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Abstract

In this work, we study a wide range of constrained clustering problems in offline and stream-

ing settings. We study these problems corresponding to three clustering objectives: k-median,

k-means, and k-supplier. The (unconstrained) k-median problem is defined as follows. We are

given a set of clients C in a metric space X , with distance function d(., .). We are also given

a set of feasible facility locations L ⊆ X . The goal is to open a set F ⊆ L of k facilities that

minimizes the objective function: cost(F,C) ≡
∑

j∈C d(F, j), where d(F, j) is the distance of

client j to the closest facility in F . The k-means problem is defined in similar manner by replac-

ing the distances with squared distances in the cost function, i.e., cost(F,C) ≡
∑

j∈C d(F, j)2.

On the other hand, the k-supplier objective is defined as: cost(F,C) ≡ maxj∈C {d(F, j)}.

Furthermore, for L = C, the k-supplier problem is known as the k-center problem.

In many applications, there are additional constraints imposed on the clusters. For example, to

balance the load among the facilities in resource allocation problems, a capacity u is imposed

on every cluster. That is, no more than u clients can be assigned to any facility/cluster. This

problem is known as the capacitated clustering problem. Likewise, various other applications

have different constraints, which give rise to different constrained versions of the problem. In

the past, the constrained versions of clustering problems were studied separately as independent

problems. Recently, Ding and Xu [72] gave a unified framework for these problems that they

called the constrained clustering framework. They proposed this framework in the context
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of the k-median and k-means objectives in the continuous Euclidean space where L = Rp

(p-dimensional Euclidean space) and C is a finite subset of Rp
. In this work, we extend this

framework to the k-supplier objective and general metric spaces. The unified framework allows

us to obtain results simultaneously for the following constrained versions of the problem: r-

gather, r-capacity, balanced, chromatic, fault-tolerant, strongly private, ℓ-diversity, and fair

clustering problems. We also study the outlier versions of these problems. In the outlier version,

a clustering is obtained over at least |C| −m clients instead of the entire client set.

For the constrained k-supplier and k-center problems, we obtain the following results:

(1) We give 3 and 2 approximation algorithms for the constrained k-supplier and k-center

problems, respectively, with FPT (fixed-parameter tractable) running time kO(k) · nO(1),

where n = |C ∪ L|. Moreover, we note that the obtained approximation guarantees are

tight. That is, for any constant ε > 0, no algorithm can achieve (3−ε) and (2−ε) approx-

imation guarantees for the constrained k-supplier and k-center problems, respectively, in

FPT time parameterized by k, assuming FPT ̸= W[2].

(2) For the outlier versions of the constrained k-supplier and k-center problems, we give

3 and 2 approximation guarantees with FPT running time (k + m)O(k) · nO(1), where

n = |C ∪ L| and m is the number of outliers. Moreover, we note that the obtained

approximation guarantees are tight. That is, for any constant ε > 0, no algorithm can

achieve (3 − ε) and (2 − ε) approximation guarantees for the constrained k-supplier

and k-center problems, respectively, in FPT time parameterized by k and m, assuming

FPT ̸= W[2].

For the constrained k-median and k-means problems, we obtain the following results:

(3) We give (3 + ε) and (9 + ε) approximation algorithms for the constrained k-median

and k-means problems, respectively, with FPT running time (k/ε)O(k) · nO(1), where



n = |C ∪L|. For the outlier version of the constrained k-median and k-means problems,

we give (3 + ε) and (9 + ε) approximation algorithms, respectively, with FPT running

time
(
(k +m)/ε

)O(k) · nO(1), where n = |C ∪ L| and m is the number of outliers.

(4) We also study the problems when C ⊆ L, i.e., a facility can be opened at a client location

as well. For this special case, we design (2 + ε) and (4 + ε)-approximation algorithms

for the constrained k-median and k-means problems, respectively, with FPT running

time (k/ε)O(k) · nO(1), where n = |L|. For the outlier version, we obtain the same

approximation guarantees with FPT running time
(
(k+m)/ε

)O(k) ·nO(1), where n = |L|

and m is the number of outliers. Note that the case C ⊆ L subsumes the case C = L.

Therefore, this result also holds for the case when C = L.

(5) We show that the analysis of our algorithm is tight. That is, there are instances for which

our algorithm does not provide better than (3 − δ) and (9 − δ) approximation guarantee

corresponding to k-median and k-means objectives, respectively, for any arbitrarily small

constant δ > 0. Similarly, the analysis of our algorithm is tight for the special case

C ⊆ L.

(6) Our algorithms are based on a simple sampling-based approach. This approach allows us

to convert these algorithms to constant-pass log-space streaming algorithms.

(7) We also study the constrained k-median/means problem in continuous Euclidean space

where L = Rp
and C is a finite subset of Rp

. We design (1+ε)-approximation algorithm

for the outlier version of these problems with FPT running time

O
(
np · ((k +m)/ε)O(k/εO(1))

)
, where n = |C| and m is the number of outliers. We also

convert these algorithms to constant-pass log-space streaming algorithms.

We also study the socially fair k-median/k-means problem, which is a generalization of the

k-supplier and k-median/means problems. The problem is defined as follows. We are given

a set of clients C in a metric space X with a distance function d(., .). There are ℓ groups:



C1, . . . , Cℓ ⊆ C. We are also given a set L of feasible centers in X . The goal in the socially

fair k-median problem is to find a set F ⊆ L of k centers that minimizes the maximum average

cost over all the groups. That is, find F that minimizes the objective function: fair-cost(F,C) ≡

maxj

{∑
x∈Cj

d(F, x)/|Cj|
}

, where d(F, x) is the distance of x to the closest center in F .

The socially fair k-means problem is defined similarly by using squared distances, i.e., d2(., .)

instead of d(., .). We obtain the following results for this problem:

(8) We design (3+ε) and (9+ε) approximation algorithms for the socially fair k-median and

k-means problems, respectively, in FPT time f(k, ε) · nO(1), where f(k, ε) = (k/ε)O(k)

and n = |C ∪ L|.

(9) Furthermore, these approximation guarantees are tight; that is, for any constant ε > 0, no

algorithm can achieve (3− ε) and (9− ε) approximation guarantees for the socially fair

k-median and k-means problems in FPT time parametrized by k, assuming FPT ̸= W[2].

Lastly, we give hardness of approximation result for the k-median problem in the continuous

Euclidean space where L = Rp
and C is a finite subset of Rp

. This solves an open problem

posed explicitly in the work of Awasthi et al. [19]. More precisely, we obtain the following

result:

(10) There exists a constant ε > 0 such that the Euclidean k-median problem in O(log k)

dimensional space cannot be approximated to a factor better than (1 + ε), assuming the

Unique Games Conjecture.

Furthermore, we study the hardness of approximation for the Euclidean k-means/k-median

problems in the bi-criteria setting. In the bi-criteria setting, algorithms are allowed to output

βk centers (for some constant β > 1), and the approximation ratio is computed with respect to

the optimal k-means/k-median cost. We show the following results:



(11) For any constant 1 < β < 1.015, there exists a constant ε > 0 such that there is no (1 +

ε) bi-criteria approximation algorithm for the Euclidean k-median problem in O(log k)

dimensional space assuming the Unique Games Conjecture.

(12) For any constant 1 < β < 1.28, there exists a constant ε > 0 such that there is no (1 +

ε) bi-criteria approximation algorithm for the Euclidean k-means problem in O(log k)

dimensional space assuming the Unique Games Conjecture.



