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A Progressive Flow Auction Approach For
Low-Cost On-Demand P2P Media Streaming

Zongpeng Li, Anirban Mahanti†

Abstract— Realizing on-demand media streaming in a
Peer-to-Peer (P2P) fashion is more challenging than in the
case of live media streaming, since only peers with close-by
media play progresses may help each other in obtaining
the media content. The situation is further complicated
if we wish to pursue low link cost in the transmission.
In this paper, we present a new algorithmic perspective
towards on-demand P2P streaming protocol design. While
previous approaches employ streaming trees or passive
neighbour reconciliation for media content distribution,
we instead coordinate the streaming session as an auction
where each peer participates locally by bidding for and
selling media flows encoded with network coding. We
show that this auction approach is promising in achieving
low-cost on-demand streaming in a scalable fashion. It is
amenable to asynchronous, distributed, and light-weight
implementations, and is flexible enough to provide support
for random-seek and pause functionalities.

I. INTRODUCTION

In this paper, we consider the problem of on-
demand streaming of popular stored media files
to clients on the Internet. Client requests for the
same media may be asynchronous, and furthermore,
clients may request playback from any position in
the content and also engage in interactive operations
such as pause and random-seek. In the conventional
approach to media-on-demand, a separate unicast
channel is allocated by the server for each client
request. With this approach, the required number of
server channels grows linearly in the client request
rate, and the video server soon becomes the bottle-
neck.

Several solutions have been proposed to address
the aforementioned scalability issue. One approach
is to reduce the demands on server (and net-
work) bandwidth by applying the “pull” strategy
of caching media files, or portions thereof, at sites
closer to the requesting clients. Alternatively, the
“push” strategy of replicating media files at sites
closer to requesting clients may be applied [4].
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These solutions only partially address the problem;
in extreme cases, these strategies may serve to
only shift the load from the server to the proxies.
Complementary to these infrastructure-based con-
tent distribution solutions are the scalable streaming
proposals such as periodic broadcasts [1], [22], [26],
patching [10], [11], and streaming merging [17],
[18]. The basic idea behind these server-side so-
lutions is to enable aggregation of client requests,
wherein a large number of asynchronous client
requests for a media file are served using a few
multicast streams.

The limited deployment of IP multicast due to
operational problems has resulted in considerable
work on solutions that simulated multicast at the
application layer. The scalable streaming protocols
discussed above may be deployed, for example, with
application layer multicast solutions that employ
specialized overlay routers. Another option is to
leverage the Peer-to-Peer (P2P) content distribution
framework for on-demand media streaming. This
approach has been widely used for efficiently down-
loading large files and enabling live streaming [5],
[12], [28], [29], and more recently for media-on-
demand applications [19]. Using the P2P framework
has inherent advantages because the system scales
with demand as more clients provide increased
bandwidth, storage, and computational capabilities.

These previous streaming protocol design focus
on system scalability and do not explicitly consider
link cost. We argue that minimizing the aggregated
link cost in media flow transmission is desired,
since it in general leads to better quality streaming
paths and stable data delivery. Application layer
link cost can be defined upon end-to-end delay,
loss rate, or a combination thereof. For instance,
minimizing total transmission delay implicitly clus-
ters physically close peers. Besides improving delay
latency experienced by each peer, it also reduces
bandwidth consumption at the IP layer. Minimizing
loss rate based cost translates into stable throughput
and less retransmission overhead. Therefore, we set



2

both scalability and low transmission cost as the
design goals of our on-demand streaming system.
In particular, we wish to make sure that the cost
minimization incurs minimal computation and com-
munication overhead, so as not to sacrifice system
scalability.

In this paper, we design a set of distributed
algorithms that act in concert in the application
layer to realize on-demand media streaming in a
scalable fashion with low-cost. Our algorithms in-
clude a mesh building module and a flow auction
module, and work in concert with randomized net-
work coding [2], [21]. The mesh building module
maintains an acyclic overlay mesh of participating
peers, in approximate order of their relative media
play progress. The acyclic property helps reduce
algorithm complexity, while the play progress or-
dering ensures that neighbor peers in the mesh may
help each other in obtaining the media content using
their buffer. The flow auction and code construc-
tion modules together replace traditional multicast
tree algorithms. Encoded media flows are routed
along the mesh through ‘auctions’. Each peer is
guaranteed to receive a set of innovative flows,
from which the original media flows are recovered
for playback. The auction module ensures good-
quality links are utilized in flow routing by mini-
mizing aggregated link cost in the transmission. The
auction solution subsumes tree-based approaches
and may achieve lower overall cost. It also saves
the overhead constructing and maintaining capacity-
disjoint trees. Compared with network flow based
routing solutions [32], [24], the auction approach
has much lower computational complexity, and is
more amenable to practical implementations.

