
Semi-Supervised Network Traffic Classification

Jeffrey Erman¶, Anirban Mahanti§, Martin Arlitt‡¶, Ira Cohen‡, Carey Williamson¶

¶Department of Computer Science, University of Calgary
§Department of Computer Science and Engineering, Indian Institute of Technology (Delhi)

‡Enterprise Systems & Software Labs, HP Labs

Categories and Subject Descriptors: C.4 [Computer
Systems Organization]Performance of Systems

General Terms: Algorithm, Measurement, Performance

Keywords: Traffic classification, Semi-supervised learning

1. INTRODUCTION
Identifying and categorizing network traffic by applica-

tion type is challenging because of the continued evolution
of applications, especially of those with a desire to be un-
detectable. The diminished effectiveness of port-based iden-
tification and the overheads of deep packet inspection ap-
proaches motivate us to classify traffic by exploiting distinc-
tive flow characteristics of applications when they commu-
nicate on a network.

This paper proposes a traffic classification methodology
that relies on using only flow statistics to classify traffic. We
introduce a flexible mathematical framework that leverages
both labeled and unlabeled flows. This semi-supervised [1]
approach to learning a network traffic classifier is one key
contribution of this work.

There are three main advantages to our proposed semi-
supervised approach. First, fast and accurate classifiers can
be obtained by training with a small number of labeled flows
mixed with a large number of unlabeled flows. Second, our
approach is robust and can handle both previously unseen
applications and changed behavior of existing applications.
Furthermore, our approach allows iterative development of
the classifier by allowing network operators the flexibility
of adding unlabeled flows to enhance the classifier’s perfor-
mance. Third, our approach can be integrated with solu-
tions that collect flow statistics. For example, our frame-
work can leverage recent work on flow estimation and can
classify traffic at both the edge and the core of the net-
work [5].

As a proof of concept, we implemented prototype offline
and realtime classification systems. A distinguishing aspect
of our work is the implementation of a realtime classifier in
the Bro [6] Intrusion Detection System (IDS).

We also consider the longevity of classifiers [4]. Our exper-
iments with long-term Internet packet traces suggests that
classifiers are generally applicable over reasonably long pe-
riods of time (e.g., on the order of weeks) with retraining
necessary when there are significant changes in the network
usage patterns including introduction of new applications.

Copyright is held by the author/owner(s).
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
ACM 978-1-59593-639-4/07/0006.

2. CLASSIFICATION FRAMEWORK
Let X = {X1, · · · , XN} be a set of flows. A flow instance

Xi is characterized by a vector of attribute values, Xi =
{Xij |1 ≤ j ≤ m}, where m is the number of attributes, and
Xij is the value of the jth attribute of the ith flow. Also, let
Y = {Y1, · · · , Yq} be the set of traffic classes, where q is the
number of classes of interest. The Yi’s can be classes such
as “HTTP”, “Streaming”, and “Peer-to-Peer”. Our goal is
to learn a mapping from a m-dimensional variable X to Y .
This mapping forms the basis for classification models.

In designing our classification method, there are two main
challenges for classifying network flows. First, labeled exam-
ples are scarce and difficult to obtain. With few labeled ex-
amples, traditional supervised learning methods often pro-
duce classifiers that do not generalize well to previously un-
seen flows. Second, not all types of applications generating
flows are known a priori, and new ones may appear over
time. Traditional supervised methods force a mapping of
each flow into one of q known classes, without the ability to
detect new types of flows.

To address these challenges, we designed a method that
combines unsupervised and supervised methods. Our clas-
sification method consists of two steps. We first employ a
clustering [2] algorithm to partition a training data set that
consists of scarce labeled flows combined with abundant un-
labeled flows. We use the K-Means clustering algorithm in
our results. Second, we use the available labeled flows to
obtain a mapping from the clusters to the different known
q classes (Y ). This step also allows some clusters to re-
main unmapped, accounting for possible flows that have no
known labels. The result of the learning is a set of parti-
tions, some mapped to the different flow types. Our method
is characterized in the literature as a semi-supervised learn-
ing method [1].

2.1 Mapping Clusters to Applications
The output of the K-Means clustering algorithm is a set

of clusters, represented by their centroids, γk. Given a flow
feature vector x, we assign it to one of the clusters by finding
the nearest centroid to x, using:

Ck = arg min
k

d(x, γk), (1)

where d(·, ·) is the distance metric chosen in the clustering
step. For K-Means with Euclidean distance, Eq. 1 amounts
to the maximum likelihood cluster assignment solution.

However, knowing to which cluster a flow feature vector
most likely belongs does not provide the actual classification
to one of the application types. Therefore, we need a mech-



 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  2  4  6  8  10  12  14  16  18  20

Fl
ow

 A
cc

ur
ac

y

Number of Labels Per Cluster

400 Clusters
200 Clusters
100 Clusters

Figure 1: Selective La-
beling of Flows

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

27262524232221

Pr
ec

isi
on

Number of Unlabelled samples (x1000)

80 Labels
800 Labels

8000 Labels

Figure 2: Training with
(Un)labeled Flows

anism to map the clusters found by the clustering algorithm
to the different application types.