सार

इस काम में, हम ऑफ़लाइन और स्ट्रीमिगं समायोजन में बाध्य क्लस्टरिगं समस्याओ ंकी एक विस्ततृ श्रृखंला का

अध्ययन करत ेहैं। हम तीन क्लस्टरिगं उद्देश्यों के अनरुूप इन समस्याओ ंका अध्ययन करत ेहैं: k-माध्यिका,

k-माध्य, और k-आपरू्तिकर्ता। (अप्रतिबधंित) k-माध्यिका समस्या को निम्नानसुार परिभाषित किया गया है। हमें

मेट्रिक जगह X में ग्राहक C का एक सेट दिया गया है, जिसमें डिस्टेंस फंक्शन d(., .) है। हमें सवुिधा स्थानों का

एक सेट L ⊆ X भी दिया जाता है। हमें लक्ष्य के सवुिधाओ ंका एक सेट F⊆ L खोलना है जो उद्देश्य लागत को

कम करता है: लागत (F, C) = ∑j∈C d(F, j), जहां d(F, j) दरूी है ग्राहक j कि F में निकटतम सवुिधा के लिए। k-

माध्य समस्या को कुछ इसी तरह परिभाषित किया गया है- लागत फलन में दरूियों की जगह वर्ग दरूियों का प्रयोग

किया जाता है, अर्थात ्d(F,j) की जगह d(F,j)^2। दसूरी ओर, k-आपरू्तिकर्ता उद्देश्य निम्नानसुार परिभाषित

परिभाषित किया गया है: लागत(F, C) = max_j∈C {d(F, j)}। इसके अलावा, L = C के लिए, k-आपरू्तिकर्ता

समस्या को k-कें द्र समस्या के रूप में जाना जाता है।

कई अनपु्रयोगों में, क्लस्टर पर अतिरिक्त प्रतिबधं लगाए गए हैं। उदाहरण के लिए, समंाध्य आवटंन समस्याओ ंमें

सवुिधाओ ंके बीच भार को सतंलुित करने के लिये, एक क्षमता हर क्लस्टर पर थोपा गया है। इस समस्या को

कैपेसिटेटेड क्लस्टरिगं समस्या के रूप में जाना जाता है। इसी तरह, विभिन्न अन्य अनपु्रयोग, अलग-अलग

बाधाएँ लगात ेहैं, जो समस्या के विभिन्न बाध्य ससं्करणों को जन्म देती हैं। अतीत में, क्लस्टरिगं समस्याओ ंके

बाध्य ससं्करणों का स्वततं्र रूप से अलग से अध्ययन किया गया था। हाल ही में, डिगं और ज ू[68] ने इन

समस्याओ ंके लिए एक एकीकृत ढांचा दिया जोकि बाध्य क्लस्टरिगं ढांचा कहा जाता है। उन्होंने इस ढांचे को

यकू्लिडियन अतंरिक्ष में k-माध्यिका और k- माध्य उद्देश्यों में प्रस्तावित किया जहां L = R^p (p-डिमेंशनल

यकू्लिडियन स्पेस) और C एक परिमित उपसमचु्चय है R^p का। इस काम में, हम इसका विस्तार करत ेहैं

k-आपरू्तिकर्ता उद्देश्य और सामान्य मीट्रिक स्थान के लिए। एकीकृत ढांचा समस्या के निम्नलिखित बाध्य

ससं्करणों के लिए एक साथ परिणाम प्राप्त करने की अनमुति देता है: r-इकट्ठा, r-क्षमता, सतंलुित, रंगीन,

दोष-सहिष्ण,ु दृढ़ता से निजी, ℓ-विविधता, और निष्पक्ष क्लस्टरिगं समस्याएं। हम इन समस्याओ ंके बाहरी



ससं्करणों का भी अध्ययन करत ेहैं। बाहरी ससं्करण में, एक क्लस्टरिगं में कम से कम |C| - m ग्राहकों की प्राप्त

की जाती है बजाय सपंरू्ण ग्राहक सेट के। बाध्य k-आपरू्तिकर्ता और k- कें द्र समस्याओ ंके लिए, हम निम्नलिखित

परिणाम प्राप्त करत ेहैं:

(1) हम बाध्य k-आपरू्तिकर्ता और k- कें द्र समस्याओ ं के लिए 3 और 2 सन्निकटन एल्गोरिदम देत ेहैं तथा FPT

(फिक्स्ड-परैामीटर टै्रक्टेबल) चलने के समय O(f(k))·n^O(1) के साथ, जहां n = |C ∪L|। इसके अलावा, ध्यान दें

कि प्राप्त सन्निकटन गारंटी तगं हैं। अर्थात,् किसी भी स्थिरांक ε > 0 के लिए, कोई भी एल्गोरिथ्म (3−ε) और

(2−ε) अनकुरण गारंटी प्राप्त नहीं कर सकता है- बाध्य k-आपरू्तिकर्ता और k- कें द्र समस्याओ ंके लिए FPT समय

में, FPT ≠ W[2] मानकर।

(2) बाध्य k-आपरू्तिकर्ता और k-कें द्र समस्याओ ंके बाहरी ससं्करणों के लिए, हम 3 और 2 सन्निकटन गारंटी देते

हैं, FPT चलने के समय (k + m)^O(k) · n^O(1) के साथ, जहां n = |C ∪L| और m बाहरी ग्राहकों (आउटलेर्स)

की सखं्या है। इसके अलावा, ध्यान दें कि प्राप्त सन्निकटन गारंटी तगं हैं। अर्थात,् किसी भी स्थिरांक ε> 0 के

लिए, कोई एल्गोरिदम (3 - ε) और (2 - ε) सन्निकटन गारंटी प्राप्त नहीं कर सकता है सीमित k-आपरू्तिकर्ता और

k- कें द्र समस्याओ ंके लिए, FPT समय में FPT ≠ W[2] मानकर।

बाध्य k-माध्यिका और k-माध्य समस्याओ ंके लिए, हम निम्नलिखित परिणाम प्राप्त करत ेहैं:

(3) हम बाध्य k-माध्यिका और k-माध्य समस्याएं के लिए (3 + ε) और (9 +ε ) सन्निकटन एल्गोरिदम देत ेहैं,

(k/ε)^O(k)·n^O(1) FPT चलने के समय के साथ, जहां n = |C ∪L|। बाध्य k-माध्यिका और k-माध्य

समस्याओ ंके बाहरी ससं्करण के लिए, हम (3 + ε) और (9 + ε) सन्निकटन एल्गोरिदम देत ेहैं, ((k + m)/ε)O(k)

· n^O(1) FPT चलने के समय के साथ, जहां n = |C ∪ L| और m बाहरी ग्राहकों (आउटलेर्स) की सखं्या है।

(4) हम उन समस्याओ ंका भी अध्ययन करत ेहैं जब C ⊆ L, यानी, ग्राहक स्थान पर एक सवुिधा भी खोली जा

सकती है। इस विशषे मामले के लिए, हम (2 + ε) और (4 + ε) - सन्निकटन एल्गोरिदम देत ेहैं, बाध्य



k-माध्यिका और k-माध्य समस्याओ ंके लिए, (k/ε)^O(k) · n^O(1) FPT चलने के समय के साथ, जहां n = |L|.

बाहरी ससं्करण के लिए, हम वही सन्निकटन गारंटी प्राप्त करत ेहैं, FPT चलने के समय के साथ ((k +

m)/ε)^O(k) · n^O(1), जहां n = |L| और m बाहरी ग्राहकों (आउटलेर्स) की सखं्या है। ध्यान दें कि स्थिति C ⊆

L, स्थिति C = L को समाहित करती है। इसलिए, यह परिणाम उस स्थिति के लिए भी मान्य है जब C = L.

