored  insert(node,explored) 

fringe  insert-all(successors(node),fringe, if node not in explored) 

}

return failure

end tree-search
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Best-First Search

• Use an evaluation function f(n) for node n.

• Always choose the node from fringe that has 
the lowest f value.

3 5 1
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Best-first search

• A search strategy is defined by picking the order of node 
expansion

• Idea: use an evaluation function f(n) for each node
– estimate of "desirability“

 Expand most desirable unexpanded node

• Implementation:
Order the nodes in fringe in decreasing order of desirability

• Special cases:
– greedy best-first search
– A* search



Romania with step costs in km
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Old Friends

• Breadth First = 

– Best First

– with f(n) = depth(n)

• Uniform cost search = 

– Best First

– with f(n) = the sum of edge costs from start to n



Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

= estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to 
Bucharest

• Greedy best-first search expands the node 
that appears to be closest to goal



Properties of greedy best-first search

• Complete?

• No – can get stuck in loops, e.g., Iasi  Neamt  Iasi 
Neamt 

• Time?

• O(bm), but a good heuristic can give dramatic 
improvement

• Space?

• O(bm) -- keeps all nodes in memory

• Optimal?

• No



A* search

• Idea: avoid expanding paths that are already 
expensive

• Evaluation function f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through n to 
goal
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A* for Romanian Shortest Path
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Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from 
n.

• An admissible heuristic never overestimates the cost to reach the 
goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal



Consistent Heuristics

• h(n) is consistent if 
– for every node n

– for every successor n´ due to legal action a

– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also admissible.

• Theorem: If h(n) is consistent, A* using GRAPH-
SEARCH is optimal
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n

n´ G

c(n,a,n´) 
h(n´)

h(n)



Example

Source: http://stackoverflow.com/questions/25823391/suboptimal-solution-given-by-a-search

http://stackoverflow.com/questions/25823391/suboptimal-solution-given-by-a-search


Proof of Optimality of (Tree)A*

• Suppose some sub-optimal goal state G2 has been generated and is on the 
frontier. Let n be an unexpanded state on the agenda such that n is on a 
shortest (optimal) path to the optimal goal state G. 
Assume h() is admissible.

Focus on G2:

f(G2) = g(G2) since h(G2) = 0 

g(G2) > g(G) since G2 is suboptimal 
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Proof of Optimality of (Tree)A*

• Suppose some sub-optimal goal state G2 has been generated and is on the 
frontier. Let n be an unexpanded state on the agenda such that n is on a 
shortest (optimal) path to the optimal goal state G. 
Assume h() is admissible.

Now focus on n:

h(n) ≤ h*(n) since h is admissible

g(n) + h(n) ≤ g(n) + h*(n) algebra

f(n) = g(n) + h(n) definition

f(G) = g(n) + h*(n) by assumption

f(n) ≤ f(G) substitution

Hence f(G2) > f(n), and A* will never select G2 for expansion.

f(G2) = g(G2) since h(G2) = 0 

g(G2) > g(G) since G2 is suboptimal 

f(G) = g(G) since h(G) = 0 

f(G2) > f(G) substitution



Properties of A*

• Complete?

Yes (unless there are infinitely many nodes with f ≤ f(G) )

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal?

Yes (depending upon search algo and heuristic property)

http://www.youtube.com/watch?v=huJEgJ82360

http://www.youtube.com/watch?v=huJEgJ82360


h*h0

Cost of computing

the heuristic

Cost of searching

with the heuristic

Total cost

incurred in search

Not always clear where the total minimum 

occurs

• Old wisdom was that the global min was 

closer to cheaper heuristics

• Current insights are that it may well be far 

from the cheaper heuristics for many problems

• E.g. Pattern databases for 8-puzzle 

• Plan graph heuristics for planning

How informed should the 

heuristic be?

Reduced level of

abstraction

(i.e. more and more concrete)



Memory Problem?

• Iterative deepening A* 

– Similar to ID search

– While (solution not found)

• Do DFS but prune when cost (f) > current bound

• Increase bound



Depth First Branch and Bound
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• 2 mechanisms:

– BRANCH: A mechanism to generate branches 
when searching the solution space

• Heuristic strategy for picking which one to try first.

– BOUND: A mechanism to generate a bound so 
that many branches can be terminated
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A Multi-Stage Graph Searching Problem.

Find the shortest path from V0 to V3

1
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E.G.:A Multi-Stage Graph Searching Problem

1

1



Dfs-B&B

1

1



Dfs-B&B

1

1



Dfs-B&B

1

1



• Usually, LB<UB.

