
Scalable On-Demand Media Streaming
with Packet Loss Recovery ∗

Anirban Mahanti Derek L. Eager Mary K. Vernon David Sundaram-Stukel

Dept. of Computer Science Computer Sciences Dept.
University of Saskatchewan University of Wisconsin

Saskatoon, SK S7N 5A9 Canada Madison, WI 53706-1685 USA

{mahanti, eager}@cs.usask.ca {vernon, sundaram}@cs.wisc.edu

ABSTRACT
Inspired by recent techniques for reliable bulk data distri-
bution, this paper develops scalable protocols for reliable
on-demand delivery of streaming media. Models are devel-
oped that quantify the best possible scalability for given
client characteristics. The results of the models are used
to guide the design and assess the performance of the pro-
posed streaming techniques. The new protocols, RPB and
RBS, are relatively simple to implement and achieve nearly
the best possible scalability and efficiency for a given set of
client characteristics and desirable/feasible media quality.

1. INTRODUCTION
An important problem for a number of existing and future

Internet applications is that of delivering streaming media
on-demand, in a scalable and reliable manner, to potentially
large numbers of concurrent clients that receive the data
over lossy and possibly heterogeneous channels. This prob-
lem has been addressed effectively for bulk data distribu-
tion [28, 31, 5], such as large software updates. However,
adequate solutions do not currently exist for streaming me-
dia content, as would be required in applications such as
video-on-demand.

The digital fountain [5] approach [28, 31, 5] is designed to
deliver bulk data over channels that have significant packet
loss, including IP multicast on the Internet, satellite trans-
mission, and wireless transmission channels. The approach
uses erasure codes to construct a stream of packets, such
that a receiver can reconstruct the object from any subset
of the packets of size equal to or just slightly greater than
the number of packets in the source data. Thus, each client
can begin listening to the (multicast) stream at a time of

∗This work was partially supported by the Natural Sciences
and Engineering Research Council of Canada under Grant
OGP-0000264 and by the National Science Foundation un-
der Grant CCR 9975044.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA..
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

their own choosing, and simply keep listening until the re-
quired number of packets have been correctly received. The
method is fully scalable because the required server trans-
mission bandwidth is independent of the number of clients
actively acquiring the data. The method is efficient because
(1) no feedback channels are required for clients to recover
lost packets, (2) the amount of data each client needs to re-
ceive in order to obtain the full object is (nearly) minimal,
and (3) the amount of processing time required for a client
to reconstruct the original data is small.

The digital fountain described above is inapplicable to
streaming media, however, since in general a client would
be unable to reconstruct the portion of the object at which
playback is to begin until after receiving most or all of the
data needed to reconstruct the entire object. Other recent
approaches for reliable live or scheduled broadcast delivery
of streaming media [33, 13, 7, 23, 4, 21, 30, 9] do not address
the problem of providing scalable on-demand delivery.

Conversely, recently proposed protocols for scalable on-
demand media streaming, such as periodic broadcast proto-
cols [32, 1, 17, 20, 14, 25, 16], patching [8, 18, 6, 15, 29],
and bandwidth skimming [12], do not address the issue of
providing reliable delivery over lossy channels. Moreover, it
is not straightforward to extend these streaming protocols
to include redundant data for recovering lost packets. For
example, in most protocols, each transmitted media packet
is needed for (nearly) immediate playback by at least one of
the clients receiving the packet. In all other cases, and in all
previous periodic broadcast protocols, clients must be able
to receive multiple streams that have an aggregate transmis-
sion rate equal to two or more times the minimum rate re-
quired for real-time playback. Such aggregate transmission
rates may be infeasible for a given desired media quality and
transmission path. Even if the transmission rates are feasi-
ble, they may be suboptimal for environments where higher
transmission rate implies higher probability of packet loss
(e.g., due to congestion) in the transmission path. When
applying these scalable streaming methods in environments
where packet loss is relatively rare, local error concealment
(e.g., interpolating lost video frames from frames that are
received correctly) may be adequate. However, in environ-
ments that have frequent and bursty packet loss, local error
concealment is inadequate for many applications [26].

This paper develops new scalable periodic broadcast and
bandwidth skimming protocols for reliable, on-demand de-
livery of streaming media content over lossy and possibly

heterogeneous channels. First, models are developed that
quantify the best possible scalability for given client char-
acteristics. The models are used to guide the design and
assess the performance of the proposed new protocols. The
new protocols are relatively simple to implement and achieve
nearly the best possible scalability and efficiency for a given
set of client characteristics and desirable/feasible media qual-
ity. The paper also proposes using the new protocols to al-
low clients who arrive late to a live or scheduled multicast
to request the earlier media content that they missed, with
only a very modest increase in server bandwidth.

The new Reliable Periodic Broadcast (RPB) protocols are
fully scalable, include efficient transmission of redundant
data for clients with heterogeneous packet loss rates, require
minimal client feedback, and have a tunable latency for be-
ginning the media playback. The RPB protocols also assume
that the maximum aggregate transmission rate to any client
is equal to a parameter that can be set to a small percent-
age (e.g., 25%) greater than the minimum transmission rate
required for real-time playback.

The new Reliable Bandwidth Skimming (RBS) protocols
require limited feedback from the clients (i.e., primarily the
client requests that initiate new streams) and are not as
efficient as the RPB protocols with respect to the amount of
data that is received by a client. However, the RBS protocols
have minimal startup latency for playback, fully support
interactive client requests, and operate more efficiently than
the RPB protocols when fewer clients request the media.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews previous periodic broadcast and bandwidth
skimming protocols, and previously developed lower bounds
on the required server bandwidth for each of these two classes
of protocols. Section 3 compares alternative packet loss re-
covery strategies, both qualitatively, and through the deriva-
tion of simple lower bounds on the required server band-
width. Sections 4 and 5 develop the proposed new RPB
and RBS protocols, respectively, and provide qualitative and
quantitative assessments of the new protocols. Conclusions
are presented in Section 6.

2. BACKGROUND
The new protocols proposed in this paper use the previ-

ously developed concepts of periodic broadcast and band-
width skimming for scalable on-demand delivery of stream-
ing media. Previous periodic broadcast and bandwidth skim-
ming protocols are briefly reviewed in Sections 2.1 and 2.2,
respectively. Section 2.3 reviews a previous analytic model [3,
10] that provides a lower bound on the server bandwidth re-
quired for each class of protocol. This model serves as a basis
for the new bounds that are developed in Section 3 for eval-
uating the bandwidth requirements of alternative strategies
for packet loss recovery in the context of scalable on-demand
streaming. Finally, Section 2.4 summarizes the goals of the
new protocols developed in Sections 4 and 5 of the paper.

2.1 Previous Periodic Broadcast Protocols
Previous periodic broadcast schemes divide a media file

into K segments, with a progression of relative segment
lengths, l1, l2, ..., lK . In the simplest case, each segment is re-
peatedly broadcast (or multicast) on its own channel (e.g.,
multicast group) at the media playback rate. Although a
number of such protocols have been proposed, for the pur-
poses of this paper it suffices to describe just a single ex-

ample. The skyscraper broadcast protocol [17] has segment
length progression 1, 2, 2, 5, 5, 12, 12, 25, 25, ... and a broad-
cast schedule as depicted in Figure 1 for K = 6.