We use a probabilistic assignment to find the mapping
from clusters to labels: P (Y = yj |Ck), where j = 1, ..., q

(q being number of application types) and k = 1, ..., K (K
being the number of clusters). To estimate these proba-
bilities, we use the set of flows in our training data that
are labeled to different applications (xi,yi), i = 1, ..., L,
where L is the total number of different labeled applica-
tions. P (Y = yj |Ck) is then estimated by the maximum
likelihood estimate,

njk

nk
, where njk is the number of flows

that were assigned to cluster k with label j, and nk is the
total number of (labeled) flows that were assigned to clus-
ter k. To complete the mapping, clusters that do not have
any labeled examples assigned to them are defined as “Un-
known” application types, thus allowing the representation
of previously unidentified application types.

Finally, the decision function for classifying a flow feature
vector x is the maximum a posterior decision function:

y = arg max
y1,...,yq

(P (yj |Ck)), (2)

where Ck is the nearest cluster to x, as obtained from Eq. 1.

3. SEMI-SUPERVISED RESULTS
Labeling of training feature vectors is likely to be one of

the most time-consuming steps of the classification process,
especially because many Internet application purposefully
attempt to avoid detection. Our semi-supervised approach
to training the classifier leverages the fact that clustering at-
tempts to form disjoint groups, wherein each group consists
of objects that bear a strong similarity to each other [3].
Thus, we test the hypothesis that if a few flows are labeled
in each cluster, we have a reasonable basis for creating the
cluster to application type mapping.

The first experiment considers the possibility of the en-
tire training data set being unlabeled. In this case, we can
selectively label a few flows from each cluster and use these
labeled flows as the basis for mapping clusters to applica-
tions. Fig. 1 presents results from this experiment. We
assume that we are provided with 64,000 unlabeled flows.
Once, these flows are clustered we randomly label a fixed
number of flows in each cluster. Interestingly, the results
show that with as few as two labeled flows per cluster and
K = 400 , we can attain 94% flow accuracy. The increase
in classification accuracy is marginal once five or more flows
are labeled per cluster.

For the second set of experiments, results of which are
shown in Fig. 2, we utilized 80, 800, and 8,000 labeled flows,
and mixed these labeled flows with varying numbers of un-
labeled flows to generate the training data set. Both labeled
and unlabeled flows were randomly chosen from the test data

 0

 20

 40

 60

 80

10:009:409:209:00

M
By

te
s 

(P
er

 5
-s

ec
 In

te
rv

al
)

Time

Base Truth
Classifier

 0

 0.2

 0.4

 0.6

 0.8

 1

10:009:409:209:00

By
te

 A
cc

ur
ac

y

Time

(a) Bytes Classified (b) Byte Accuracy

Figure 3: Performance of Realtime Classifier

set [4]. These training flows were used to learn the flow to
application mapping, with K = 400 in the clustering step,
and we tested the resulting classifier on the same trace.

Fig. 2 reports the precision [4] of the classifier. We
observe that for a fixed number of labeled training flows,
increasing the number of unlabeled training flows increases
our precision. This is an important empirical result because
unlabeled flows are relatively inexpensive to obtain and the
penalty for incorrect labeling of a flow might be high (e.g.,
assigning lower priority to business critical traffic). Thus, by
simply using a large sample of unlabeled flows, the precision
rate can be substantially increased.

Detailed results of our offline classifier can be found in [4].

4. REALTIME CLASSIFICATION
A fundamental challenge in the design of the realtime clas-

sification system is to classify a flow as soon as possible. Un-
like offline classification where all discriminating flow statis-
tics are available a priori, in the realtime context we only
have partial information on the flow statistics.

We address this challenge by designing a layered classifi-
cation system. Our layers are based upon the idea of packet

milestones. A packet milestone is reached when the count
of the total number of packets a flow has sent or received
reaches a specific value. We include the SYN/SYNACK
packets in the count. Each layer is an independent model
that classifies ongoing flows into one of the many class types
using the flow statistics available at the chosen milestone.
Each milestone’s classification model is trained using flows
that have reached each specific packet milestone.

This layered approach allows us to revise and potentially
improve the classification of flows. The memory overhead of
our approach is linear with respect to the number of flows
because we use the same feature set at all layers.

Fig. 3 presents example results. We see that the classifier
performs well with byte accuracies typically in the 70 to 90%
range. Further results can be found in [4].

5. REFERENCES
[1] O. Chapelle, B. Schölkopf, and A. Zien, editors.

Semi-Supervised Learning. MIT Press, Cambridge, MA, 2006.

[2] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley,
second edition, 2001.

[3] J. Erman, M. Arlitt, and A. Mahanti. Traffic Classification
using Clustering Algorithms. In SIGCOMM’06 MineNet

Workshop, Pisa, Italy, September 2006.

[4] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson.
Offline/Online Traffic Classification Using Semi-Supervised
Learning. Technical report, University of Calgary, 2007.

[5] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson.
Identifying and Discriminating Between Web and Peer-to-Peer
traffic in the Network Core. In WWW’07, Banff, Canada, May
2007.

[6] V. Paxson. Bro: A System for Detecting Network Intruders in
Real-Time. Comput. Networks, 31(23-24):2435–2463, 1999.