The three major contributions of this paper are
summarized in the following list:

• A new algorithmic perspective on solving low-
cost media flow routing as auctions. We depart
from previous tree based and network flow
based routing solutions, and adopt the auction
method for cost minimization with low over-
head.

• The adaptation of auction algorithms to the
on-demand streaming scenario with overlay
dynamics, and the analysis of its correctness
and optimality. We exploit the specific structure
of the media flow routing problem to improve
the convergence speed of the auction algorithm,
and explain the dependence of its correctness

on properties of the overlay mesh and the
streaming application.

• The design of an accompanying streaming
mesh construction algorithm tailored for scal-
able on-demand media streaming.

The rest of the paper is organized as the follows.
We review related research in Sec II, describe the
streaming system architecture and the mesh building
mechanism in Sec. III, present the flow auction
algorithms for media flow routing in Sec. IV,
and conclude the paper with related discussions in
Sec. V.

II. RELATED WORK

Several recent work developed peer-to-peer
streaming systems through application layer mul-
ticast [12], [16], [19], [29], [36], [31]. Zigzag [31]
builds hierarchical application layer multicast trees
to support live streaming to large numbers of re-
ceivers. The tree building approach used in Zigzag
is similar to that of NICE [5]. CoopNet [29], [28]
builds multiple distribution trees and uses multiple
description coding (one coding per tree) to provide
robustness, both with respect to network paths and
data delivery. CoopNet, although developed primar-
ily to support live streaming, can support on-demand
streaming as well. SplitStream [12] is a high band-
width content distribution system built on top of
the Scribe protocol that like CoopNet uses multiple
application layer trees to support streaming.

The aforementioned systems focus on live
streaming. P2Cast [19] and P2VoD [16] explicitly
consider the problem of on-demand media stream-
ing systems in a peer-to-peer setting. P2Cast is
based on patching [10], [12]. Using a tree-first
approach, P2Cast builds application layer multicast
trees that consists of peer that are close together
in terms of their play progress. This tree is built
by considering the bandwidth among participating
peers. The P2VoD scheme also builds an application
layer multicast tree. It also employs caching at peer
nodes and grouping of peers, such that later arriving
peers obtain the media from only one earlier arrived
peer. Our streaming algorithm design is different
in two aspects. First, we use auction and network
coding, instead of multicast trees, for media flow
routing. Second, we explicitly set cost minimization
as one of the primary goals to achieve.

The auction algorithm was initially designed by
Bertsekas [8] for the assignment problem, which is
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equivalent to weighted bipartite matching in graph
theory [33]. Later it was adapted to solve other net-
work optimization problems, including transporta-
tion [9], shortest path [6], and network flow [7],
[3]. The algorithm resembles real-world auctions,
is highly intuitive and easy to understand. It also
achieves comparable or better time complexity than
other classic algorithms (e.g., the Hungarian algo-
rithm in the case of assignment [30], the network
simplex algorithm in the case of network flow [3]).
In this paper, we transform the min-cost media flow
dissemination problem into an auction, and adapt
the classic auction algorithm to compute the optimal
flow routing scheme in a dynamic overlay network
environment.

In previous work [24], [25], [32], we have studied
the design and implementation of network flow
based data dissemination algorithms in the overlay
environment, with general cyclic topologies and
the presence of relay nodes. The computation and
communication overhead imposed on each peer are
still relatively high, even with efficient network flow
modules applied, such as the push-relabel algorithm
[3] or the ε-relaxation algorithm [7]. The streaming
session considered in this paper is essentially a
broadcast without relay nodes, which allows us to
make a fundamental trade-off between complexity
and optimality by further restricting flow routing in
acyclic meshes. By doing so, the per-node complex-
ity is decreased from O(n3) to O(n log n). A similar
acyclic-topology-only trade-off was also made by
Ho et al. in [20] for randomized network coding.