A client arriving at an arbitrary point in time obtains a
schedule for tuning in to each channel to receive each of the
segments, starting at the beginning of the next segment 1
broadcast on channel 1. For example, a client who arrives
at the time indicated by the arrow is given the schedule of
shaded segment broadcasts. The periodic broadcast sched-
ule ensures that, for any segment 1 broadcast, the client can
receive each other media segment at or before the time it is
needed for playback. Since segments are increasing in size,
clients that initially start listening to different segment 1
broadcasts often listen to the same broadcasts of later seg-
ments. The small first segment permits low startup laten-
cies while the larger later segments keep the total number
of channels needed for the broadcast small.

Channel 4

Channel 3

Channel 1

Channel 2

Channel 6

Channel 5

.....

.....

.....

.....

.....

.....

Figure 1: Skyscraper Broadcasts (K = 6)

Skyscraper systems have the key property that clients
listen to at most two playback rate channels concurrently.
Clients must have buffer space equal to lK to store data until
it is needed for playback. Furthermore, the maximum time
a client waits to begin receiving a media stream of duration
T is T/

∑K
k=1 lk; e.g., if K = 10, the maximum latency is

0.007T .
Other periodic broadcast protocols have been devised that

reduce the amount of server bandwidth required for a given
maximum startup latency, often at the cost of increasing
the required aggregate transmission rate to each client and
in some cases also more complex broadcast schedules [32, 1,
20, 14, 25, 16]. For example, the recent work by Hu [16]
derives the optimal segment sizes and transmission rates as-
suming (1) a fixed number of segments, (2) each segment is
completely received prior to beginning its playout, and (3)
each client can receive all segments concurrently. No algo-
rithm is presented for determining segment sizes and trans-
mission rates in other cases. For the special case that clients
can listen to at most two play-rate streams, Hu briefly sug-
gests a Fibonacci series segment size progression with holes
in the transmission schedule. Hu also briefly discusses how
periodic broadcast protocols can support a limited form of
client fast-forward requests.

2.2 Previous Bandwidth Skimming Protocols
Bandwidth skimming protocols [12] initiate a new multi-

cast transmission of the media file for each new client re-
quest. In the simplest case, each client also listens to the
closest earlier stream that is still active [10, 11], so that
its own stream can terminate after transmitting the data
that was missed in the earlier stream, as illustrated in Fig-
ure 2(a). In the figure, clients A through D request the
media object at times T0, T1, T3, and T4, respectively. At

Time
T2 T3 T4 T5 T6T0

Po
si

tio
n

in
 O

bj
ec

t

client B

stream for
client A

clients A, B

clients A, B, C, D
stream for

stream for
clients C, D

client D
stream for

stream for
client C

stream for

stream for

T1

(2)

(3)

(1)

(2)

T3 T4 T5

(1)

(3)

Po
si

tio
n

in
 O

bj
ec

t

Time

(a) Hierarchical Multicast Stream Merging (b) Partition

Figure 2: Bandwidth Skimming Example

Table 1: Notation for Scalability Bounds

Symbol Definition
λ average client request rate for a media object
T media object playback duration
N average number of requests for the object that arrive during a period of length T (N = λT)
d maximum start-up delay for object playback
B required server bandwidth (in units of the object playback bit rate)

time T4, client D listens to the stream that starts at T4 as
well as the stream that was initiated for client C at time
T3. At time T5, the stream for client D can be terminated,
and clients C and D are “merged”. When clients merge,
they begin listening to the closest earlier stream that is still
active, and so on.

An important feature of the bandwidth skimming pro-
tocols is that the hierarchical merging illustrated in Fig-
ure 2(a) can be implemented when the aggregate transmis-
sion rate to the client is less than twice the media playback
rate. For example, in one version of the protocol (called
Partition in [12]), each stream is transmitted at the play-
back rate, but on k channels, where k is a parameter of
the protocol. Each channel carries 1/k of the stream data
using a deterministic fine-grained interleaving of the data
packets. Figure 2(b) illustrates how client D merges with
client C when each stream is transmitted on three channels
(i.e., k = 3), and client D can listen to at most four chan-
nels for a maximum client data rate of 1.33 times the media
playback rate. Client D goes through three distinct periods
between arriving at time T4 and merging with client C at
time T5. During each period, client D listens to the number
of channels from each stream indicated in parentheses near
the stream. For example, in the first period, client D listens
to one of the channels of client C’s stream. In the second
period, client D has already received the data that will be
delivered on one of its own channels, so client D listens to
two channels of its own stream and two channels of client
C’s stream.

Results in [12, 10] show that the server transmission band-
width used for the bandwidth skimming protocols increases
only logarithmically (with a small constant factor) as the
client request rate increases. Those results show that band-
width skimming is more efficient than periodic broadcast
protocols at low to moderate client request rates (e.g., un-
der 100 requests per time T). The results also show that

even with client data rate only 1.25 times the media play-
back rate, bandwidth skimming yields similar or (for high
request rates) substantially better performance than the op-
timized patching technique [6, 15], which requires client data
rate equal to twice the media playback rate. Furthermore,
in contrast to both optimized patching and periodic broad-
cast, bandwidth skimming naturally allows each client to
start at an arbitrary point in the media stream, and thus
only very simple extensions to the protocol are required to
support client interactive requests including general “fast
forward” requests [10]. Adding a maximum startup delay
to the bandwidth skimming protocol can further decrease
server transmission bandwidth, as shown in [12].

2.3 Maximum Achievable Scalability
In [10] a tight lower bound is derived on the required server

bandwidth1 for any protocol that provides immediate on-
demand streaming of multimedia content, with no packet
loss recovery. Assuming the notation in Table 1, the lower
bound is as follows:

Bimmed−service
minimum =

∫ T

0

dx

x + 1
λ

= ln(N + 1). (1)

The bound was derived by considering a small portion of
the object at some arbitrary time offset x. For an arbitrary
client request that arrives at time t, this portion of the object
must be delivered no later than time t + x. If the portion
is multicast at time t + x, then (at best) those clients that
request the file between time t and t + x, can receive the
same multicast. Since the average time from t + x until the
next request for the object is 1/λ, the minimum frequency
of multicasts of the portion at time offset x is 1/(x + 1/λ),
which yields the above bound. Note that the required server

1The “required server bandwidth” for an object is defined as
the average server bandwidth used by the specified protocol.
This bandwidth is measured in units of the media play rate.

bandwidth for delivery of multiple objects can be derived by
summing the bandwidth required for each object, weighted
by the relative playback rate.

The bound in equation (1) assumes that the client data
rate is unbounded and request arrivals are Poisson as mea-
sured in [2]. As described in [10], the latter assumption can
be relaxed to cover a wide class of arrival processes (includ-
ing those with heavy-tailed interarrival time distributions),
yielding a similar analytic result with difference bounded by
a constant independent of λ. Note also that, as illustrated
in [12], the Poisson arrival assumption yields conservative
server bandwidth estimates for heavy tailed interarrival time
distributions, since greater burstiness in the arrival process
causes clients to be merged more quickly.

The bound in equation (1) can be extended by adding a
start-up delay d to the minimum time between multicasts
of the portion at position x (i.e., add d to the denomi-
nator of the integrated function). For periodic broadcast
schemes, which accommodate arbitrary (i.e., essentially infi-
nite) client arrival rate, this yields the following lower bound
on required server bandwidth, as shown in [3]:

Bperiodic−bcast
minimum =

∫ T

0

dx

x + d
= ln(

T

d
+ 1). (2)

2.4 Goals of the New Streaming Protocols
The key goals of the new delivery protocols developed in

Sections 4 and 5 are:

• Convenient: Clients can begin playing the requested
media content after a tunably small start-up latency.

• Tolerant: The protocol should tolerate clients with
heterogeneous packet loss rates and transmission path
data rates.