(5) हम दिखात ेहैं कि हमारे एल्गोरिथ्म का विश्लेषण कड़ा है। अर्थात,् ऐसे उदाहरण हैं जिनके लिए हमारा

एल्गोरिथ्म k-माध्यिका और k-माध्य उद्देश्यों के अनरुूप (3 - ε) और (9 - ε) सन्निकटन गारंटी से बेहतर प्रदान

नहीं करता है किसी भी मनमाने ढंग से छोटे ε > 0 के लिए. इसी तरह, विशषे मामले के लिए हमारे एल्गोरिथ्म का

विश्लेषण तगं है।

(6) हमारे एल्गोरिदम एक साधारण नमनूा-आधारित दृष्टिकोण पर आधारित हैं। यह दृष्टिकोण इन एल्गोरिदम

को निरंतर-पास लॉग-स्पेस स्ट्रीमिगं एल्गोरिदम में बदलने के लिए हमें अनमुति देता है।

(7) हम निरंतर यकू्लिडियन अतंरिक्ष में बाध्य k-माध्यिका/माध्य समस्या का भी अध्ययन करत ेहैं जहां L = R^p

और C एक परिमित उपसमचु्चय है R^p का। हम इन समस्याओ ंके बाहरी ससं्करण के लिए (1 + ε) -

सन्निकटन एल्गोरिथ्म O(np· ((k + m)/ε)^O(k/ε^O(1))) FPT चलने के समय के साथ रचना करत ेहैं, जहां n

= |C| और m बाहरी ग्राहकों (आउटलेर्स) की सखं्या है। हम इन एल्गोरिदम को निरंतर-पास लॉग-स्पेस स्ट्रीमिगं

एल्गोरिदम में भी परिवर्तित करत ेहैं।

हम सामाजिक रूप से निष्पक्ष k-माध्यिका/k-माध्य समस्या का भी अध्ययन करत ेहैं जिसे निम्नानसुार

परिभाषित किया गया है। हमें मेट्रिक स्पेस X में ग्राहक C का एक सेट, डिस्टेंस फंक्शन d(., .) के साथ दिया गया

है। समहू हैं: C1, . . . , Cℓ . हमें X में व्यवहार्य कें द्रों का एक सेट L भी दिया गया है। सामाजिक रूप से लक्ष्य

निष्पक्ष k-माध्यिका समस्या के कें द्रों का एक सेट F ⊆ L ढंूढना है जो अधिकतम समहूों पर औसत लागत को कम

करता है। यही है, F खोजें जो उद्देश्य लागत को कम करता है: लागत (F, C) = max{ x∈C_j d(F,x)/|C_j |} ,

जहां d(F, x), F में निकटतम कें द्र से x की दरूी है। सामाजिक रूप से निष्पक्ष k- माध्य समस्या को समान रूप से



वर्ग दरूी का उपयोग करके परिभाषित किया जाता है, अर्थात, d(।.।) के बजाय d(|.|)^2। हम इस समस्या के लिए

निम्नलिखित परिणाम प्राप्त करत ेहैं:

(8) हम सामाजिक रूप से निष्पक्ष k-माध्यिका और k-माध्य के लिए (3+ε) और (9+ε) सन्निकटन एल्गोरिदम

डिज़ाइन करत ेहैं, FPT समय में f (k,ε).n^O(1), जहाँ f(k,ε) = (k/ε)^O(k) और n = |C ∪ L|।

(9) इसके अलावा, ये सन्निकटन गारंटी तगं हैं; अर्थात,् किसी अचर ε > 0 के लिए, एल्गोरिदम सामाजिक रूप से

निष्पक्ष k-माध्यिका और k-माध्य के लिए (3 -ε ) और (9 - ε) सन्निकटन गारंटी प्राप्त नहीं कर सकता है, FPT=

W[2] मानत ेहुए।

आखिर में हम k-माध्यिका समस्या के लिए सन्निकटन परिणाम की कठोरता देत ेहैं, यकू्लिडियन अतंरिक्ष में जहां

L= R^p और C ⊆ R^p। यह एक खलुी समस्या का समाधान करता है जो अवस्थी आदि [18]  के कार्यों में स्पष्ट

रूप से प्रस्ततु किया गया है। हम निम्नलिखित प्राप्त करत ेहैं:

(10) एक स्थिर ε> 0 मौजदू है, जसेै कि O(log k) यकू्लिडियन k-माध्यिका समस्या को (1 + ε) से बेहतर कारक

के रूप में अनमुानित नहीं किया जा सकता है, अद्वितीय खेल अनमुान (UGC) मानत ेहुए।

इसके अलावा, हम यकू्लिडियन k-माध्य/k-माध्यिका के लिए सन्निकटन की कठोरता का अध्ययन करत ेहैं,

द्वि-मानदंड सेटिगं में। द्वि-मानदंड सेटिगं में, एल्गोरिदम को βk कें द्र (कुछ स्थिर β> 1 के लिए) आउटपटु करने

की अनमुति है और सन्निकटन अनपुात की गणना इष्टतम k-माध्य/k-माध्यिका लागत के सबंधं में की जाती है।

हम निम्नलिखित परिणाम दिखात ेहैं:



(11) किसी भी स्थिरांक 1 < β <1.015 के लिए, एक अचर ε > 0 मौजदू है जिस्से कि कोई (1+ε) द्वि-मानदंड

सन्निकटन एल्गोरिथम नहीं मौजदू हो सकता है, O(log k) यकू्लिडियन k-माध्यिका समस्या के लिए, अद्वितीय

खेल अनमुान (UGC) मानत ेहुए।

(12) किसी भी अचर 1 < β <1.28 के लिए, एक अचर ε > 0 मौजदू है जिस्से कि कोई (1+ε) द्वि-मानदंड

सन्निकटन एल्गोरिथम नहीं मौजदू हो सकता है, O(log k) यकू्लिडियन k-माध्यिका समस्या के लिए, अद्वितीय

खेल अनमुान (UGC) मानत ेहुए।
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Chapter 1

Introduction

Clustering is one of the most important tools for data analysis. The goal of clustering is to par-

tition data objects into groups, called clusters, such that similar objects are in the same cluster

and dissimilar ones are in different clusters. Clustering has many mathematical formulations

and a wide range of known applications (see [138] and [96] for a brief survey). Defining the

clustering problem formally requires us to quantify the notion of similarity/dissimilarity, and

there are various ways of doing this. The most prominent mathematical formulations are k-

supplier, k-median, and k-means formulations. Formally, the k-supplier problem is defined as

follows:

Definition 1 (k-Supplier Problem). Let (X , d) be a metric space. Let k be any positive integer,

and z be any positive real number. Given a set L ⊆ X of feasible facility locations, and a set

C ⊆ X of clients, find a set F ⊆ L of k facilities that minimises the cost: supplier-cost(F,C) ≡

maxx∈C

{
minf∈F

{
d(x, f)z

}}
.

When L = C, the k-supplier problem is known as the k-center problem. The k-means and

k-median problems are similar to each other. We combine the discussion on these problems by

defining the k-service problem that encapsulates both these problems.

1



2 Introduction

Definition 2 (k-Service Problem). Let (X , d) be a metric space. Let k be any positive integer,

and z be any positive real number. Given a set L ⊆ X of feasible facility locations, and a set

C ⊆ X of clients, find a set F ⊆ L of k facilities that minimises the cost: service-cost(F,C) ≡∑
x∈C

{
minf∈F

{
d(x, f)z

}}
.

The k-service problem for z = 1 is known as the k-median problem, and for z = 2 the problem

is known as the k-means problem.

The above definitions are motivated by the facility location problem [126]. The facility loca-

tion problem differs from the k-service problem in two ways. Firstly, in the facility location

problem, it is allowed to open any number of facilities. Secondly, the optimization function

has an additional facility establishment cost for every open facility. Thus the k-service problem

is equivalent to the facility location problem for a fixed number of facilities and 0 facility es-

tablishment cost. The k-supplier and k-service problems have natural applications in deciding

appropriate locations for opening facilities such as hospitals, schools, and post offices in a geo-

graphical area [65, 7]. It ensures that no client pays a very high transportation cost for availing

of a particular facility. Note that the clients that are assigned to the same facility belong to the

same cluster, and the corresponding facility is known as their cluster center. Keeping this in

mind, we will use the terms facility and center interchangeably from now on.

1.1 Classical (Unconstrained) Clustering

1.1.1 Polynomial time approximation

The k-supplier and k-service problems are NP-hard [94, 97, 91]. Therefore, we can not obtain

an optimal solution to these problems in polynomial time unless P = NP. Therefore, we design

approximation algorithms for these problems. Formally, an approximation algorithm is defined

as follows:

Definition 3 (Approximation Algorithm). For constant α > 0, an α-approximation algorithm
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for an optimization problem is an algorithm that outputs a solution with an objective value that

is within an α factor of the optimal objective value.

