Informed search algorithms

Chapter 3

(Based on Slides by Stuart Russell,
Dan Klein, Richard Korf, Carl Kingsford, Subbarao
Kambhampati, Eric Ringger, and UW-AI faculty)

“Intuition, like the rays of the sun, acts only
in an inflexibly straight line; it can guess
right only on condition of never diverting
its gaze; the freaks of chance disturb it.”

AND WARREN HERE
5 IN CHARGE OF
DUR. GUT PEELINGS

BRUTE-FORCE
SOL-UTTON:

O(n')

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

\

~

SHUT THE
HEW VR

Informed (Heuristic) Search

ldea: be smart ‘
about what paths
to try. \ :
@0 f
/0

Blind Search vs. Informed Search

e What’s the difference?

* How do we formally specify this?

A node is selected for expansion based on an
evaluation function that estimates cost to goal.

General Tree Search Paradigm

function tree-search(root-node)
fringe €< successors(root-node)
while (notempty(fringe))
{node < remove-first(fringe) //lowest f value
state < state(node)
if goal-test(state) return solution(node)
fringe < insert-all(successors(node),fringe) }
return failure
end tree-search

General Graph Search Paradigm

function tree-search(root-node)
fringe €< successors(root-node)
explored < empty
while (notempty(fringe))
{node < remove-first(fringe)
state < state(node)
if goal-test(state) return solution(node)
explored < insert(node,explored)
fringe < insert-all(successors(node),fringe, if node not in explored)
}
return failure
end tree-search

Best-First Search

e Use an evaluation function f(n) for node n.

* Always choose the node from fringe that has

the lowest f value.

& &
(&

Best-first search

A search strategy is defined by picking the order of node
expansion

ldea: use an evaluation function f(n) for each node
— estimate of "desirability”

- Expand most desirable unexpanded node

Implementation:
Order the nodes in fringe in decreasing order of desirability

Special cases:
— greedy best-first search
— A" search

Ta

Arad

Romania with step costs in km

8ad

Rimnicu ¥Wikcea

[] ¥Waslui

-] Hirsowa

Straight-line distance

o Buchamst
Arad
Bucha rest
Crawovs
Dobrets
Eforie
IFagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

ks

0
Lad
42
lal
17&

151
224
14
241
s

L
193
153
329

195
A4

Old Friends

 Breadth First =
— Best First
— with f(n) = depth(n)

e Uniform cost search =

— Best First
— with f(n) = the sum of edge costs from start to n

Greedy best-first search

e Evaluation function f(n) = h(n) (heuristic)

= estimate of cost from n to goal

* e.g., hyp(n) = straight-line distance from n to
Bucharest

* Greedy best-first search expands the node
that appears to be closest to goal

Properties of greedy best-first search

Complete?

No — can get stuck in loops, e.g., lasi 2 Neamt = lasi 2
Neamt =2

Time?

O(b™), but a good heuristic can give dramatic
improvement

Space?

O(b™) -- keeps all nodes in memory
Optimal?

No

A search

ldea: avoid expanding paths that are already
expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to
goal

A* for

Romanian Shortest Path

366=0+366

16

393=140+253 447=118+329 449=75+374

17

449=75+374

646=280+366 415=239+176 67/1=291+380 413=220+193

C_Arad
Sibiu> Climisoara) CZerind 2

447=118+329 449=75+374

C Arad DPClagaras D COradea > @ienViced

646=280+366 415=239+176 67/1=291+380

Clraiova > Pitesti > C_Sibiu_

526=366+160 417=317+100 553=300+253

C_Arad D
Sibiu> Climisoara) CZerind 2

447=118+329 449=75+374

> G o> @i

646=280+366 671=291+380

C_sibiu_> Bucharesy CCraiova S Pitesti > _Sibiu_3

0991=338+253 450=450+0 526=366+160 417=317+100 553=300+253

CArad >
_Sitiu > Climisoara> C Zerind 3

447=118+329 449=75+374

Chrad > @agarasd Cradea> @i Vi

646=280+366 671=291+380
591=338+253 450=450+0 526=366+160

{ Craiova)

418=418+0 615=455+160 607=414+193

Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h™(n), where h™(n) is the true cost to reach the goal state from
n.

An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

Example: hg, ,(n) (never overestimates the actual road distance)

Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Consistent Heuristics

* h(n) is consistent if
— for every node n
— for every successor n” due to legal action a
— h(n) <=c(n,a,n”) + h(n")

n

h(n)

c(n,a,n’)

h(n")

n’ G

e Every consistent heuristic is also admissible.

e Theorem: If h(n) is consistent, A" using GRAPH-
SEARCH is optimal

23

Example

h=0

Source: http://stackoverflow.com/questions/25823391/suboptimal-solution-given-by-a-search

http://stackoverflow.com/questions/25823391/suboptimal-solution-given-by-a-search

Proof of Optimality of (Tree)A”

* Suppose some sub-optimal goal state G, has been generated and is on the
frontier. Let n be an unexpanded state on the agenda such that nison a
shortest (optimal) path to the optimal goal state G.