III. AUCTION BASED ON-DEMAND STREAMING

SYSTEM ARCHITECTURE

A. System Model and Assumptions

Our streaming algorithm design targets on-
demand streaming of a popular media file. The
number of requesting peers is on the order of
thousands, and each peer freely selects which part
of the media it wishes to watch at any time. Let T
denote the time length of the media. Each peer u is
associated with a play progress τ(u) ∈ [0, T ], which
gradually grows in the normal play mode, and jumps
upon a random-seek. We assume the total inbound
and outbound bandwidth capacity at a peer u is
bounded by ci(u) and co(u), respectively. The media
file is separated into h orthogonal flows/streams
before dissemination. We assume the values of ci(u)
and co(u) are in multiples of a unit media flow

rate. Each peer u maintains both a forward buffer
B↑(u) = [τ(u), τ(u) + b↑] and a backward buffer
B↓(u) = [τ(u) − b↓, τ(u)], where b↑ and b↓ are the
lengths of the two buffers respectively. The forward
buffer B↑(u) helps achieve smooth playback at u,
and the backward buffer B↓(u) makes it possible for
u to help downstream peers. A potential mesh link→
uv exists if τ(v) ∈ B↓(u). We assume a third-party
overlay link quality monitoring program reports the
cost of each link

→
uv, in terms of delay, loss rate, or

another cost parameter of choice. Finally, we focus
on feasible streaming scenarios by assuming that
ci(u) ≥ h for each peer u, and that the total out-
bound capacity of a peer group is always sufficient
to meet the total flow demand of the corresponding
peer group during overlay flow routing.

B. Overview of Streaming System Design

Our streaming algorithm design is positioned at
the application layer, to be run in a peer-to-peer
fashion. It consists of a set of algorithm modules
centered around a min-cost flow auction algorithm,
as shown in Fig. 1.

The mesh construction module coordinates a
large, dynamic set of peers into an acyclic overlay
mesh with good connectivity, serving as the topol-
ogy upon which media flows are routed. Topological
order of nodes in the mesh conforms to temporal
order of nodes in play progress. This guarantees that
neighboring peers are connected by a potential me-
dia provision link, even with very mild assumptions
on node buffer length. The mesh module directly
handles node joins/leaves and random-seeks. It also
maintains high end-to-end connectivity with moder-
ate node degrees.

The central module of the streaming algorithm
set is the flow auction algorithm. It takes as input
the mesh topology and link costs, and computes a
feasible media flow routing scheme at optimal cost.
Each peer acts as a ‘buyer’ for its incoming flow
demand, and bids for available outbound flows at its
upstream neighbors. Conversely, it also acts as the
‘seller’ for its outgoing flow capacity, and accepts
bids from its downstream neighbors. The highest
bid wins a flow capacity and leads to an active flow
connection. The auction algorithm maintains only
1-hop local information on each peer. A sequence
of flow allocation and re-allocations in the auction
gradually leads to a better flow routing scheme with
lower global cost. The auction algorithm adapts au-
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Fig. 1. The streaming algorithm modules and their interactions.

tomatically to node joins/leaves and random-seeks,
and strives to progress towards the optimal operation
point, which is a moving target. Besides asynchrony
and distributed operation, the auction algorithm is
also computationally much cheaper than network
flow based routing algorithms [24], [32]. This im-
provement is due, in part, to the fact that the auction
algorithms runs on an acyclic mesh instead of a
general mesh topology.