In Table 1.1, we mention the best-known lower and upper bound approximation guarantees for

these problems.

k-Supplier k-Center k-Median k-Means

Upper Bound 3z [84] 2z [84] 2.675 + ε [35] 9 + ε [8]

Lower Bound 3z − ε [94] 2z − ε [94] 1 + 2/e − ε [91] 1 + 8/e − ε [91]

Table 1.1: The best-known approximation guarantees for the clustering problems. The upper
bound algorithms have polynomial running time. The lower bounds hold under the standard
assumption of P ̸= NP.

Clustering problems are also studied in an outlier setting. In practical scenarios, it often happens

that a few clients are located at faraway locations from the rest of the clients, which are relatively

close to each other. The far-located clients are called outliers. The presence of outliers forces

the algorithm to open the facilities close to the outliers. Due to this, most of the clients have

to pay high assignment costs. This leads to poor clustering of the dataset. To overcome this

issue, we identify the outliers and cluster the dataset without these outliers. This gives rise to

the outlier k-supplier and k-service problems. The outlier k-supplier and k-service problems

are defined as follows:

Definition 4 (Outlier k-Supplier Problem). Let (X , d) be a metric space. Let k and m be

any positive integers, and z be any positive real number. Given a set L ⊆ X of feasible

facility locations, and a set C ⊆ X of clients, find a subset Z ⊆ C of size at most m clients

and a set F ⊆ L of k facilities such that the k-supplier cost of C ′ := C \ Z is minimized:

supplier-cost(F,C ′) ≡ maxj∈C′

{
mini∈F

{
d(i, j)z

}}
Definition 5 (Outlier k-Service Problem). Let (X , d) be a metric space. Let k and m be any

positive integers, and z be any positive real number. Given a set L ⊆ X of feasible facil-

ity locations, and a set C ⊆ X of clients, find a subset Z ⊆ C of size at most m clients
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and a set F ⊆ L of k facilities such that the k-service cost of C ′ := C \ Z is minimized:

service-cost(F,C ′) ≡
∑

j∈C′

{
mini∈F

{
d(i, j)z

}}

In Table 1.2, we mention the best-known upper and lower bound approximation guarantees for

the outlier clustering problems.

k-Supplier k-Center k-Median k-Means

Upper Bound 3z [40] 2z [37] 7 + ε [106] 53 + ε [106]

Lower Bound 3z − ε [94] 2z − ε [94] 1 + 2/e − ε [91] 1 + 8/e − ε [91]

Table 1.2: The best-known approximation guarantees for the outlier clustering problems. The
upper bound algorithms have polynomial running time. The lower bounds hold under the stan-
dard assumption of P ̸= NP.

1.1.2 FPT time approximation

The approximation guarantees can be improved by allowing the algorithm to have exponential

running time in some parameters. Such algorithms are called FPT (fixed-parameter tractable)

algorithms. Formally, a fixed-parameter-tractable algorithm is defined as follows:

Definition 6 (Fixed Parameter Tractable (FPT) Algorithm). An algorithm that outputs a solu-

tion for an optimization problem with input x and parameter k with running time f(k) · |x|O(1)

for some computable function f .

For the k-supplier/median/means problem, a natural parameter is k: the number of clusters.

Therefore, an FPT algorithm has running time of f(k) · nO(1), which is polynomial for fixed

(or constant) value of k. FPT algorithms have polynomial running time if the parameter under

consideration is a constant. This may be relevant even to a practitioner since the parameter k

is a small number in many real clustering scenarios. In Table 1.3, we mention the best-known

lower and upper bound approximation guarantees for the non-outlier and outlier versions of the

clustering problems with FPT running time.
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k-Supplier k-Center k-Median k-Means

Upper Bound
(non-outlier)

3z

[84]
2z

[84]
1 + 2/e + ε

[53]
1 + 8/e + ε

[53]

Lower Bound
(non-outlier)

3z − ε
[79]

2z − ε
[79]

1 + 2/e − ε

[53]
1 + 8/e − ε

[53]

Upper Bound
(outlier)

3z

[40]
2z

[37]
1 + 2/e + ε

[6]
1 + 8/e + ε

[6]

Lower Bound
(outlier)

3z − ε
[79]

2z − ε
[79]

1 + 2/e − ε

[53]
1 + 8/e − ε

[53]

Table 1.3: The best known FPT time approximation guarantees for the clustering problems.
The non-outlier versions are parameterized by k, and the outlier versions are parameterized by
both k and m. The lower bounds hold under the standard complexity theory assumption of
W[2] ̸= FPT. The lower bounds for the outlier versions simply follow from their non-outlier
counterparts since an outlier version with m = 0 is equivalent to the non-outlier version.

In this work, we design FPT (in k and m) time (3+ε) and (9+ε) approximation algorithms for

the outlier k-median and k-means problems, respectively. The running time of the algorithm is

O(n · ((k + m)/ε)O(k)). Prior to our work, the best known result was (6 + ε)-approximation

algorithm for the outlier k-means problem for the special case C ⊆ L, with FPT running time

of O
(
n · βk

(
k+m
ε

)k), for some constant β > 0 [80]. Our work improves upon this result as

well; we design an algorithm that gives (4+ε)-approximation guarantee for the outlier k-means

problem and an algorithm that gives a (2+ε)-approximation guarantee for the outlier k-median

problem when C ⊆ L with FPT running time O
(
n ·
(
k+m
ε

)O(k)
)

. Recently, Agrawal et al. [6]

improved on our result and gave FPT time tight (1 + 2/e+ ε) and (1 + 8/e+ ε) approximation

algorithms for the outlier k-median and k-means problems, respectively.

1.2 Constrained Clustering
For many real-world applications, the classical (unconstrained) k-supplier and k-service prob-

lems do not entirely capture the desired clustering properties. For example, consider the popular
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k-anonymity principle [131]. The principle provides anonymity to a public database while keep-

ing it meaningful at the same time. One way to achieve this is to cluster the data in such a way

as to release only partial information related to the clusters obtained. Further, to protect the data

from the re-identification attacks, the clustering should be done in such a way that each cluster

gets at least r data points. This method is popularly known as r-gather clustering [5]. Similarly,

we have the r-capacity clustering problem where in addition to minimizing the clustering cost,

we have a constraint that no cluster must contain more than r clients [111, 2]. This ensures that

the load is almost equally distributed among the facilities. Likewise, there are many other con-

strained versions of the k-supplier/service problems namely fault-tolerant [92, 103], fair [26],

uncertain [60], ℓ-diversity [72, 110], etc. Surprisingly, for many of the constrained clustering

problems, no polynomial time constant approximation algorithm is known. One such classical

problem is the r-capacity k-median/means problem. Designing a polynomial time constant ap-

proximation algorithm for this problem has been a popular open problem for over two decades.

Even for the other constrained clustering problems for which polynomial time constant ap-

proximation algorithms are known, unfortunately, the approximation guarantees are very high.

Therefore, we aim to obtain better (possibly tight) approximation guarantees for the problems

by designing FPT time algorithms.

In the past, many constrained versions of the clustering problems were studied separately as in-

dependent problems. Recently, Ding and Xu [72] gave a unified framework for these problems

that they called the constrained clustering framework. They proposed this unified framework in

the context of the k-median and k-means problems in the continuous Euclidean spaces where

L = Rp
and C is a finite subset of Rp

. The authors designed FPT time (1 + ε)-approximation

algorithms for a range of constrained clustering problems in continuous Euclidean space with

running time O(np · (k/ε)poly(k/ε)). In this work, we extend the framework to k-supplier objec-

tive and to general discrete metric spaces. We also extend the framework to the outlier versions

of constrained clustering problems. Next, we briefly discuss the constrained clustering frame-
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work and the results obtained for metric k-supplier and k-service objectives.