Assume h() is admissible. Start

N

M

Focus on G.;:
f(G,) = 9(G,) since h(G,) =0
9(G,) > 9(G) since G, is suboptimal

Proof of Optimality of (Tree)A”

* Suppose some sub-optimal goal state G, has been generated and is on the
frontier. Let n be an unexpanded state on the agenda such that nison a
shortest (optimal) path to the optimal goal state G.

Assume h() is admissible. Start

N

M

f(G,) = 9(G,) since h(G,) =0

9(G,) > 9(G) since G, is suboptimal
Focus on G:

f(G) = g(G) since h(G) =0

f(G,) > f(G) substitution

Proof of Optimality of (Tree)A”

* Suppose some sub-optimal goal state G, has been generated and is on the
frontier. Let n be an unexpanded state on the agenda such that nison a
shortest (optimal) path to the optimal goal state G.

Assume h() is admissible. Start

N

c@ G,
f(G,) = 9(Gy) since h(G,) =0 Now focus on n:
9(Gy) > 9(G) since G, is suboptimal h(n) < h*(n) since h is admissible
g(n) + h(n) = g(n) + h*(n) algebra
f(G) =9(G) since h(G) =0 f(n) = g(n) + h(n) definition
f(G,) > (G) substitution f(G) = g(n) + h*(n) by assumption
f(n) < f(G) substitution

Hence f(G,) > f(n), and A" will never select G, for expansion.

Properties of A*

Complete?

Yes (unless there are infinitely many nodes with f < f(G))

Time? Exponential

Space? Keeps all nodes in memory

Optimal?
Yes (depending upon search algo and heuristic property)

http://www.youtube.com/watch?v=huJEqJ82360

http://www.youtube.com/watch?v=huJEgJ82360

Nacurred in search

Cast of computing
e heuristic

Cost of searching
with the heuristic

Reduced level of
abstraction
(i.e. more and more concrete)

\\

*

Not always clear where the total minimum
OCCUrs
* Old wisdom was that the global min was
--- closer to cheaper heuristics
 Current insights are that it may well be far
from the cheaper heuristics for many problems
« E.g. Pattern databases for 8-puzzle
» Plan graph heuristics for planning

Memory Problem?

* |terative deepening A*

— Similar to ID search

— While (solution not found)
* Do DFS but prune when cost (f) > current bound
* |Increase bound

Depth First Branch and Bound

e 2 mechanisms:

— BRANCH: A mechanism to generate branches
when searching the solution space

* Heuristic strategy for picking which one to try first.

— BOUND: A mechanism to generate a bound so
that many branches can be terminated

39

A Multi-Stage Graph Searching Problem.

Find the shortest path from V, to V;

40

E.G.:A Multi-Stage Graph Searching Problem

Vi1 Vo

Vo O
3| T2
\1| _ \'l_ \
5 3 4/ \3
Vag O Y23 v \; V22 C V22
;; | 4;]

Vo
R,
R s g 3 | ~_
—_ i “ﬁ-
~ Vin ® V 3 \)
Vl,l g'_\ l.2 > : | /,..\
,"' / 1/ \ 7
</ \ . a/ \3 Y \\
J , / V ;
" Vaarh V21 4 Va2 b V22 o 23 &
Va3 O 2.3 H) .]/ - N ‘
| l |
4 l | ‘ 4 l] ’ |
l H b (v f‘l\ Vv ()
') - » . 3 3
‘v" () \.3 - V 3 v 3

Vo
R,
R s g 3 | ~_
—_ i “ﬁ-
~ Vin ® V 3 \)
Vl,l g'_\ l.2 > : | /,..\
,"' / 1/ \ 7
</ \ . a/ \3 Y \\
J , / V ;
" Vaarh V21 4 Va2 b V22 o 23 &
Va3 O 2.3 H) .]/ - N ‘
| l |
4 l | ‘ 4 l] ’ |
l H b (v f‘l\ Vv ()
') - » . 3 3
‘v" () \.3 - V 3 v 3

Vo
R,
R s g 3 | ~_
—_ i “ﬁ-
~ Vin ® V 3 \)
Vl,l g'_\ l.2 > : | /,..\
,"' / 1/ \ 7
</ \ . a/ \3 Y \\
J , / V ;
" Vaarh V21 4 Va2 b V22 o 23 &
Va3 O 2.3 H) .]/ - N ‘
| l |
4 l | ‘ 4 l] ’ |
l H b (v f‘l\ Vv ()
') - » . 3 3
‘v" () \.3 - V 3 v 3

For Minimization Problems

e Usually, LB<UB.
* |f LB>UB, the expanding node can be terminated.