The flow auction algorithm determines the flow
rates between peers, we then rely on a randomized
network coding module for determining the content
of each flow, where each unit flow is set as a linear
combination of the h source media flows. In the rest
of this section, we briefly describe a mechanism for
construction of an acyclic mesh, and then proceed
to present the flow auction algorithm in Sec. IV.
C. Streaming Mesh Construction

There exist a large body of work studying general
overlay mesh construction (e.g., [34], [5], [14]). The
focus is often on building a mesh with good connec-
tivity and good performance in terms of delay, band-
width, or node stretch. In the case of on-demand
streaming, however, locality of playback progress
overrides such conventional quality metrics, since a
peer u may help a peer v only if the play progress
of v falls within the range of the backward buffer
at u. Therefore, it is natural to organize peers along
the time dimension, and have media flows relayed
from peers with more advanced play progresses to
peers that are behind in play progress.
An acyclic mesh based on play progress

We organize peers participating in the on-demand
streaming session into an acyclic overlay mesh such
that peers with shortest distances in play progress
become neighbors. Specifically, each peer u main-
tains a list of k other peers with shortest playback

distance. These upstream neighbors in the mesh will
serve as potential flow providers in the flow auction
algorithm. Conversely, each peer will also be added
into the neighbor list by k downstream peers with
closet playback distance, as illustrated in Fig. 2.

For every time period Δτ , a node u reports its
IP address ipu and current progress τ(u) to the
media server s, with a probability p inversely pro-
portional to the play progress span of u’s neighbors,
maxv1∈N↑(u),v2∈N↓(u)(τ(v1)−τ(v2)). Upon receiving
such a progress report at time t, the media server
records a corresponding triple in the form of <ip,
τ , t>. A record is discarded after a certain time
threshold. A new node or a random-seeking node
u contacts the media server with a desired play
progress τ0(u). The media server replies with a
closest peer v, based on information available in the
list of progress reports. Then starting at v, u uses
1-dimensional geographical routing (on the axis of
τ ∈ [0, T ]) to locate peers belonging to its neighbor
sets N↑(u) and N↓(u).

Mesh maintenance
Upon joining the mesh, a peer u identifies peers

in its neighbor set as described above, then sends a
short notice message to them. Each upstream (down-
stream) neighbor then replaces the farthest peer in
its downstream (upstream) neighbor list with u. In
case the replacement results in the interruption of
an active flow transmission, it will be automatically
handled by the progressive flow auction algorithm,
as we will describe in Sec. IV.

When a node u leaves its current position of
the mesh due to disconnection or random-seek, we
assume the departure of u is detected by a heartbeat
mechanism or an intent-to-leave message, respec-
tively. The repair of the mesh essentially involves
a one-to-one mapping between peers in N↓(u) and
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Fig. 2. Conceptual illustration of an acyclic mesh based on play progress, with k = 3.

N↑(u), in order of play progress. Each former down-
stream neighbor replaces u with a correspondent
former upstream neighbor of u.
End-to-end connectivity guarantee

Consider a cut of the mesh. The size of the cut is
minimized when it separates the mesh into exactly
two partitions. In this case, the number of links in
the cut connecting two peers with 0, 1, . . ., k − 1
peers in between on the τ axis are 1, 2, . . ., k,
respectively, except at the k peers with earliest play
progress. Therefore, the edge connectivity of the
mesh is k(k − 1)/2, quadratic to node degree 2k.
Only a moderate size of k is required to guarantee
good end-to-end mesh connectivity.

A final remark is that algorithm details in the
mesh module is transparent to flow auction. It is
possible to fine-tune and improve the mesh module
independently, as long as the output is acyclic and
well-connected.

IV. MEDIA FLOW AUCTION

We now present the flow auction algorithms for
min-cost media flow routing within the overlay
mesh. We first review the simple auction algorithm,
then transform the media flow routing into an auc-
tion. We next adapt the simple auction algorithm
to solve it with improved convergence speed, and
finally enhance the algorithm to handle overlay
dynamics and random-seeks.

A. The Simple Auction Algorithm

The original auction algorithm solves the assign-
ment problem, where a set of n objects (O) are to
be assigned to a set of n persons (P). The goal
is to find a one-to-one mapping between persons
and objects such that the total value realized at all
persons

∑
δ(i, o) is maximized over a given person-

object benefit function δ : P ×O → Q+. Here Q+

denotes the set of non-negative rational numbers.

The execution of the auction algorithm resembles
a real-world auction, where the persons bid for
the objects and the highest bids win. Auctions of
all objects happen simultaneously in parallel. Each
object is associated with a price that reflects the
highest bid received so far. A person places a bid
to the “best” object based on the profit an object
provides and its associated price, trying to maximize
the net profit. Each object is temporarily sold to the
current highest bid, which may be overridden by a
subsequent higher bid. The auction terminates when
every object is sold, every person stops bidding, and
every sale becomes final.