1.2.1 Constrained clustering framework: k-supplier/center

Let O = {O1, . . . , Ok} be any arbitrary partitioning of the client set C. Let F ⊆ L be any set

of k facilities. Let f ∗
i be a facility in F that minimizes the 1-supplier cost of partition Oi. That

is, f ∗
i is the facility in F that minimises the cost: maxx∈Oi

{d(x, f ∗
i )

z}. Then, the k-supplier

cost of the partitioning O with respect to the facility set F is given as follows:

Ψ(F,O) ≡ k
max
i=1

{
max
x∈Oi

{
d(x, f ∗

i )
z
}}

In other words, a partition Oi is completely assigned to a facility location f ∗
i in F , and the

assignment cost of every client in Oi is measured with respect to f ∗
i . Then, Ψ(F,O) is simply

the maximum assignment cost over all the clients. Furthermore, the optimal k-supplier cost

of O is given as follows: Ψ∗(O) ≡ min
k-center-set F

Ψ(F,O). Now, suppose that we are given a

collection S = {O1, . . . ,Ot} of t different partitionings of C. The goal of the constrained

clustering problem is to find a partitioning in S that has the minimum k-supplier cost. Formally,

we define the problem as follows:

Definition 7 (Constrained k-Supplier Problem). Let (X , d) be a metric space, k be any positive

integer, and z be any positive real number. Given a set L ⊆ X of feasible facility locations,

a set C ⊆ X of clients, and a set S of feasible partitionings of C, find a partitioning O =

{O1, O2, . . . , Ok} in S, that minimizes the cost function: Ψ∗(O) ≡ min
k-center-set F

Ψ(F,O).

The above definition encapsulates the following constrained clustering problems that we study

in this work: r-gather, r-capacity, balanced, chromatic, fault-tolerant, strongly private, ℓ-diversity,

and fair k-supplier problems. For example, consider the r-gather clustering problem, in which

the goal is to find a clustering O = {O1, . . . , Ok} of the client set such that the ith cluster has

at least ri clients in it, for some constant ri ≥ 0. For this problem, the set S can be concisely
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defined as S := {O | for every cluster Oi ∈ O, |Oi| ≥ ri}, where O = {O1, O2, . . . , Ok} is a

partitioning of the client set. The definitions of the other seven problems are given in Table 1.4.

# Problem Description

1.
r-Gather k-supplier
problem

Given k positive integers: r1, . . . , rk, find clustering O = {O1, ..., Ok}
with minimum Ψ∗(O) such that for all i, |Oi| ≥ ri

.

2.
r-Capacity k-supplier
problem

Given k positive integers: r1, . . . , rk, find clustering O = {O1, ..., Ok}
with minimum Ψ∗(O) such that for all i, |Oi| ≤ ri

3.
Balanced k-supplier
problem

Given positive integers: ℓ1, . . . , ℓk, and r1, . . . , rk, find clustering
O = {O1, ..., Ok} with minimum Ψ∗(O) such that for all i, ℓi ≤ |Oi| ≤ ri

4.
Chromatic k-supplier
problem

Given that every client has an associated color, find a clustering
O = {O1, ..., Ok} with minimum Ψ∗(O) such that for all i, Oi should
not have any two points with the same color.

5.
Fault-tolerant
k-supplier problem

Given positive integer lx ≤ k for every client x ∈ C, find a set F
of k centers, such that the maximum assignment cost of x to
lthx closest facility is minimized.

6.
Strongly private
k-supplier problem

Given a partitioning C1, . . . , Cω of the client set C, and a set of integers:
{ℓ1, . . . , ℓω}, find a clustering O = {O1, ..., Ok} with minimum Ψ∗(O)
that satisfies |Cj ∩Oi| ≥ ℓj for every i ∈ [k] and j ∈ [ω].

7.
ℓ-Diversity k-supplier
problem

Given a partitioning C1, . . . , Cω of the client set C, a real number ℓ > 1,
find a clustering O = {O1, ..., Ok} with minimum Ψ∗(O) such that
the fraction of points belonging to the same partition inside Oi is ≤ 1/ℓ.

8.
Fair k-supplier
problem

Given ω color classes C1, . . . , Cω (not necessarily disjoint), such that
every Cj is a subset of the client set C, and two fairness vectors
α, β ∈ [0, 1]ω, find a clustering O = {O1, . . . , Ok} with minimum Ψ∗(O)
such that it satisfies that βj · |Oi| ≤ |Oi ∩ Cj| ≤ αj · |Oi| for every
i ∈ [k] and j ∈ [ω].

Table 1.4: List of constrained k-supplier problems that we study in this work.

Note that we are considering the soft assignment version of the constrained k-supplier problem.

That is, it is allowed to open more than one facility at any particular location in L. This version

differs from the hard assignment version, where a single copy of a facility can be opened at any

particular location in L. Note that the total number of open facilities in both versions is at most

k.

Now, we describe a general algorithmic technique to solve any problem that satisfies the defi-



Introduction 9

nition of the constrained k-supplier problem. More precisely, we show that any constrained

k-supplier problem can be solved using two basic ingredients: the list k-supplier problem

and a partition algorithm. The notion of the list k-supplier problem was formalized by Bhat-

tacharya et al. [28] in the context of the k-median and k-means objectives. We extend the notion

to the k-supplier objective as follows:

Definition 8 (List k-Supplier Problem). Let I = (L,C, k, d, z) be any instance of the k-supplier

problem. The goal of the problem is: given I, find a list L of k-center-sets (i.e., each element

of the list is a set of k elements from L) such that for any partitioning O = {O1, . . . , Ok} of the

client set C, the list L contains a k-center-set F such that Ψ(F,O) ≤ α · Ψ∗(O) for α = 3
z
.

For the k-center objective α = 2
z
.

Furthermore, we define a partition algorithm as follows:

Definition 9 (Partition Algorithm). Let I = (L,C, k, d, z) be any instance of the k-supplier

problem, and let S = {O1,O2, . . . ,Ot} be a collection of clusterings of C. Given a center

set F ⊆ L, a partition algorithm outputs a clustering in S that has the least clustering cost

Ψ(F,O) with respect to F .

Note that the set S differs for different constrained k-supplier problems; therefore, the parti-

tion algorithm differs for different constrained k-supplier problems. The simplest example of

the partition algorithm is for the unconstrained k-supplier problem. For the unconstrained k-

supplier problem, the set S is the collection of all possible k-partitionings of C and the partition

algorithm is simply the standard Voronoi partitioning algorithm.

It is not very difficult to show that an algorithm for the list k-supplier problem together with a

partition algorithm for a constrained k-supplier problem gives 3
z

approximation to that prob-

lem. Note that the algorithm for the list k-supplier problem is common to all the constrained

clustering problems. However, the partition algorithm differs for different constrained k-supplier



10 Introduction

problems. In this work, we design kO(k) · nO(1) time algorithm for the list k-supplier problem

with list size kO(k) · n. Thus, we obtain the following results:

Theorem 1 (Main Result: k-Supplier). For any constrained version of the k-supplier problem

that has a partition algorithm with running time T , there exists a 3
z

approximation algorithm

with running time T · kO(k) · n+O(n2 log n).

Theorem 2 (Main Result: k-Center). For any constrained version of the k-center problem that

has a partition algorithm with running time T , there exists a 2
z

approximation algorithm with

running time T · kO(k) · n+O(n2 log n).

For all the problems given in Table 1.4, we design FPT time partition algorithms. For this,

we reduce each of the partition problems to the circulation problems on flow networks. Since

most of the clustering constraints can be modeled as lower and upper bound flow constraints

on the edges of the flow network, a feasible flow through the network gives an assignment of

the clients to the facility set satisfying the given clustering constraints. Thus using Theorems 1

and 2, we get FPT time 3
z
-approximation for the k-supplier and 2

z
-approximation for the k-

center objective for all the problems in Table 1.4. This improves the state-of-art for almost

all the problems on the list. The details of these improvements will be highlighted in Chapter 2.

At a high level, our algorithm for the list k-supplier problem is composed of the following

two parts:

1. A (1, O(lnn)) bi-criteria approximation algorithm for the unconstrained k-supplier prob-

lem. The algorithm outputs a set S ⊆ L of O(k lnn) facilities such that the cost of

assigning any client in C to the closest facility in S at most the optimal unconstrained

k-supplier cost. We obtain this bi-criteria approximation algorithm by reducing the prob-

lem to the set-cover problem and using the O(log n)-approximation algorithm for the
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set-cover problem. A similar reduction has been used earlier to solve a different prob-

lem [134].