• Reliable: Clients that have a packet loss rate up to a
tunable value should be able to reconstruct each media
packet prior to its play point.

• Efficient: The protocol should require minimal client
feedback, and, if possible, the total amount of data
each client receives should be minimal.

• Scalable: The protocol should allow streaming of con-
tent on-demand to large numbers of concurrent clients.

3. LOSS RECOVERY STRATEGIES
This section compares three basic strategies for packet loss

recovery for on-demand media streaming, namely: unicast
retransmission of lost packets, multicast retransmission of
lost packets, and multicast transmission of redundant data
that is computed using erasure codes. Server-based recovery
is assumed; at the cost of additional infrastructure and com-
plexity, distributed recovery architectures are also possible
and have been extensively explored [21].

The conclusion that is drawn from the comparisons be-
low is consistent with conclusions drawn for the reliable
single-stream (e.g., live) multicast setting [23]. That is, era-
sure codes provide a better solution. However, the analy-
sis quantifies the benefits of erasure codes with respect to
the server load imposed by error recovery for scalable on-
demand streaming. In the process, new fundamental lower
bounds on required server bandwidth are derived that will
be applied later in the paper.

3.1 Qualitative Discussion
The three basic approaches can be compared qualitatively

along at least three dimensions, namely: implementation
complexity, start-up delay, and scalability. Regarding im-
plementation complexity, the use of erasure codes entails the
overhead of encoding and decoding the data, but approaches
based on retransmission must handle unpredictable retrans-
mission requests and feedback implosion (e.g., [21]).

The start-up delay is defined as the time from when a
client requests a media object, until the client can begin
playback. A retransmission-based approach must have suf-
ficient start-up delay to allow for clients to request retrans-
missions and for retransmitted data to be successfully re-
ceived prior to its play point. In an approach based on era-
sure codes, media data is coded/decoded in coarse grained
blocks, and, further, these blocks may be interleaved during
transmission so as to reduce sensitivity to burst losses. The
start-up delay must be sufficient to allow time for each en-
tire block to be received and decoded at the client. In either
case, the start-up delay requirement is additive with other
start-up delay components, such as that required to deal
with network jitter. One might expect total start-up delays
to be of similar magnitude in both approaches, but the de-
lay may be more easily estimated for an approach that uses
erasure codes and a given interleaved transmission schedule.

Scalability concerns how the server bandwidth required to
reliably deliver an object on-demand must increase as a func-
tion of the object request rate and client packet loss rates.
For multicast streaming, different clients experience differ-
ent packet losses, and the alternative packet loss recovery
schemes differ with respect to effective sharing of redundant
data transmissions, and thus with respect to server band-
width requirements. Multicast retransmissions require the
server to resend only one copy of data that multiple clients
have not received, but other clients may receive more data
than they need to recover from their own losses. Multi-
cast transmission of redundant data computed using erasure
codes permits a single redundant packet to repair different
losses for different clients, which leads to the qualitative
notion that this approach may be more scalable than the
retransmission-based approaches.

3.2 Quantitative Scalability Bounds
The lower bounds on required server bandwidth for any

protocol that provides reliable on-demand streaming using
a specific packet recovery strategy build on the bounds for
no packet loss recovery reviewed in Section 2.3. The sim-
plest lower bound is for the case that erasure codes are used
to recover from packet loss. In this case, each client must
receive an amount of (source and redundant) data that is
at least equal to the size of the object. If the average client
packet loss probability is p, in the best case each client has
average packet loss probability equal to p, and in this case
the server must transmit an amount of data per unit of time
(on average) that is a factor of 1

1−p
greater than when packet

loss recovery is not performed (since on average 1− p of the
packets will be received). Thus,

Bimmed−service,erasurecodes
minimum =

1

1 − p
ln(N + 1), (3)

and

Bperiodic−bcast,erasurecodes
minimum =

1

1 − p
ln(

T

d
+ 1). (4)

The above bounds are used to evaluate the proposed new
protocols in Sections 4 and 5.

For unicast retransmission of lost packets, if the object
playback duration is T minutes, the average amount of data
that is retransmitted per client, measured in playback min-
utes, is equal to pT

1−p
. Given a client request rate of λ, the

server bandwidth required just for the retransmitted data
is λ pT

1−p
. Using N = λT and the minimal server bandwidth

needed for the original packet transmissions from the bound
in equation (1), yields

Bimmed−service,unicast−retrans
minimum = ln(N + 1) +

p

1 − p
N. (5)

The derivation of the lower bound on required server band-
width in the case of multicast retransmissions of lost packets
is more complex and is provided in Appendix A. The bound
is not obtained in closed form, but can be solved numerically
for particular values of N and p. The bound for multicast
retransmissions assumes that each packet is lost with inde-
pendent probability p, although generalizations are possible.

The above bounds for unicast retransmissions of lost pack-
ets and for multicast transmission of redundant data using
erasure codes can be generalized for non-Poisson request ar-
rival processes as described in [10] for the previous bound
in equation (1). The bound for multicast retransmissions
is more complex, and at present a generalization for non-
Poisson arrival processes has not been formulated.

3.3 Numerical Results
Figure 3 presents the bounds derived above as functions of

the normalized client request rate N , for 15% average packet
loss probability (p). Smaller but similar and still significant
differences in the bounds are observed for lower values of p.

Results in Sections 4 and 5 will show that the lower bound
for packet loss recovery using erasure codes can be closely
approached by actual streaming protocols, given that each
client has cumulative packet loss less than or equal to p for
each media segment received. The results in Figure 3 show
that even a “perfect” retransmission-based recovery strat-
egy would require more server bandwidth. Given the imple-
mentation difficulties for retransmission based approaches,
the new reliable broadcast protocols developed next use the
erasure coding strategy.

0

5

10

15

20

1 10 100 1000

R
eq

ui
re

d
S

er
ve

r
B

an
dw

id
th

Client Request Rate, N

Unicast retransmissions
Multicast retransmissions

Multicast erasure codes

Figure 3: Bminimum for Immediate Service
& Packet Loss Recovery (15% Packet Loss)

4. RELIABLE PERIODIC BROADCAST
In this section we develop optimized periodic broadcast

protocols that (1) assume a maximum aggregate transmis-
sion rate to any given client that is a tunable parameter,
n, which may be less than (or greater than) twice the me-
dia play rate, and (2) enable clients with heterogeneous loss
probability to recover from packet loss. The notation used
in developing the RPB protocols is given in Table 2. To deal
with the fundamental challenges involved in designing such
optimized protocols, we proceed in four stages.

Section 4.1 develops a family of Optimized Periodic Broad-
cast (Optimized PB) protocols that do not support packet
loss recovery, but are optimized under the constraint that
clients receive each segment entirely before playing the be-
ginning of the segment. For a specified segment streaming
rate (r) and maximum number of streams that clients can
listen to concurrently (s), the Optimized PB protocols al-
low each client arriving at an arbitrary time to immediately
begin receiving the first s segments of the media object. Fur-
thermore, under the stated constraints and assuming each
client begins playing the object (nearly) immediately after
receiving the first segment, the Optimized PB protocols have
the maximum possible segment size increases. These pro-
tocols thus have the minimum possible start-up delay for
a given total server bandwidth, or the minimum possible
server bandwidth for a given start-up delay, under the stated
constraints. Performance of the new protocols is compared
against the previous skyscraper protocol.