More specifically, to place a bid, a person i
computes the net profit each object o provides, as
β(i, o) = δ(i, o) − p(o). Next i identifies the most
and the second most attractive objects o∗ and o′ as
follows:

o∗ = argmaxo∈Oβ(i, o), o′ = argmaxo∈O−o∗β(i, o)

Then i sends a bid b(i, o∗) to o∗:

b(i, o∗) = p(o∗) + β(i, o∗) − β(i, o′)

Two facts are related to the choice of this bid
value. First, i has no incentive to bid any higher
— otherwise it may obtain a better net profit by
competing for the second best object o′. Second,
the auction turns to converge faster with higher bids
and higher object price increases. Therefore it is
common practice to choose the highest bid possible,
although a lower bid between p(o∗) and b(i, o∗)
also works. On the side of an object o, it simply
accepts the highest bid b(i, o), updates its price p(o)
to b(i, o), associates itself with i, and removes its
previously associated person, if any.

The auction algorithm is rather intuitive and easy
to understand. Nonetheless, it is proved to be correct
and efficient [8], [7]. It also allows natural paral-
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lel or distributed implementations, in either syn-
chronous (persons bid in rounds) or asynchronous
mode (each person bids at a time of its own choice).
A final note is that if the best and second best net
profits might be even, a small constant ε can be
added on the bid b(i, o∗) to break the tie. For further
details, including the valid range of ε, we refer the
readers to [7], [9].

B. Media Flow Auction - Static Version

In this section, we present a static version of the
media flow auction algorithm. It is based on the sim-
ple auction algorithm discussed above. We assume
a fixed mesh topology without node joins/leaves or
random-seeks, and compute a min-cost flow routing
scheme. Recall that the overlay mesh construc-
tion sub-layer coordinates the peers into a directed
acyclic topology G = (V, A), with s ∈ V being the
media server. The desired flow dissemination rate
equals h, the number of original media flows. Let
w : A → Q+ be the link cost function. We wish
to compute a feasible overlay flow routing scheme,
respecting node capacity bounds, and minimizing
the aggregated link cost. This problem can be cast
into an integer linear program:

Minimize
∑

→
uv

w(
→
uv)f(

→
uv)

Subject to:⎧⎪⎨
⎪⎩

∑
u∈N↑(v) f(

→
uv) = h ∀v �= s (4.1)∑

u∈N↑(v) f(
→
uv) ≤ ci(v) ∀v �= s (4.2)∑

v∈N↓(u) f(
→
uv) ≤ co(u) ∀u (4.3)

f(
→
uv) ∈ {0, 1, 2, . . .} ∀ →

uv

Recall that every peer is assumed to have enough
bandwidth to receive media flows at the playback
rate h, therefore (4.2) is redundant given (4.1).
Furthermore, it is critical to note that the coefficient
matrix formed by constraints (4.1) and (4.3) is
totally unimodular [30], [33], i.e., every maximal
square sub-matrix of it has determinant of 1 or −1.
By linear optimization theory [30], this implies if we
relax this integer program into a (continuous) linear
program, all basic feasible solutions are integral and
the same optimal solution will be obtained. This
reduces the complexity of the problem from solving
an IP (NP-hard in general) to solving an LP.

Minimize
∑

→
uv

w(
→
uv)f(

→
uv)

Subject to:{ ∑
u∈N↑(v) f(

→
uv) = h ∀v �= s (4.4)∑

v∈N↓(u) f(
→
uv) ≤ co(u) ∀u (4.5)

f(
→
uv) ≥ 0 ∀ →

uv

The corresponding dual linear program is:
Maximize

∑
v �=s hr(v) − ∑

u co(u)p(u)
Subject to:

r(v) − p(u) ≤ w(
→
uv) ∀ →

uv∈ A (4.6)

p(u) ≥ 0, r(u) unconstrained ∀u

Now the underlying connection between our me-
dia flow routing problem and the auction method is
rather evident: primal variables f(

→
uv) can be viewed

as flows ‘sold’ by u to v, and dual variables p(u) can
be viewed as node prices. It is natural to perform
primal-dual optimization through flow auction. We
now describe the detailed transformation of min-
cost media flow routing into auction, adapt the
simple auction algorithm to solve it, and show the
correctness of the algorithm within the primal-dual
framework.