2. Then, we show that for any arbitrary partitioning O of C, there exists a k-sized subset

F ⊆ S that gives 3
z

approximation for O. We prove this using the triangle-inequality

property of the metric spaces. Therefore, we create a list L of all possible k-sized subsets

of S. The list L is the required solution to the list k-supplier problem with list size

= O(k lnn)k = kO(k)n.

We extend the constrained k-supplier framework to the outlier setting in an analogous manner.

We design (k+m)O(k) ·nO(1) time algorithm for the outlier version of the list k-supplier problem

with list size (k +m)O(k) · n, where n = |C ∪ L| and m is the number of outliers. Moreover,

we design FPT time partition algorithms for all the constrained k-supplier problems given in

Table 1.4. Thus we get FPT time 3
z

and 2
z

approximation algorithms for the outlier versions

of these problems corresponding to k-supplier and k-center objectives, respectively.

Lastly, we note that the obtained approximation guarantees are tight when parameterized by k

for the non-outlier version and parameterized by k and m for the outlier version. That is, for

any constant ε > 0, no algorithm can achieve (3− ε) and (2− ε) approximation guarantees for

the constrained k-supplier and k-center problems, respectively, in FPT time, assuming FPT ̸=

W[2]. These results follow from previous works: [78, 94, 74, 128, 42].

Note that the results corresponding to this subsection has already been published in Theoretical

Computer Science, 2023 [86].

1.2.2 Constrained clustering framework: k-median/means

The constrained clustering framework for the k-median/means problem is analogous to the

framework for the k-supplier problem, except here, we are considering the hard-assignment
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version of the problem. Due to this, the algorithmic techniques are more complex than in the

previous subsection. Let O = {O1, . . . , Ok} be any arbitrary partitioning of the client set C.

Let F ⊆ L be any set of k facilities. Then, the k-service cost of the partitioning O with respect

to the facility set F is given as follows:

Φ(F,O) ≡ min
permutation π

{
k∑

i=1

∑
x∈Oi

d(x, fπ(i))
z

}
.

Furthermore, the optimal k-service cost of O is given as follows: Φ∗(O) ≡ min
k-center-set F

Φ(F,O).

Note that here we are considering the hard assignment version of the k-service problem. That

is, we are not allowed to open more than one facility at any location in L. The soft assignment

version is easier than the hard assignment version since we can reduce the soft-assignment ver-

sion to the hard-assignment version by creating k copies of every location in L. Now, suppose

that we are given a collection S = {O1, . . . ,Ot} of t different partitionings of C. The goal of

the constrained k-service problem is to find a partitioning in S that has the minimum k-service

cost. Formally, we define the problem as follows:

Definition 10 (Constrained k-Service Problem). Let (X , d) be a metric space, k be any positive

integer, and z be any positive real number. Given a set L ⊆ X of feasible facility locations,

a set C ⊆ X of clients, and a set S of feasible partitionings of C, find a partitioning O =

{O1, O2, . . . , Ok} in S, that minimizes the cost function: Φ∗(O) ≡ min
k-center-set F

Φ(F,O).

In Table 1.4, we defined eight constrained clustering problems with respect to the k-supplier

objective. We study the same problems with respect to the k-service objective. We use a

technique similar to the one discussed in the previous subsection. Any constrained k-service

problem can be solved using two basic ingredients: the list k-service problem and a partition

algorithm.

Definition 11 (List k-Service Problem). Let I = (L,C, k, d, z) be an arbitrary instance of
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the k-service problem, O = {O1, . . . , Ok} be any arbitrary clustering of the client set C, and

0 < ε ≤ 1 be an arbitrary constant. The goal of the problem is to find a list L of k-center-sets

(i.e., each element of the list is a set of k elements from L) such that with probability at least

1−1/n, the list L contains a k-center-set F such that Φ(F,O) ≤ α ·Φ∗(O) for α = 3
z
+ ε and

n = |C ∪ L|. For the special case when C ⊆ L, the approximation guarantee is α = 2
z
+ ε.

Furthermore, we define a partition algorithm as follows:

Definition 12 (Partition Algorithm). Let I = (L,C, k, d, z) be any instance of the k-service

problem, and let S = {O1,O2, . . . ,Ot} be a collection of clusterings of C. Given a center

set F ⊆ L, a partition algorithm outputs a clustering in S that has the least clustering cost

Φ(F,O) with respect to F .

It is easy to show that an algorithm for the list k-service problem together with a partition

algorithm for a constrained k-service problem gives (3
z
+ ε)-approximation to that problem.

Note that the algorithm for the list k-service problem is common to all the constrained k-service

problems. However, the partition algorithm differs for different constrained k-service problems.

In this work, we design O
(
n · (k/ε)O(k z 2)

)
time algorithm for the list k-service problem with

list size O
(
(log n) · (k/ε)O(k z 2)

)
. Thus, we obtain the following results:

Theorem 3 (Main Result: k-Median). For any constrained version of the k-median problem

that has a partition algorithm with running time T , there exists a (3 + ε)-approximation algo-

rithm that succeeds with probability at least 1−1/n and has running time T ·(k/ε)O(k)·(log n)+

O (n · (k/ε)O(k)). For the special case when C ⊆ L, the algorithm gives (2+ε)-approximation

guarantee.

Theorem 4 (Main Result: k-Means). For any constrained version of the k-means problem that

has a partition algorithm with running time T , there exists a (9 + ε)-approximation algorithm

that succeeds with probability at least 1 − 1/n and has running time T · (k/ε)O(k) · (log n) +
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O (n · (k/ε)O(k)). For the special case when C ⊆ L, the algorithm gives (4+ε)-approximation

guarantee.

Moreover, we design FPT time partition algorithms for the k-service version of the constrained

problems given in Table 1.4. The partition algorithms for these problems are similar to their

k-supplier counterparts. Thus we get FPT time (3
z
+ ε)-approximation algorithms for the k-

service objective for all the problems in Table 1.4. This improves the state-of-art for almost

all problems in the table. The details of these improvements will be highlighted in Chapter 3.

The main challenge is to design an FPT time algorithm for the list k-service problem. In the

previous subsection, we briefly described the algorithm for the list k-supplier problem. We can

design a similar algorithm for the list k-service problem. However, that algorithm has many

limitations; one of the limitations is that it can not be extended to the outlier setting. Another

limitation is that the algorithm only holds for the soft-assignment version of the problem. To

overcome these limitations, we use a sampling-based approach that is similar to the algorithm of

Bhattacharya et al. [28]. The algorithm of Bhattacharya et al. [28] gives (1+ ε)-approximation

guarantee in FPT time for the constrained k-median and k-means problems in the continuous

Euclidean space. In the continuous Euclidean space, the facility set L = Rp
and C is a finite

subset of Rp
. Our work differs from it in the following ways:

1. Working in a metric space instead of the Euclidean space poses challenges as some of

the main tools used for analysis in the Euclidean setting cannot be used in metric spaces.

We carefully devise and prove new sampling lemmas that make the high-level analysis of

Bhattacharya et al. [28] go through.

2. Bhattacharya et al. [28] gave an algorithm for the list-k-means problem with list size

|L| = (k/ε)O(k/ε) and running time O(np|L|), where p is the dimension of the Eu-

clidean space and n = |C|. Their algorithm explores a rooted tree of size (k/ε)O(k/ε)

and depth k where the degree of every non-leaf vertex is (k/ε)O(1/ε). Every node in
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this tree has an associated center, and the path from the root to a leaf node gives one

of the k-center-sets for the output list. The algorithm has an unavoidable iteration of

depth k since their analysis works only when the centers are picked one-by-one in k

iterations. We circumvent this inherent restriction by using a constant factor approx-

imate solution F to the unconstrained k-means/median problem for the given dataset

(C,L). That is, service-cost(F,C) ≤ α · OPT, where OPT denotes the optimal un-

constrained k-means/median cost. Then a distance-based sampling algorithm runs in

a single iteration where poly(k/ε) points from C are D
z
-sampled with respect to F .

In D
z
-sampling technique, a point x from the client set C is sampled with probability

service-cost(F, {x})
service-cost(F,C)

=
minf∈F d(f, x)z∑

y∈C minf∈F d(f, y)z
. Thus we obtain the list L in a “single shot”.