Section 4.2 extends the Optimized PB protocols to create
a family of basic Reliable Periodic Broadcast (Basic RPB)
protocols. These protocols transmit data that has been en-
coded using erasure codes, enabling each client to recon-
struct each segment k prior to the time the beginning of
the segment needs to be played, assuming the fraction of
packets lost in transmitting segments 1 − k to the client is
not greater than a tunable parameter p which has the same
value for each segment. The Basic RPB protocols (1) allow
each client to immediately begin receiving the first s seg-
ments of the media, and (2) have maximum segment size
increases for the given values of r, s, and p. Appendix B
contains an asymptotic analysis of the new Basic PB pro-
tocols which shows that the required server bandwidth can
approach the lower bound for reliable delivery using erasure
codes, as provided in equation (4). The analysis also sug-
gests that the protocols can approach the minimum possible
required server bandwidth under any client rate constraint.

Section 4.3 generalizes the Basic RPB protocols to al-
low each segment to have a different associated cumulative
loss protection. These RPB protocols address the impact of
bursty packet losses on reliable reconstruction of earlier seg-
ments, and allow the estimation of cumulative packet loss
rate to be less conservative for later segments.

Heterogeneous client packet loss probabilities and situa-
tions that cause packet loss to exceed the specified upper
bound on packet loss are addressed in Section 4.4.

4.1 Optimized PB Protocols
The proposed new family of Optimized PB protocols as-

sumes that (1) packet loss in any given transmission path
can be adequately addressed using local error concealment,
and (2) each segment must be entirely received before the
beginning of the segment is played. To minimize start-up
delay, the first segment is repeatedly transmitted on a given

Table 2: Parameters of the new Optimized and Reliable Periodic Broadcast Protocols

Symbol Definition
K total number of segments
r segment transmission rate (in units of the object playback bit rate)
s assumed maximum number of streams that clients listen to concurrently
n assumed maximum aggregate transmission rate to a client (in units of the object play rate), n = s × r > 1
lk length (playback duration) of the kth segment (relative to the length of segment 1)

multicast channel. Thus, a client arriving at an arbitrary
point in time can immediately begin listening to the chan-
nel for a period of time equal to the time it takes to transmit
the segment, as illustrated by the shaded portion of channel
1 in Figure 4. Also to minimize start-up delay, the client
will begin playing the first segment when it is fully received.
The segment size progression is designed so that the client
will receive each other segment in its entirety just in time
to begin playing the segment. Each segment is repeatedly
transmitted on its own multicast channel, so that each client
arriving at an arbitrary point in time will be able to fully
receive and begin playing each media segment on time.

To derive the maximum possible segment size increases,
first consider the case that each segment is delivered at the
object playback rate2 (i.e., r = 1) and multicast join oper-
ations have zero latency. In this case, if s is the assumed
maximum number of segment transmissions a client can si-
multaneously listen to, then each segment k, 1 < k ≤ s,
has maximum length equal to the time to receive segment
1 plus the time to play each earlier segment (i.e., segments
1 through k − 1). For segment k > s, the client will begin
receiving segment k at the time that segment k − s is just
received and starts playing. The client must finish receiving
segment k when segment k − 1 finishes playing. Thus, mea-
suring segment lengths relative to the first segment length,
we have l1 = 1 and the following maximum sizes for other
segments:

lk =

l1 +

k−1∑
j=1

lj 1 < k ≤ s

k−1∑
j=k−s

lj k > s.

(6)

For a given number of server streams, K, used to multicast
the object, the total server bandwidth used is B = r×K and
the (deterministic) client start-up delay is equal to T

r
∑

lk
.

Figure 4 illustrates the segment sizes and a transmission
schedule for the Optimized PB protocol with parameters
K = 6, r = 1, and s = 2. Note that (1) if r = 1 and s = 2,
the segment length progression is the Fibonacci series, and
as with other Optimized PB parameter settings, the segment
transmission schedule has no holes; (2) any alignment of
transmissions between any two channels is valid, and (3) two

2For simplicity, the development of the segment sizes as-
sumes constant bit rate content or a fully smoothed variable
bit rate (VBR) media stream with the requisite additional
start-up delay (if any). The segment sizes can be further op-
timized for VBR content that hasn’t been (fully) smoothed,
in which case each segment would be fully smoothed and
delivered in a constant bit rate stream, but calculation of
the optimized segment transmission rates and sizes is sub-
stantially more complex for this case.

Channel 6

Channel 5

Channel 4

Channel 3

Channel 2

Channel 1

.....

.....

.....

.....

.....

Figure 4: Example Optimized PB Protocol
(K = 6, r = 1, s = 2)

clients arriving at different points in time generally tune into
each segment multicast stream at different times.

Generalizing the Optimized PB protocols for segment trans-
mission rate r ≤ 1 provides the capability to assume that
the maximum aggregate transmission rate to each client,
n = s × r > 1, is less than twice the minimum transmission
rate required for real-time playback. Note that this allows
more of the achievable transmission rate to a client to be
used for delivering higher quality media content. Further-
more, as will be illustrated below, for a fixed value of n and
total server transmission bandwidth (B), a lower value of r
yields a lower start-up delay (but a larger number of server
multicast transmission streams, K = B/r).

Noting that the time to download each segment is equal
to 1/r times the segment length, the maximum relative seg-
ments sizes are easily generalized for r ≤ 1, as follows:

1

r
lk =

1
r
l1 +

k−1∑
j=1

lj 1 < k ≤ s

k−1∑
j=k−s

lj k > s.

(7)

Figure 5 compares the required server bandwidth as a
function of start-up delay for Optimized PB protocols with
n = 2 and as a function of average and maximum start-
up delay for the skyscraper system which assumes n = 2.
Maximum start-up delay is twice the average start-up delay
in skyscraper systems. Note that the performance of the
Optimized PB systems is competitive with the skyscraper
system, even though each segment is completely received
before the beginning of the segment is played. Note also that
the performance of the Optimized PB systems improves for
lower r.

The Optimized PB segment sizes are also easily general-
ized for non-negligible latency to join an on-going multicast.
In this case, a conservative estimate of the latency to join
the multicast transmission is added to the left-hand side of
equation (7) and to the time to download the first segment
on the right-hand side of the equation for k ≤ s.

0

5

10

15

20

0.0001 0.001 0.01 0.1

R
eq

ui
re

d
S

er
ve

r
B

an
dw

id
th

Start-up Delay (fraction of total object duration)

Skyscraper (max)
Skyscraper (average)

Optimized PB (n=2,r=1)
Optimized PB (n=2,r=0.25)

Figure 5: Performance Comparison of
Optimized PB and Skyscraper Broadcasts

Required client buffer space for an Optimized PB protocol
can be derived by summing the amounts by which the buffer
fills during the download time of the initial segment, and
during each segment play time for which the download rate
exceeds the play rate. Expressed as a fraction of the total
object size, the required client buffer space is given by

(min(K, s)l1 + (n − 1)

K−s∑
k=1

lk +

K−s+� n−1
r

�∑
k=max(1,K−s+1)

((K − k)r − 1)lk)/
K∑

k=1

lk.

(8)

4.2 Basic Reliable Periodic Broadcast
We next consider modifying the Optimized PB protocols

to enable recovery from packet losses in the transmission
path to each client. This section generalizes the protocols
for the (idealized) case that the cumulative packet loss at
the end of receiving each segment is never greater than a
tunable parameter p. Sections 4.3 and 4.4 will provide a
further optimization and generalizations for environments
that have packet loss greater than the assumed upper bound.