• If LBUB, the expanding node can be terminated.
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Upper Bound
(for feasible solutions)

Lower Bound
(for expanding nodes)

0



Optimal

For Minimization Problems



DFS B&B vs. IDA*

• Both optimal

• IDA* never expands a node with f > optimal cost

– But not systematic

• DFb&b systematic never expands a node twice

– But expands suboptimal nodes also

• Search tree of bounded depth?

• Easy to find suboptimal solution?

• Infinite search trees?

• Difficult to construct a single solution?



Non-optimal variations

• Use more informative, but inadmissible 
heuristics

• Weighted A*

– f(n) = g(n)+ w.h(n) where w>1

– Typically w=5.

– Solution quality bounded by w for admissible h



Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 
• h2(S) = ?



Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18



Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1

• h2 is better for search

• Typical search costs (average number of node expanded):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes 
A*(h2) = 73 nodes 

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes 
A*(h2) = 1,641 nodes 



Relaxed problems

• A problem with fewer restrictions on the actions is called a 
relaxed problem

• The cost of an optimal solution to a relaxed problem is an 
admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move 
anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent 
square, then h2(n) gives the shortest solution



Hamiltonian Cycle Problem
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What can be relaxed?

Solution = 

1) Each node degree 2

2) Visit all nodes

3) Visit all nodes exactly once

What is a good admissible heuristic for (a1a2…ak)

- length of the cheapest edge leaving ak +

length of cheapest edge entering a1

- length of shortest path from ak to a1

- length of minimum spanning tree of rest of the nodes



Sizes of Problem Spaces

• 8 Puzzle:              105               .01 seconds

• 23 Rubik’s Cube: 106                .2 seconds

• 15 Puzzle:            1013             6 days

• 33 Rubik’s Cube: 1019             68,000 years

• 24 Puzzle:            1025             12 billion years

Brute-Force Search Time (10 million 

nodes/second)
Problem Nodes



Performance of IDA* on 15 Puzzle

• Random 15 puzzle instances were first solved 
optimally using IDA* with Manhattan distance 
heuristic (Korf, 1985).

• Optimal solution lengths average 53 moves.

• 400 million nodes generated on average.

• Average solution time is about 50 seconds on 
current machines.



Limitation of Manhattan Distance

• To solve a 24-Puzzle instance, IDA* with 
Manhattan distance would take about 65,000 
years on average.

• Assumes that each tile moves independently

• In fact, tiles interfere with each other.

• Accounting for these interactions is the key to 
more accurate heuristic functions.



Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves
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1 33

1
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Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves



Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves, but linear conflict adds 2 

additional moves.



Linear Conflict Heuristic

• Hansson, Mayer, and Yung, 1991

• Given two tiles in their goal row, but reversed 
in position, additional vertical moves can be 
added to Manhattan distance.

• Still not accurate enough to solve 24-Puzzle

• We can generalize this idea further. 



More Complex Tile Interactions
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M.d. is 19 moves, but 31 moves are 

needed. 

M.d. is 20 moves, but 28 moves are 

needed
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M.d. is 17 moves, but 27 moves are 

needed
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Pattern Database Heuristics

• Culberson and Schaeffer, 1996

• A pattern database is a complete set of such 
positions, with associated number of moves.

• e.g. a 7-tile pattern database for the Fifteen 
Puzzle contains 519 million entries. 



Heuristics from Pattern Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9

2 11 4 13

31 moves is a lower bound on the total number of moves needed to solve 

this particular state.



Precomputing Pattern Databases

• Entire database is computed with one 
backward breadth-first search from goal.

• All non-pattern tiles are indistinguishable, but 
all tile moves are counted.

• The first time each state is encountered, the 
total number of moves made so far is stored.

• Once computed, the same table is used for all 
problems with the same goal state.



Combining Multiple Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9

2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles

22 moves need to solve blue tiles



Additive Pattern Databases

• Culberson and Schaeffer counted all moves 
needed to correctly position the pattern tiles.

• In contrast, we count only moves of the 
pattern tiles, ignoring non-pattern moves. 

• If no tile belongs to more than one pattern,  
then we can add their heuristic values.

• Manhattan distance is a special case of this, 
where each pattern contains a single tile.



Example Additive Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 15 14

The 7-tile database contains 58 million entries. The 8-tile database contains 

519 million entries.



Computing the Heuristic

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9

2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles



Performance

• 15 Puzzle: 2000x speedup vs Manhattan dist

– IDA* with the two DBs shown previously solves 15 
Puzzles optimally in 30 milliseconds

• 24 Puzzle: 12 million x speedup vs Manhattan 

– IDA* can solve random instances in 2 days.

– Requires 4 DBs as shown

• Each DB has 128 million entries

– Without PDBs: 65,000 years
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© Daniel S. Weld
Adapted from Richard Korf presentation