There are two steps involved in the problem trans-
formation. First, we need to relate cost minimization
with value maximization. This can be achieved by
replacing the link cost w(

→
uv) with a gain W −

w(
→
uv), for some large constant W . The constant

W can be dropped without affecting the solution.
Second, we need to create a ‘person’ for each
desired incoming flow at a peer, and an ‘object’ for
each unit outgoing capacity of a peer, respectively.
Fig. 3 illustrates how this transformation may be
performed using a simple mesh topology.
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Fig. 3. Transformation of the min-cost media flow dissemination
problem into an auction problem. Left: instance of flow auction.
Numbers beside nodes denote outgoing capacities. Right: instance of
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Bold edges between two virtual nodes represent full connection
between nodes therein.

After the transformation, we can apply the simple
auction algorithm to compute the min-cost flows.
However, our flow routing problem has a special
structure that can be exploited to improve the con-
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vergence speed of the auction. If i and j are two
persons created for flow demand at the same peer
u, then for any object o, i is connected to o iff j
is connected to o, and in that case δ(i, o) = δ(j, o).
This is similar to the auction algorithm design for
the transportation problem in [9], where similar
persons are created for stock at each source and
similar objects are created for capacity at each
sink. We apply the idea of coordinating bids from
similar persons and to similar objects presented in
the Auction-SOP algorithm in [9], to avoid unnec-
essary intra-node competition. Each node will bid
on behalf of all its flow demand, and accept bids on
behalf of all its flow supply, in a coordinated way as
shown in table I. The algorithm maintains a single
price y(

→
uv) for each current link flow f(

→
uv). A peer

v that has not established all h incoming flows bids
for flow capacities at an upstream neighbor u that is
either unassigned or assigned to another competing
peer k. The auction terminates when each peer
successfully receives h incoming flows. For the ease
of presentation, unassigned flow capacity on u is
viewed as a flow from u to itself.

We now show the correctness of the auction
solution in the static case.

Theorem 4.1 The static media flow auction algo-
rithm converges to an optimal flow routing scheme
with minimum aggregated link cost.
Proof: The proof consists of two parts: (1) the
primal and dual LPs correctly model our static min-
cost flow routing problem, and (2) the static flow
auction algorithm correctly solves these LPs.

(1): We need to show that if each peer u receives
h incoming flows, then it is possible to arrange
the content of each flow in the routing scheme,
such that every peer u receives h innovative flows,
without duplication or redundancy. This can be done
by a structural induction along the acyclic flow
routing topology. If every upstream neighbor of u
successfully receives h innovative flows, then it is
obvious that u can arrange its incoming flows to be
all innovative, too. Note that this is not true if the
topology may contain cycles or if pure relay nodes
exist.

(2): As in most correctness proofs of auction
algorithms, we show that the auction terminates;
and upon termination, there exists a feasible dual
price vector p that jointly satisfy complementary
slackness conditions with f . By results in linear

programming, a pair of feasible primal and dual
solutions are both optimal if and only if they satisfy
the complementary slackness conditions [30], there-
fore the static flow auction algorithm is correct.

The fact that the auction eventually terminates
can be shown by way of contradiction. Suppose
it never terminates. Note that the set of assigned
flows monotonically grows — an allocated flow
capacity remains allocated throughout the auction.
The total size of this set is upper-bounded by total
flow demand in the network. By our assumption that
the total capacity supply is sufficient, there will be
flow capacities that are never assigned. Therefore,
we have a peer bidding for an assigned flow whose
price is growing unbounded, rather than bidding for
an unassigned flow with price zero. This implies
the link cost associated with the unassigned flow is
infinite, contradicting the fact that each link cost is
finite.