A key insight, supported by Figure 4, is that the Opti-
mized PB protocol can be extended to enable recovery from
packet loss if each segment is delivered by an approximation
of a digital fountain. That is, if each segment is “stretched”
by an appropriate factor (e.g., 2 or 3) using erasure codes,
and if successive transmissions of the segment cycle through
the resulting encoded packets, a client can listen to each
channel until it has correctly received the number of packets
required to reconstruct the respective segment. Assuming
perfect decode efficiency3 and maximum packet loss equal
to p, the client will receive the requisite number of packets
for segment k by time 1/(1−p)× lk/r. Letting a = 1/(1−p)
and assuming segment decode time is negligible, the maxi-

3Decode efficiency is defined as the ratio of the number of
packets that must be received in order to reconstruct a seg-
ment to the number of packets in the reconstructed segment.
Initially we assume the decode efficiency equal to 1.0 and
the time to decode an erasure-coded segment is negligible.
These assumptions simplify the derivation of the segment
size progressions, and then are easily relaxed.

mum segment size progression is as follows:

a × lk
r

=

a × l1
r

+

k−1∑
j=1

lj 1 < k ≤ s

k−1∑
j=k−s

lj k > s.

(9)

For a given number of server streams, the (determinis-
tic) start-up delay is equal to aT

r
∑

lk
. The above segment

sizes can be modified to account for non-negligible segment
decode times by adding the decode time for segment k to
the left-hand side of equation (9) and by adding the decode
time for segment 1 to the download time for segment 1 on
the right-hand side of the equation. Imperfect decode ef-
ficiency can be accounted for by letting a equal the actual
decode efficiency times 1/(1−p). For example if p = 0.2 and
decode efficiency is 1.05, a = 1.05× 1.25 = 1.3125. Segment
sizes may be capped at some maximum value so as to control
client buffer size and decoding time requirements, although
in the following performance results we assume all segment
sizes are as given by equation (9).

Figures 6 & 7 provide numerical results for the required
server bandwidth (in units of the object playback bit rate)
for delivery of a single object, as a function of the client
start-up delay. Decode efficiency is assumed to be 1.0 and
decode time is assumed to be negligible in these figures;
required server bandwidth will increase for larger values of
either of these parameters. Figure 6 shows the impact of
n and p on the required server bandwidth as a function of
the start-up delay. As shown in the figure, if maximum
packet loss per segment (p) is 10% or less, start-up delay
equal to 1% of T is feasible even for aggregate transmission
rate to each client (n) is only 1.25 times the media play
rate. Moreover, as n and s increase, lower target start-up
delays become more feasible (even for higher values of p),
and the server bandwidth required by the Optimized PB
protocol approaches the lower bound on the required server
bandwidth for recovering from loss rate equal to p, which was
given in equation (4). Recall that the lower bound assumes
unlimited aggregate transmission rate to each client.

In Figure 7 the maximum aggregate transmission rate to
a client is fixed (i.e., n = 2). Thus, as the maximum num-
ber of streams a client listens to (s) increases, (r) decreases
and performance improves. However, the figure also shows
that decreasing r yields diminishing returns. For example,
the benefit obtained for r < 0.25 may not be worth the cost
of the additional multicast streams. On the other hand,
decreasing r yields shorter segments which imply reduced
decoding time per segment. All of these factors need to be
considered when selecting the value of r for a given imple-
mentation of the protocol.

4.3 RPB Protocols for Bursty Packet Loss
In the Basic RPB protocols, each client that observes cu-

mulative packet loss rate less than or equal to p at the end
of receiving each segment will be able to recover from packet
loss and play the media object without interruption. Fur-
thermore, if a given client observes cumulative packet loss
rate less than p at the end of receiving a given segment, that
segment can be reconstructed prior to its playout point. In
this case, the client can begin listening to later segments ear-
lier than anticipated. This “work-ahead” allows the client

0

5

10

15

20

0.0001 0.001 0.01 0.1

R
eq

ui
re

d
S

er
ve

r
B

an
dw

id
th

Start-up Delay (fraction of total object duration)

n=1.25
n=1.5

n=2
n=3

n=5, s=64
Lower Bound

0

5

10

15

20

0.0001 0.001 0.01 0.1

R
eq

ui
re

d
S

er
ve

r
B

an
dw

id
th

Start-up Delay (fraction of total object duration)

n=1.25
n=1.5

n=2
n=3

n=5, s=64
Lower Bound 0

5

10

15

20

0.0001 0.001 0.01 0.1

R
eq

ui
re

d
S

er
ve

r
B

an
dw

id
th

Start-up Delay (fraction of total object duration)

n=1.25
n=1.5

n=2
n=3

n=5, s=64
Lower Bound

(a) 3% Packet Loss (b) 10% Packet Loss (c) 25% Packet Loss

Figure 6: Performance of the Basic RPB Protocols (a = 1
1−p

, default s = 8)

0

5

10

15

20

0.0001 0.001 0.01 0.1

R
eq

ui
re

d
S

er
ve

r
B

an
dw

id
th

Start-up Delay (fraction of total object duration)

s=2
s=4
s=8

s=16
s=128

Figure 7: Impact of Streaming Rate on
Basic RPB Performance (n = 2, 10% Packet Loss)

to tolerate a higher loss rate than p for a later segment, with
no interruption in playback if the cumulative loss probabil-
ity at the end of receiving the later segment is still less than
or equal to p. Permitting clients to begin reception of each
segment at an arbitrary point in time enables this useful
work-ahead capability.

As discussed in extensive previous work (e.g., [19] and
the references therein), packet loss is typically quite bursty.
Spikes in the packet loss rate imply that earlier segments in
the Basic RPB system require a higher level of loss protec-
tion than later segments.

A greater level of protection for earlier segments can be
accomplished by letting each segment have a different value
ak that determines the default time the client will listen to
the stream for segment k. For a given average loss rate p and
a = 1/(1 − p) times the decode efficiency, earlier segments
will have ak larger than a and later segments will have ak

lower than a. The RPB segment sizes for the specified values
of ak are easily derived as follows:

ak × lk
r

=

a1 × l1
r

+

k−1∑
j=1

lj 1 < k ≤ s

k−1∑
j=k−s

lj k > s.

(10)

The above specification for RBP systems can be modified
to include non-negligible multicast join or segment decode
times, as discussed for the Basic RPB protocols.

0

0.05

0.1

0.15

0.2

0.01 0.1 1
M

ax
im

um
 C

um
ul

at
iv

e
Lo

ss

 fo
r

U
ni

nt
er

ru
pt

ed
 P

la
yb

ac
k

Position in Stream

Variable ‘a’, Scenario A
Variable ‘a’, Scenario B

Constant ‘a’

Figure 8: Loss Tolerance Using Variable a
(K = 10, r = 1, n = 2, d = 0.008T)

For a given environment with specified values of n, r, and
ak, the required server bandwidth (B = K × r) can be plot-
ted as a function of start-up delay, to support server provi-
sioning decisions.

Figure 8 shows that a variety of skews in the loss pro-
tection can be achieved with a fixed server bandwidth and
start-up delay. That is, for K = 10, r = 1, n = 2, and
d = 0.008T , the figure shows the cumulative loss protection
provided with ak equal for all segments, and the loss protec-
tion provided in two example scenarios with variable ak. For
other scenarios, a change in server bandwidth and/or start-
up delay may be needed to provide the desired protection
for both the initial segments as well as the later segments.
In any case, a careful analysis of the traffic characteristics
in the implementation environment is needed to properly
tailor the loss protection. Note also that in many environ-
ments (including the Internet and wireless networks) only a
small to moderate skew in the protection may be desired,
because more significant spikes in the loss rate indicate that
the total transmission rate for the media object should be
reduced in order to alleviate congestion in the transmission
network. This issue is discussed next.