This technique helps us in designing a constant-pass streaming algorithm for the problem.

3. We study the hard-assignment version of the constrained k-service problem, which is

harder than the soft-assignment version of the problem. The hard and soft assignment

versions are equivalent in the continuous Euclidean space where L = Rp
. The reason

is that if two facilities are opened at the same facility location, then one of the facilities

can be moved by an infinitely small distance to convert a soft assignment to a hard as-

signment. Therefore, the previous works on the constrained clustering problem did not

consider the distinction between soft and hard assignments.

4. Our techniques generalise for distance function d(., .)z. That is, for any positive real

number z, if the cost of a client is defined by d(., .)z instead of d(., .) or d(., .)2, then our

algorithm gives 3
z

approximation guarantees for the problems in discrete metric spaces

and (1+ε)-approximation in continuous Euclidean space. The previous work only studies

the problems with respect to the distance functions d(., .) and d(., .)2.

5. We extend the constrained k-service framework to the outlier setting. We design ((k +

m)z/ε)O(kz/ε
O(z)) · nO(1) time algorithm for the outlier version of the constrained k-

service problem, where n = |C ∪ L| and m is the number of outliers. The algorithm
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gives 3
z

approximation guarantee in discrete metric space and (1 + ε)-approximation

guarantee in continuous Euclidean space.

In the second point, we mention that we design a streaming algorithm for constrained clustering

problems. Streaming algorithms are useful when dealing with data sets that are too large to fit

in the main memory or RAM (Random Access Memory). In clustering applications, we often

come across large data sets (see [90, 12] for the related examples). Therefore, the data is stored

in secondary storage devices instead of the main memory. This makes classical data process-

ing algorithms extremely time-consuming. This motivates the study of streaming clustering

algorithms. A streaming algorithm makes linear scans (usually one) over the data and uses lim-

ited memory (usually logarithmic in the input size). We design constant pass, log-space, FPT

time streaming algorithms for the constrained k-median and k-means problems. We design

these algorithms both in the continuous Euclidean and discrete metric spaces. Note that for the

unconstrained k-median/means problems, there already exists various constant-pass log-space

streaming algorithms [44, 32, 90].

Note that in this work, we do not study the k-supplier problem in the hard-assignment setting,

streaming setting, and continuous Euclidean setting. However, studying these problems, which

may require a different set of techniques, is one of our future work directions.

Note that the results corresponding to this subsection has already been published in Interna-

tional Symposium on Parameterized and Exact Computation (IPEC 2020) [88] and in IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2020) [29].

1.3 Socially Fair Clustering Problem
In recent years, the topic: fairness in machine learning, has gained considerable attention. For

example, see [25] and [48] for the recent developments in this area. The main motivation is that
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in many human-centric applications, the input data is biased towards a particular demographic

group that may be based on age, gender, ethnicity, occupation, nationality, etc. We do not want

algorithms to discriminate among different groups due to biases in the dataset. In other words,

we aim to design fair algorithms for problems.

In the context of clustering, in particular the k-median/k-means/k-center clustering, various

notions of fair clustering have recently been proposed (see [46, 26, 11, 27, 104, 45, 116]). One

such notion is the socially fair clustering that is defined as follows:

Definition 13 (Socially Fair Clustering). We are given a set C of clients and set L of feasible

facility locations in a metric space (X , d). There are ℓ groups (possibly non-disjoint) of clients

C1, ..., Cℓ ⊆ C with weight function wj : Cj → R+ for each j ∈ {1, . . . , ℓ}. Let z be any real

number ≥ 1. In socially fair clustering, the goal is to pick a facility set F ⊆ L of size k so as

to minimize the objective function: maxj∈[ℓ] service-cost(F,Cj), which we call the fair cost:

fair-cost(F,C) ≡ max
j∈[ℓ]

{
service-cost(F,Cj)

}
,

where service-cost(F,Cj) ≡
∑
x∈Cj

{
wj(x) ·minf∈F

{
d(f, x)

}}
.

Informally, in the above definition, each group of clients Cj represents a particular demographic

group, and the goal of the clustering is to find a set F of k centers such that maximum over

the service costs of the groups is minimized. Thus it tries to ensure that one group does not

pay a very high service cost in comparison to other groups. Note that for ℓ = 1, the problem

is equivalent to the k-service problem. For ℓ = |C| and if each client forms a singleton group,

then the problem is equivalent to the k-supplier problem. Therefore, the socially fair clustering

problem is a generalization of the k-supplier and k-service problems.

Also note that for the socially fair clustering problem, the soft-assignment and hard-assignment

versions are equivalent. If two facilities f1, f2 are opened at a facility location f ∈ L, then
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we can remove facility f1 and re-assign the clients that were assigned to f1, to f2. The cost

of the solution remains the same. Therefore, a solution to the soft-assignment version can be

converted to a solution to the hard-assignment version. Moreover, a hard-assignment solution

is trivially a soft-assignment solution. Therefore, both versions are equivalent in the context of

the socially fair clustering problem.

Makarychev and Vakilian [120] and Chlamtác et al. [47] gave polynomial time O
(

log ℓ
log log ℓ

)
ap-

proximation algorithms for the socially fair k-median/means problem. In this work, we design

a (3
z
+ ε)-approximation algorithm for the socially fair clustering problem with FPT time of

(zk/ε)O(k) · nO(1). At a high level, the algorithm is composed of the following two parts:

1. A polynomial time
(
1 + ε,O

(
(z/ε2) · ln2 n

))
bi-criteria approximation algorithm for the

socially fair clustering problem. The algorithm outputs a center set S ⊆ L of size

O((kz/ε2) · ln2 n) and gives (1 + ε)-approximation with respect to the optimal solu-

tion with k centers. We obtain this result by modifying a bi-criteria approximation al-

gorithm for the unconstrained clustering problem [140], which in turn follows from an

LP-rounding technique with respect to the most natural linear programming formulation

of the problem.

2. We use the above bi-criteria algorithm to obtain a center set S ⊆ L of size O((kz/ε2) ·

ln2 n). We then show that there exists a k-sized subset S ′ ⊂ S that gives (3
z
+ ε)

approximation. Note that since one needs to try all possible k-sized subsets of S, the

overall running time of the algorithm has a multiplicative factor of O
(|S|

k

)
. This results in

an FPT algorithm.

Formally, we state the result as follows:

Theorem 5. For the socially fair clustering problem, there is a randomized (3
z
+ ε) approxi-

mation algorithm with FPT running time of (zk/ε)O(k) · nO(1) that succeeds with probability at

least 1− 1/n.
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Furthermore, we show that these approximation guarantees are tight; we obtain the following

lower bound result for the problem:

Theorem 6 (FPT Hardness for Parameter k). For any constant z ≥ 0, ε > 0, and function

g : R+ → R+, the socially fair clustering problem can not be approximated to factor (3
z − ε)

in time g(k) · nO(1) assuming FPT ̸= W[2] and in time g(k) · no(k) assuming ETH.

Note that the results corresponding to this subsection has already been published in Information

Processing Letters, 2023 [85].

1.4 Hardness of Approximation: Euclidean k-Median
We study the k-median problem in the continuous Euclidean space where L = Rp

and C is a

finite subset of Rp
. The cost of assigning a client x ∈ C to a facility f ∈ L is the Euclidean

distance ∥x − f∥. It is known that for general metric spaces, the k-median problem is hard

to approximate to a factor less than 1 + 2/e [91, 97]. However, no hardness of approximation

result is known for the Euclidean k-median problem. Resolving the hardness of approximation

for the Euclidean k-median problem was left as an open problem in the work of Awasthi et

al. [19]. In Table 1.5, we mention the best-known results for the Euclidean k-median and

k-means problem.

Awasthi et al. [19] proved the first hardness of approximation result for the Euclidean k-means

problem. They asked whether their techniques for proving the inapproximability results for

Euclidean k-means can be used to prove the hardness of approximation result for the Euclidean

k-median problem. Quoting from their paper,

“It would also be interesting to study whether our techniques give hardness of

approximation results for the Euclidean k-median problem.”