Note that vector y can not be directly interpreted
as dual prices. It does not even fit into the dual LP,
since it has an entry for each link instead of for
each node. We instead construct a dual price vector
p(u) = minv∈N↓(u) y(

→
uv) from y. The complemen-

tary slackness conditions for the static media flow
auction LPs are:{

p(u) > 0 → ∑
v∈N↓(u) f(

→
uv) = co(u) ∀u (4.7)

f(
→
uv) > 0 → r(v) − p(u) = w(

→
uv) ∀ →

uv (4.8)

The condition in (4.7) states that a node u with
non-zero price p(u) must have all its outgoing
capacities assigned. This is obviously true in the
auction. Further more, by observing that for a fixed
price vector p, r(v) = minu∈N↑(v)(p(u) + w(

→
uv)) is

required to maximize
∑

v �=s hr(v) − ∑
u co(u)p(u),

(4.8) can be transformed into the proposition that
every non-zero flow f(

→
uv) is locally lowest-cost

possible. That agrees with the greedy nature peers
bid for available flows in the auction. �	

With careful implementation, the auction algo-
rithm may achieve time complexity O(nm log n)
[9], where n is the number of ‘persons’ and m is
the number of links in the input bipartite. In our
case, each node has a fixed degree 2k, therefore
the complexity is equivalent to O(n2 log n), with
per-node total complexity being O(n log n). On the
other hand, for network flow based optimization
[32], [25], the per-node complexity is equivalent to
a max-flow computation, which is typically on the
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TABLE I

THE STATIC MEDIA FLOW AUCTION ALGORITHM

Initialization
f(

→
uv) = 0, y(

→
uv) = 0, ∀ →

uv∈ A; f(
→
uu) = co(u), y(

→
uu) = 0, ∀u ∈ V

Bidding at peer v

If
∑

u∈N↑(v) f(
→
uv) < h, then :

∀f(
→
ut) > 0, u ∈ N↑(v): α(v,

→
ut) ← y(

→
ut) + w(

→
uv)

select u1t1, . . . , ultl, ul+1tl+1 in decreasing order of α(v,
→
ut), s.t.

∑
1≤i≤l f(

→
uiti) ≥ h

∀b = 1..l : b(v,
→

uiti) ← y(
→

uiti) − α(v,
→

uiti) + α(
→

uitl+1)
for i = 1..l − 1:

if ti �= v, send bid b(v,
→

uiti) to ui for flow increment f(
→

uiti)
else send price update b(v,

→
uiv) to ui

if tl �= v, send bid b(v,
→

ultl) to ul for flow increment h − ∑
1≤i≤l−1 f(

→
uiti)

else send price update b(v,
→
ulv) to ul

Flow Assignment at peer u

Upon receiving a bid b(v,
→
uk) for increment Δf :

if b(v,
→
uk) ≤ y(

→
uk), ignore; else:

f(
→
uk) ← f(

→
uk) − Δf ; f(

→
uv) ← f(

→
uv) + Δf ; y(

→
uv) ← b(v,

→
uk)

Upon receiving a price update b(v,
→
uv):

y(
→
uv) ← b(v,

→
uv)

order of O(n3) [3].

C. Media Flow Auction - Dynamic Version

While the static flow auction algorithm takes a
fixed mesh topology as input, real streaming ses-
sions often see highly dynamic node participation,
with frequent joins, leaves, and random-seeks. We
now further adapt the auction algorithm to handle
such system dynamics. Each peer still bids for
incoming flows in a similar way as in the static case.
The algorithm progressively evolves towards an
optimal solution. In cases of a high level of system
dynamics, optimality rapidly varies over time, and
the system may not be operating at the optimal
state at any particular time point. In that sense, we
have a constantly evolving auction responding to
input interruptions, and pursuing a moving optimal
operation point. However, if such dynamics slow
down or stop, the auction algorithm will soon adjust
the flow routing scheme to optimal.

Besides bidding and assignment steps specified in
Table I, the dynamic flow auction algorithm further
incorporates node join/leave, as well as two new
mechanisms: active rebidding and price drop, as
shown in Table II. A random-seek is equivalent
to a leave followed by a join, assuming the new

play progress is in general not close enough to be
handled by the media buffer.

Basically, node joins and leaves informed by
the mesh sub-layer are handled automatically, only
variable initialization or reset is involved. However,
a current set of optimal flows for a peer u may
become sub-optimal after a competing peer leaves.
Therefore, for every time window Δt (adjustable),
u checks its local flow optimality. This involves
computing the best possible flow set using essen-
tially the same steps in the bidding procedure, and
compare it to the current set. If a better set is
possible, u releases a subset of high cost flows
and resumes bidding. Correspondingly, price of the
released flows is cleared to zero.