4.4 Client Heterogeneity
The RPB family of protocols has so far been defined as-

suming that all clients have (1) the assumed maximum ag-
gregate transmission rate equal to n times the media play-
back rate, and (2) the assumed maximum cumulative loss
probabilities at the end of receiving each segment, which

0

0.02

0.04

0.06

0.08

0.1

0.1 0.12 0.14 0.16 0.18 0.2

S
ta

rt
-u

p
D

el
ay

 (
fr

ac
tio

n
of

 to
ta

l o
bj

ec
t d

ur
at

io
n)

Actual Loss Probability

s=2
s=8

s=32

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 0.05 0.1 0.15 0.2

A
ct

ua
l C

lie
nt

 D
at

a
R

at
e

Actual Loss Probability

s=2
s=8

s=32

(a) Start-up Delay vs. Loss Probability (b) Client Data Rate vs. Loss Probability

Figure 9: RPB Performance for Heterogeneous Clients (B = 10, n = 2, p = 0.1)

implies that all clients also have (approximately) the same
start up delay.

A client with a significantly higher (or lower) aggregate
transmission rate should receive a higher (or lower) quality
version of the media object, which may be done using one
of two approaches. First, several different versions of the
object that are encoded for different bit rates might each be
delivered using the RPB protocol. If the client may dynami-
cally switch between the different versions based on changes
in the transmission channel, then the RPB protocol for each
version should have the same parameter values (i.e., n, r,
K, and ak) to minimize interruption in playback when ver-
sion changes are made. Second, the media object might be
compressed using a layered encoding scheme, and the RPB
protocol might be applied to each encoded layer. In the
simplest case, the parameters of the RPB protocol would be
the same for each layer. More complex schemes that allow
each layer to have different parameters, for example to im-
plement greater loss protection for the base layer, can also
be designed such that the time to receive each segment k is
the same for each layer. In any case, a clients with a given
aggregate transmission bandwidth (perhaps experimentally
determined) subscribes to the appropriate number of layers,
possibly dynamically in response to observed changes in the
transmission channel.

In some cases, smaller heterogeneities in client capabili-
ties can be accommodated using available tradeoffs among
start-up delay, client data rate, and packet loss rate. As
an example, Figure 9(a) shows how a client with a higher
packet loss rate than specified in the RPB protocol design
(i.e., p = 0.1) can achieve full packet loss recovery and un-
interrupted playback by adopting a higher start-up delay.
One possible technique by which this tradeoff could be ex-
ploited would involve the client monitoring the packet loss
rate prior to playing the first segment (i.e., while receiving
the first s segments), and simply delaying beginning of play
out if the loss rate is deemed excessive.

As another example, Figure 9(b) shows that if a client has
higher aggregate transmission rate than specified in the de-
sign of the RPB protocol, the client can tolerate a higher loss
rate than specified in the protocol design while still achiev-
ing uninterrupted playback, by listening to more streams
concurrently than specified in the RPB protocol. The figure
illustrates this for three RPB protocols, each designed for
B = 10, n = 2, and p = 0.1. Each protocol is designed

for a different value of s (i.e., a different segment stream-
ing rate, r = n/s). If the actual loss probability is greater
than 0.1, the client can achieve uninterrupted playback if
the client can achieve the actual transmission rate (greater
than 2) given in the curve for the RPB protocol employed
to deliver the object. Each step in the curve indicates that
the client must listen to one additional stream concurrently
to achieve uninterrupted playback. Also note that a slightly
larger start-up delay will also be required to ensure that the
initial s segments are received in time for playback if these
segments have higher than the anticipated loss probability.
Conversely, a client that observes lower than anticipated loss
probability can in some cases listen to fewer than s streams
for uninterrupted playback, as illustrated in the figure for
actual loss probability less than 0.1.

In the context of the mechanisms for accommodating het-
erogeneous clients, the server can also use mechanisms such
as redundant transmission paths to reduce the likelihood
that the cumulative loss probability to a given client will
exceed the maximum that can be tolerated. If, in spite of
such mechanisms, the cumulative loss probability observed
by a given client exceeds the loss for which the protocol is
designed, the only alternative is to switch to a lower quality
media stream (by subscribing to fewer layers or a different
version). If that fails, interruption in playback is unavoid-
able.

Further specification of the mechanisms for tolerating het-
erogeneous client capabilities in RPB systems is left for fu-
ture work.

5. RELIABLE BANDWIDTH SKIMMING
The Reliable Bandwidth Skimming (RBS) protocols that

are developed in this section have at least two advantages
compared to the RPB protocols. First, they automatically
reduce server bandwidth when client request rate decreases.
Second, they support more general (but not zero delay) “fast
forward” and “skip ahead” client interactive requests. How-
ever, the RBS protocols are somewhat less efficient than
the RPB protocols with respect to the amount of data re-
ceived by each client, and the RBS protocols may be less
able to tolerate bursty packet loss without interruption in
playback. Furthermore, servers that use the RBS protocols
require client requests in order to initiate a new transmis-
sion of the media stream, whereas servers that use the RPB

protocols can use a separate multicast stream to announce
the current channels that are delivering periodic broadcasts
and the parameters of those broadcasts.

The RBS protocols divide the media stream into segments
that have fixed duration as short as possible for the specified
loss protection. Each segment is “stretched” using erasure
codes. The server transmits 1/(1 − p) encoded packets for
each segment using a rate 1.0 primary stream and a rate
p/(1 − p) secondary stream, where p is the specified max-
imum packet loss rate for each segment. The secondary
stream is offset in time by the segment duration to pro-
vide some protection against burst losses. The client begins
playing the media after the first segment has been received
on both streams, and decoded. Assuming the packet loss
rate for each segment is not greater than p, each subsequent
segment is received and decoded prior to its play point.

The primary stream (and the corresponding “redundant”
secondary stream) can be merged with earlier primary (and
corresponding secondary) streams in the same way that merg-
ing is accomplished in the original bandwidth skimming pro-
tocols. For example, if the Partition stream merging method
described in Section 2 is used, the primary and secondary
streams are each transmitted on their own k channels, with
fine grained interleaving of the respective packets on the
channels. Clients receive k + 1 primary and k + 1 sec-
ondary substreams, yielding aggregate client transmission
rate n = (1+1/k)(1+p/(1−p)), in units of the media play-
back bit rate. Merging the secondary streams that carry the
redundant data is the principal extension to previously pro-
posed schemes for live or scheduled broadcasts, which also
involve establishing separate streams of redundant data [9,
30].

Various extensions to RBS for tolerating heterogeneous
client capabilities are possible. For example, feedback to
the server reporting high loss rate could trigger the server
to create one or more new channels in a secondary stream for
transmitting more redundant data to provide increased pro-
tection against packet loss. Further specification of methods
for accommodating heterogeneous clients in RBS systems is
left for future work.

Figure 10 illustrates the performance of reliable band-
width skimming protocols for maximum loss rate equal to
10%, and various values for n, the achievable client data
rate.4 For comparison purposes, the graphs also show the
lower bound from equation (3), which assumes an unlim-
ited client data rate. The principal observations from this
figure are that the RBS protocols adapt to varying client
request rate, and in light of the assumed client data rates,
yield performance reasonably close to the lower bound.