Upper Bound

‘ (for feasible solutions)

Optimal

t Lower Bound

(for expanding nodes)

46

0

DFS B&B vs. IDA*

Both optimal
IDA* never expands a node with f > optimal cost
— But not systematic

DFb&b systematic never expands a node twice

— But expands suboptimal nodes also

Search tree of bounded depth?

Easy to find suboptimal solution?
Infinite search trees?
Difficult to construct a single solution?

Non-optimal variations

 Use more informative, but inadmissible
heuristics

 Weighted A*
— f(n) = g(n)+ w.h(n) where w>1
— Typically w=5.
— Solution quality bounded by w for admissible h

Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

°
|15 |
N

»nim
Il
V |-V

Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
* h,(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)
7 2 4 1
5 6 3 4
8 3 1 6 7
Start State Goal State

* h(S)=78
* h,(S) =7?3+1+2+2+2+3+3+2 =18

Dominance

If h,(n) 2 h,(n) for all n (both admissible)
then h, dominates h,
h, is better for search

Typical search costs (average number of node expanded):

d=12 IDS = 3,644,035 nodes
A*(h,) =227 nodes
A*(h,) = 73 nodes

d=24 IDS = too many nodes
A*(h,) = 39,135 nodes

A*(h,) = 1,641 nodes

Relaxed problems

A problem with fewer restrictions on the actions is called a
relaxed problem

The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h,(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent
square, then h,(n) gives the shortest solution

Hamiltonian Cycle Problem

What can be relaxed?

Solution =
1) Each node degree 2
2) Visit all nodes
3) Visit all nodes exactly once

What is a good admissible heuristic for (al—2>a2->...2>ak)
- length of the cheapest edge leaving ak +
length of cheapest edge entering al

- length of shortest path from ak to al

- length of minimum spanning tree of rest of the nodes

Sizes of Problem Spaces

Problem Nodes Brute-Force Search Time (10 million

nodes/second)
8 Puzzle: 10° .01 seconds
23 Rubik’s Cube: 10° .2 seconds
15 Puzzle: 1013 6 days

33 Rubik’s Cube: 10%° 68,000 years
24 Puzzle: 10%° 12 billion years

Performance of IDA* on 15 Puzzle

Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance

heuristic (Korf, 1985).
Optimal solution lengths average 53 moves.
400 million nodes generated on average.

Average solution time is about 50 seconds on
current machines.

Limitation of Manhattan Distance

To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about 65,000

years on average.
Assumes that each tile moves independently
In fact, tiles interfere with each other.

Accounting for these interactions is the key to
more accurate heuristic functions.

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

ﬁ

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves, but linear conflict adds 2
additional moves.

Linear Conflict Heuristic

Hansson, Mayer, and Yung, 1991

Given two tiles in their goal row, but reversed
in position, additional vertical moves can be
added to Manhattan distance.

Still not accurate enough to solve 24-Puzzle
We can generalize this idea further.

More Complex Tile Interactions

E,F

_

M.d. is 19 moves, but 31 moves are
needed.

M.d. is 20 moves, but 28 moves are
needed

L

M.d. is 17 moves, but 27 moves are
needed

Pattern Database Heuristics

* Culberson and Schaeffer, 1996

* A pattern database is a complete set of such
positions, with associated number of moves.

e e.g.a /-tile pattern database for the Fifteen
Puzzle contains 519 million entries.

Heuristics from Pattern Databases

31 moves is a lower bound on the total number of moves needed to solve
this particular state.

Precomputing Pattern Databases

Entire database is computed with one
backward breadth-first search from goal.

All non-pattern tiles are indistinguishable, but
all tile moves are counted.

The first time each state is encountered, the
total number of moves made so far is stored.

Once computed, the same table is used for all
problems with the same goal state.

Combining Multiple Databases

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Overall heuristic is maximum of 31 moves

Additive Pattern Databases

Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.

In contrast, we count only moves of the
pattern tiles, ighoring non-pattern moves.

If no tile belongs to more than one pattern,
then we can add their heuristic values.

Manhattan distance is a special case of this,
where each pattern contains a single tile.

Example Additive Databases

The 7-tile database contains 58 million entries. The 8-tile database contains
519 million entries.

Computing the Heuristic

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Overall heuristic is sum, or 20+25=45 moves

Performance

* 15 Puzzle: 2000x speedup vs Manhattan dist

— IDA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

* 24 Puzzle: 12 million x speedup vs Manhattan
— IDA* can solve random instances in 2 days.

— Requires 4 DBs as shown
e Each DB has 128 million entries

— Without PDBs: 65,000 years

75
Adapted from Richard Korf presentation
© Daniel S. Weld