A nice property of the dynamic auction algo-
rithm is that, no matter how long the stream-
ing session (and hence the auction) lasts, flow
prices remain bounded. More specifically, any price
y(

→
uv) is upper-bounded by link cost difference

maxu∈N↑(v) w(
→
uv). The dynamic auction also ter-

minates if the system state stops varying, since
price drops and active re-bidding’s do not violate
complementary slackness.
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TABLE II

DYNAMIC MEDIA FLOW AUCTION: EXTRA MECHANISMS

Upon join of u:
u, and each v ∈ N↑(u) ∪ N↓(u): clear flows f and prices y to and from u to 0
(Auction continues with participation of u)

Upon leave of u:
Each v ∈ N↑(u): f(

→
vv) ← f(

→
vv) + f(

→
vu)

Each v ∈ N↑(u) ∪ N↓(u): remove entries in f and y to and from u
(Auction continues)

Active re-bidding:
A peer v with

∑
u∈N↑(v) f(

→
uv) = h:

after each time window Δt, compute new potential total incoming flow cost
if new cost lower than current

send flow release message to u∗ = argmaxuα(v, u)
f(

→
uv) ← 0 (resume bidding)

Price drop:
Upon receiving a flow release message from v, a peer u:

f(
→
uu) ← f(

→
uu) + f(

→
uv); f(

→
uv) ← 0, y(

→
uv) ← 0

D. Determining Flow Content

The flow auction module essentially computes a
flow routing scheme, which specifies a flow rate
(possibly zero) between each pair of neighbor-
ing peers. One may either decompose pair-wise
capacity-disjoint trees from the flows, or apply ran-
domized network coding on the flows, to determine
the content of each flow. In the former case, each
tree is used to transmit an uncoded media flow; in
the later case, each link flow is determined as a
linear combination of the h original media flows.

V. DISCUSSIONS AND CONCLUDING REMARKS

In this paper, we introduced a set of algorithms
that jointly realize low-cost on-demand streaming
in the application layer. The central module is a
progressive flow auction algorithm that performs
min-cost overlay flow routing in a distributed, light-
weight fashion. This is to be contrasted with pre-
vious approaches based on network flows (higher
per-node complexity) or streaming trees (lacks op-
timality guarantee on cost). We also presented an
accompanying mesh building algorithm based on
play progress, and discussed the application of net-
work coding to achieve better robustness and lower
transmission delay.

During the start-up phase of the streaming ses-
sion, peer density on the playback axis τ may not
be sufficiently high to guarantee mesh connectivity.

To address this issue, we can introduce a link from
the server s to every peer u into the mesh. However,
in order to reduce the capacity burden on s, flow
prices y(

→
su) from s should be set to a high value,

so that peers are automatically encouraged to buy
flows from each other and only consider the server
as a last resort.

Throughout the design of our algorithms, we fo-
cused on only one media play functionality support
other than normal play — random-seek. While fast-
forward and rewind support are found on VCR play-
ers, their existence is highly related to the sequential
access nature of video tapes. They are functionally
subsumed by random-seek, and may become less
relied on once random-seek is successfully imple-
mented. Another useful control function is pause.
In our system, a pause/resume can be treated as a
leave followed by a re-join, with forward/backward
buffers carried over.

As future directions, we plan to verify the perfor-
mance of the proposed auction algorithms through
empirical studies. In particular, we are interested
in examining the computational and communication
overhead each peer experiences in dynamic network
settings. We also plan to incorporate a buffer restor-
ing mechanism into the current algorithm design,
such that a peer is allowed to bid for more than h
flows, in order to build up or maintain its media
buffer length. This is important in practical stream-
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ing applications, since flow switching during the
auction may result in temporary low receiving rate,
and therefore decreased buffer length.

In conclusion, we believe that the auction ap-
proach presents new opportunities in quality of ser-
vice provisioning for P2P media flow dissemination,
due to its effectiveness in cost optimization. This
work is intended to exhibit such new directions
to the networking community with a preliminary
system design, while many further design trade-offs
and practical concerns are still to be fully explored
and examined.
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