We have recently implemented a prototype system to ex-
periment with on-demand streaming protocols. This proto-
type implements bandwidth skimming with aggregate client
transmission rate (n) equal to 2, and is installed in the
eTeach system which handles 1500 client requests per day
when classes are in session at the University of Wisconsin.
Clients can request the videos, pause, resume, fast-forward,
rewind, and jump to special markers in the content, at arbi-

4These results are obtained from simulations under Poisson
request arrivals, although as reported in [12], qualitatively
very similar results are obtained for a heavy-tailed distribu-
tion of interrequest times modelled by a Pareto distribution.
All results in the figure have 95% confidence intervals that
are within 5% of the reported values.

0

5

10

15

20

1 10 100 1000

R
eq

ui
re

d
S

er
ve

r
B

an
dw

id
th

Client Request Rate, N

n=1.25
n=1.39
n=1.67
n=2.22

Lower Bound

Figure 10: RBS Performance (10% Packet Loss)

trary points in time. The implementation has demonstrated
that bandwidth skimming (1) is simple to implement, partic-
ularly for the closest target (CT) variant of the protocol [11],
(2) is easily extended to support client interactive requests,
and (3) can be designed with almost no client feedback for
effecting the stream merging. Extensions to implement the
RBS protocol are in progress.

6. CONCLUSIONS
This paper has addressed the design of scalable and reli-

able on-demand delivery of streaming media. New Reliable
Periodic Broadcast (RPB) protocols and Reliable Bandwidth
Skimming (RBS) protocols were developed and evaluated.
The evaluation of the protocols relied in part on simple lower
bounds on required server bandwidth for any protocol that
provides uninterrupted playback when average packet loss
rate is bounded by p. One of the bounds assumes the server
provides immediate service to each client; the other assumes
the server serves an unlimited number of clients with a spec-
ified maximum client start up delay. Each of the new pro-
tocols nearly achieves the applicable lower bound, and thus
achieves nearly the best possible scalability.

On-going research includes experimental evaluation of the
new RPB and RBS protocols, developing congestion con-
trol strategies for RPB and RBS systems, developing RPB
and RBS protocols for VBR content that has not been fully
smoothed, developing RPB systems that have different loss
protection for different layers in a layered media stream, and
quantifying required server bandwidth for RBS systems that
have specified frequencies and types of interactive requests.

7. ACKNOWLEDGMENTS
We would like to thank John Zahorjan for early technical

discussions on this topic. We also thank Jussara Almeida,
Paul Barford, and the anonymous SIGCOMM 2001 referees
for comments that improved the paper presentation.

8. REFERENCES
[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A

Permutation Based Pyramid Broadcasting Scheme for
Video On -Demand Systems”, Proc. IEEE ICMCS
’96, Hiroshima, Japan, June 1996.

[2] J. M. Almeida, J. Krueger, D. L. Eager, and M. K.
Vernon, “Analysis of Educational Media Server

Workloads”, Proc. NOSSDAV ’01, Port Jefferson, NY,
June 2001.

[3] Y. Birk and R. Mondri, “Tailored Transmissions for
Efficient Near-Video-On-Demand Service”, Proc.
IEEE ICMCS ’99, Florence, Italy, June 1999.

[4] J. C. Bolot, S. Parisis, and D. Towsley, “Adaptive
FEC-Based Error Control for Internet Telephony”,
Proc. IEEE Infocom ’99, New York, NY, March 1999.

[5] J. Byers, M. Luby, M. Mitzenmacher and A. Rege, “A
Digital Fountain Approach to Reliable Distribution of
Bulk Data”, Proc. ACM Sigcomm ’98, Vancouver,
Canada, Sept. 1998.

[6] Y. Cai, K. A. Hua, and K. Vu, “Optimizing Patching
Performance”, Proc. MMCN ’99, San Jose, CA, Jan.
1999.

[7] G. Carle and E. W. Biersack, “Survey of Error
Recovery Techniques for IP-based Audio-Visual
Multicast Applications”, IEEE Network, Vol. 11, No.
6, Nov./Dec. 1997.

[8] S. W. Carter and D. D. E. Long, “Improving
Video-on-Demand Server Efficiency Through Stream
Tapping”, Proc. ICCCN ’97, Las Vegas, Sept. 1997.

[9] P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra,
“FEC and Pseudo-ARQ for Receiver-driven Layered
Multicast of Audio and Video”, Proc. IEEE Data
Compression Conf., Snowbird, UT, March 2000.

[10] D. L. Eager, M. K. Vernon, and J. Zahorjan,
“Minimizing Bandwidth Requirements for
On-Demand Data Delivery”, IEEE Trans. on
Knowledge and Data Engineering, Sept./Oct. 2001.
(Earlier version appears in Proc. MIS ’99.)

[11] D. L. Eager, M. K. Vernon, and J. Zahorjan,
“Optimal and Efficient Merging Schedules for
Video-on-Demand Servers”, Proc. ACM Multimedia
’99, Orlando, FL, Nov. 1999.

[12] D. L. Eager, M. K. Vernon, and J. Zahorjan,
“Bandwidth Skimming: A Technique for
Cost-Effective Video-on-Demand”, Proc. MMCN ’00,
San Jose, CA, Jan. 2000.

[13] S. Floyd, V. Jacobson, C. G. Liu, S. McCanne, and L.
Zhang, “A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing”,
Proc. ACM Sigcomm ’95, Cambridge, MA, Aug. 1995.

[14] L. Gao, J. Kurose, and D. Towsley, “Efficient Schemes
for Broadcasting Popular Videos”, Proc. NOSSDAV
’98, Cambridge, UK, July 1998.

[15] L. Gao and D. Towsley, “Supplying Instantaneous
Video-on-Demand Systems Using Controlled
Multicast”, Proc. IEEE ICMCS ’99, Florence, Italy,
June 1999.

[16] A. Hu, “Video-on-Demand Broadcasting Protocols: A
Comprehensive Study”, Proc. IEEE Infocom ’01,
Anchorage, AK, April 2001.

[17] K.A. Hua and S. Sheu, “Skyscraper Broadcasting: A
New Broadcasting Scheme for Metropolitan
Video-on-Demand Systems”, Proc. ACM Sigcomm
’97, Cannes, France, Sept. 1997.

[18] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A
Multicast Technique for True Video-On-Demand
Services”, Proc. ACM Multimedia ’98, Bristol, U.K.,
Sept. 1998.

[19] W. Jiang and H. Schulzrinne, “Modeling of Packet
Loss and Delay and their Effect on Real-Time
Multimedia Service Quality”, Proc. NOSSDAV ’00,
Chapel Hill, NC, June 2000.

[20] L. Juhn and L. Tseng, “Fast Data Broadcasting and
Receiving Scheme for Popular Video Service”, IEEE
Trans. on Broadcasting, Vol. 44, No. 1, March 1998.

[21] X. Li, M. H. Ammar, and S. Paul, “Video Multicast
over the Internet”, IEEE Network, Vol. 13, No. 2,
March/April 1999.

[22] X. Li, S. Paul, P. Pancha, and M. Ammar, “Layered
Video Multicast with Retransmission (LVMR):
Evaluation of Error Recovery Schemes”, Proc.
NOSSDAV ’97, St. Louis, MO, May 1997.

[23] J. Nonnenmacher, E. W. Biersack, and D. Towsley,
“Parity-Based Loss Recovery for Reliable Multicast
Transmission”, IEEE/ACM Trans. on Networking,
Vol. 6, No. 4, Aug. 1998.

[24] J. Nonnenmacher, M. Lacher, M. Jung, G. Carl, and
E. W. Biersack, “How Bad is Reliable Multicast
Without Local Recovery?”, Proc. IEEE Infocom ’98,
San Francisco, CA, April 1998.

[25] J. Paris, S. W. Carter, and D. E. Long, “Efficient
Broadcasting Protocols for Video on Demand”, Proc.
MASCOTS ’98, Montreal, Canada, July 1998.

[26] C. Perkins, O. Hodson, and V. Hardman, “A Survey
of Packet Loss Recovery Techniques for Streaming
Audio”, IEEE Network, Vol. 12, No. 5, Sept./Oct.
1998.

[27] L. Rizzo, “Effective Erasure Codes for Reliable
Computer Communication Protocols”, Computer
Communication Review, Vol. 27, No. 2, April 1997.

[28] L. Rizzo and L. Vicisano, “A Reliable Multicast Data
Distribution Protocol Based on Software FEC
Techniques”, Proc. HPCS ’97, Greece, June 1997.

[29] S. Sen, L. Gao, J. Rexford, and D. Towsley, “Optimal
Patching Schemes for Efficient Multimedia
Streaming”, Proc. NOSSDAV ’99, Basking Ridge, NJ,
June 1999.

[30] W. Tan and A. Zakhor, “Multicast Transmission of
Scalable Video using Receiver-driven Hierarchical
FEC”, Packet Video Workshop, New York, NY, April
1999.

[31] L. Vicisano, L. Rizzo, and J. Crowcroft, “TCP-like
Congestion Control for Layered Video Multicast Data
Transfer”, Proc. IEEE Infocom ’98, San Francisco,
CA, April 1998.

[32] S. Viswanathan and T. Imielinski, “Metropolitan Area
Video-on-Demand Service using Pyramid
Broadcasting”, Multimedia Systems, Vol. 4, No. 4,
Aug. 1996.

[33] R. Yavatkar, J. Griffoen, and M. Sudan, “A Reliable
Dissemination Protocol for Interactive Collaborative
Applications”, Proc. ACM Multimedia ’95, San
Francisco, CA, Nov. 1995.

[34] X. R. Xu, A. C. Myers, H. Zhang, and R. Yavatkar,
“Resilient Multicast Support for Continuous-Media
Applications”, Proc. NOSSDAV ’97, St. Louis, MO,
May 1997.

APPENDIX

A. MULTICAST RETRANSMISSIONS
This appendix derives a lower bound on the required server
bandwidth when retransmissions are multicast, under the
assumption that packet losses at each client are independent
and occur with probability p. In an actual system there may
be some correlation among the packet losses experienced at
different clients due to shared links in the transmission paths
to these clients. Simple models of plausible correlation struc-
tures may be analyzed using a similar approach as described
below for independent packet losses.

As in the analysis for the case of no packet loss reviewed
in Section 2.3, consider a small portion of the object at some
arbitrary time offset x. For an arbitrary client request that
arrives at time t, this portion of the object must be delivered
no later than time t + x. Thus, there is a “sharing window”
of duration at most x over which a multicast of this portion
may be fruitfully received by new clients.

A lower bound on the required server bandwidth can be
obtained by (a) assuming that closely spaced retransmis-
sions experience the same (rather than correlated) loss prob-
ability, and (b) neglecting the impact of the time required
for retransmissions on the scheduling of “fresh” (i.e., not re-
transmissions owing to packet loss) multicasts and the size
of the sharing window. In the absence of precisely simulta-
neous client requests, there is only one client for which any
particular multicast of the portion at time offset x is “just
in time”. Under the assumption of uncorrelated loss prob-
abilities, the number of transmissions required to achieve
successful delivery to this client is equal to n with probabil-
ity p(n−1)(1−p), and has average value 1

1−p
. The probability

s that some other client that is listening to these transmis-
sions successfully receives the data is given by

s =

∞∑
n=1

p(n−1)(1 − p)(1 − pn) =
1

1 + p
. (11)

If one of these clients does not successfully receive the data,
another “fresh” multicast must be scheduled. The required
server bandwidth is minimized if this new multicast is sched-
uled so as to achieve “just in time” delivery to the earliest
such client.

Thus, each fresh multicast of the portion at time offset
x incurs on average 1

1−p
transmissions. Furthermore, not

all clients listening to these transmissions may successfully
receive the data, and so the minimal average frequency with
which these multicasts must be scheduled is increased in
comparison to the case of no packet loss. This minimal fre-
quency is identical to the average throughput of a system in
which “customers” (representing fresh multicasts and their
associated sharing windows) arrive and reside in the sys-
tem for constant time duration x. Arrivals occur at rate λ
when there are no customers present in the system, at rate
λ∗ (1−s) when there is one customer present in the system,
at rate λ ∗ (1 − s)2 when there are two customers present in
the system, and so on.

The average throughput in this system is identical to that
in a similar system, but with exponentially distributed cus-
tomer residence times of mean duration x. The average
throughput can therefore be computed numerically as the
solution of an infinite state one-dimensional Markov chain
with transition rate from state i to i + 1 of λ ∗ (1 − s)i and
from state i + 1 to i of i+1

x
, for all i ≥ 0. A lower bound

on required server bandwidth can then be (numerically) ob-
tained by dividing the object into arbitrarily small portions,
and summing over all portions, the size of the portion times

1
1−p

times the throughput computed from the Markov chain
analysis for the corresponding time offset x.

B. ASYMPTOTIC ANALYSIS OF RPB
The results presented in Figure 6 suggest that as the param-
eters n and s of the new periodic broadcast protocols are
increased, the start-up delay approaches that of the lower
bound. The following asymptotic analysis of the segment
size progression supports this result.

Fix n, and let s and K/s grow large, so that each segment
becomes infinitesimally small in length and delivery rate,
and so that the start-up delay approaches zero. Further, let
l(x) denote the length of the x s

n
’th segment (0 < x < K n

s
).

Equation (9) together with r = n
s

yield

l(x) = lx s
n

=
1

a

x s
n
−1∑

j=(x−n) s
n

lj
n

s
. (12)

Asymptotically the sum can be written as an integral:

l(x) =
1

a

∫ x

x−n

l(y)dy. (13)

As can be verified by substitution, the solution to the above
equation is

l(x) = cebx (14)

where b and c are independent of x, and b is given by

b =
1 − e−bn

a
. (15)

Thus, asymptotically l(x) = ebnl(x − n), yielding lk =
ebnlk−s. Using this equality to substitute for the left-hand
side of equation (9), we get that the sum of the lengths of s
consecutive segments js, js+1, ..., (j +1)s− 1 is asymptoti-
cally a

r
ebnljs. Further, the sum of the lengths of the next set

of consecutive s segments (j+1)s, (j+1)s+1, ..., (j+2)s−1, is
greater by a factor of ebn > 1. From this geometric progres-
sion we can conclude that if the first segment is normalized
to length 1, then the sum of the lengths of all K segments

with this normalization is asymptotically O(ebn K
s). Thus,

since the start-up delay d is equal to a times the length
of the first segment, and using n = sr, we have that d is
O(ae−brK). Solving for the server bandwidth rK yields a
required server bandwidth of

1

b
ln(

1

d
) + lower order terms (16)

For large n, 1
b

tends to a. If a is chosen equal to 1
1−p

(the
smallest a for which full recovery from loss can be possible
without extra delay at the clients, given loss rate p), we
obtain a required server bandwidth that is asymptotically
the same as the lower bound given in equation (4).

Interestingly, for a = 1 (i.e., the no packet loss case),
and general n, we get b = 1 − e−bn, implying that 1

b
is

identical to the constant ηn,ε defined in [10]. This implies
that the asymptotic required server bandwidth for general
n (and large s), in this no packet loss case, is identical to
the conjectured asymptotic lower bound on required server
bandwidth for general n from [10].