In this work, assuming Unique Games Conjecture (UGC), we solve this open problem by ob-
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Fixed k Fixed d General

Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound

k-Median OPEN
(1 + ε)

[107]

NP-hard

[123]

(1 + ε)

[54]

(1 + ε)

(this work)

2.633

[8]

k-Means
NP-hard

[13]

(1 + ε)

[107]

NP-hard

[117]

(1 + ε)

[54]

1.07

[51]

6.129

[89]

Table 1.5: The known approximation guarantees for the Euclidean k-Median and k-Means
problems. For fixed k or d, all the mentioned (1 + ε)-approximation algorithms have FPT
running time. In the outlier setting, no upper bound result or any better lower bound result is
known yet.

taining the hardness of approximation result for the Euclidean k-median problem. The follow-

ing is one of the main results of this work.

Theorem 7 (k-Median Hardness). There exists a constant ε > 0 such that the Euclidean k-

median problem cannot be approximated to a factor better than (1 + ε), assuming the Unique

Games Conjecture.

We build on the techniques of Awasthi et al. [19] to prove the inapproximability result for the

Euclidean k-median problem. The authors gave a reduction from the vertex cover problem to the

Euclidean k-means problem. We use the same construction to reduce the vertex cover problem

to the Euclidean k-median problem. However, to show the correctness of the reduction, we need

to analyze the cost of a cluster in the Euclidean space. This is the first obstacle one encounters in

this direction; unlike the 1-mean problem, there does not exist a closed-form expression for the

1-median problem. Therefore, we don’t know the exact value of the optimal cost of a given 1-

median instance. The 1-median problem, popularly known as the Fermat-Weber problem [75],

is a difficult problem, and designing efficient approximation algorithms for this problem is

a separate line of research in itself – see for e.g. [105, 137, 38, 33, 49]. We overcome this

barrier by obtaining upper and lower bounds on the optimal 1-median cost and showing that

these bounds suffice for our purpose. More concretely, to upper bound the optimal 1-median
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cost, we use the centroid as the 1-median and compute the 1-median cost with respect to the

centroid. To obtain a lower bound on the 1-median cost of a cluster, we use a decomposition

technique to break a cluster into smaller subclusters. Here we use a simple observation that the

optimal 1-median cost of a cluster is at least the sum of the optimal 1-median costs of the sub-

clusters. For the small subclusters, we compute exact or good approximate lower bounds on

the 1-median cost. This gives a good approximate lower bound for any arbitrary cluster. Using

this approximation, we show hardness of approximation for the Euclidean k-median problem

assuming Unique Games Conjecture. To prove a similar result under a weeker assumption of

P ̸= NP, we would require a better approximation of the 1-median costs of clusters than the

one done in this work. Note that Awasthi et al. [19] showed the hardness of Euclidean k-means

problem under the assumption of P ̸= NP since it was easier to estimate the 1-means cost of

the clusters.

Note that the results corresponding to this subsection has already been published in Approx-

imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-

PROX/RANDOM 2021) [30].

1.5 Bi-Criteria Hardness of Approximation: Euclidean k-Median

and k-Means
Having established the hardness of approximation results for k-means and k-median, the next

natural step in the beyond worst-case discussion is to allow more flexibility to the algorithm.

One possible relaxation is to allow an approximation algorithm to choose more than k centers,

say, βk centers (for some constant β > 1), and produce a solution that is close to the opti-

mal solution with respect to k centers. This is known as a bi-criteria approximation, and the

following definition formalizes this notion.

Definition 14 ((α, β)-approximation algorithm). An algorithm A is called an (α, β) approx-
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imation algorithm for the Euclidean k-means/k-median problem if given any instance I =

(C, k) with C ⊂ Rp
,A outputs a center set F ⊂ Rp

of size βk that has the cost at most α times

the optimal cost with k centers. That is,

∑
x∈C

min
f∈F
{D(x, f)} ≤ α · min

F ′⊆Rp

|F ′|=k

{∑
x∈C

min
f∈F ′
{D(x, f)}

}

For the Euclidean k-means problem, D(q, r) ≡ ∥q − r∥2 and for the k-median problem

D(q, r) ≡ ∥q − r∥.

One expects that as β grows, there would exist efficient (α, β)-approximation algorithms with

smaller values of α. This is indeed observed in the work of Makarychev et al. [118]. For exam-

ple, their algorithm gives a (9+ ε) approximation for β = 1; 2.59 approximation for β = 2; 1.4

approximation for β = 3. In other words, the approximation factor of their algorithm decreases

as the value of β increases. Furthermore, their algorithm gives a (1+ ε)-approximation guaran-

tee with O(k log(1/ε)) centers. Ideally, we would like to obtain a PTAS with a small violation

of the number of output centers. More specifically, we would like to address the following

question:

Does the Euclidean k-means or Euclidean k-median problem admit an efficient

(1 + ε, 1 + ε)-approximation algorithm?

Note that such type of bi-criteria approximation algorithms that outputs (1 + ε)k centers have

been extremely useful in obtaining a constant approximation for the capacitated k-median prob-

lem [111, 112] for which no true constant approximation is known yet 1. Therefore, the above

question is worth exploring. Note that here we are specifically aiming for a PTAS since the

k-means and k-median problems already admit a constant factor approximation algorithm. In

1In the capacitated k-median/k-means problem there is an additional constraint on each center that it cannot
serve more than a specified number of clients (or points).
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this work, we give a negative answer to the above question by showing that there exists a con-

stant ε > 0 such that an efficient (1 + ε, 1 + ε)-approximation algorithm for the k-means and

k-median problems does not exist assuming the Unique Games Conjecture. The following two

theorems state this result more formally.

Theorem 8 (Bi-criteria Hardness: k-Median). For any constant 1 < β < 1.015, there exists

a constant ε > 0 such that there is no (1 + ε, β)-approximation algorithm for the Euclidean

k-median problem assuming the Unique Games Conjecture.

Theorem 9 (Bi-criteria Hardness: k-Means). For any constant 1 < β < 1.28, there exists

a constant ε > 0 such that there is no (1 + ε, β)-approximation algorithm for the Euclidean

k-means problem assuming the Unique Games Conjecture. Moreover, the same result holds for

any 1 < β < 1.1 under the assumption that P ̸= NP.

To prove these results, we use a similar reduction from the vertex cover problem and show that

the reduction holds even if one is allowed to use βk centers, for some β > 1.

Note that the results corresponding to this subsection has already been published in Approx-

imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-

PROX/RANDOM 2021) [30].

1.6 Notations
In this section, we define the notations that we frequently use in the thesis. We define the

unconstrained k-supplier cost of a client set S with respect to a center set F as

supplier-cost(F, S) := max
x∈S

{
d(F, x)z

}
, where d(F, x) = min

f∈F
{d(f, x)}.
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For a singleton set {f}, we denote supplier-cost({f}, S) shortly by supplier-cost(f, S). We

define the unconstrained k-service cost of a client set S with respect to a center set F as

service-cost(F, S) :=
∑
x∈S

{
d(F, x)z

}
, where d(F, x) = min

f∈F
{d(f, x)}.

For a singleton set {f}, we denote service-cost({f}, S) shortly by service-cost(f, S). For any

instance I = (L,C, k, d, z) of the unconstrained k-supplier or k-service problem, we denote the

optimal cost of the instance by OPT(L,C, k). It would be clear from the context if OPT(L,C, k)

corresponds to the k-supplier or k-service objective.

1.7 Organization of Thesis
In Chapter 2, we design FPT time constant-approximation algorithms for the constrained k-

supplier and k-center problems in general metric spaces. In Chapter 3, we design FPT time

constant-approximation algorithms for the constrained k-median and k-means problems in gen-

eral metric spaces. Moreover, we extend the algorithms to streaming and outlier settings. In

Chapter 4, we study the outlier and streaming versions of the constrained k-median and k-

means problems in continuous Euclidean spaces. We design FPT time (1 + ε)-approximation

for these problems. In Chapter 5, we design FPT time constant-approximation algorithm for

the socially fair clustering problem. In Chapter 6, we show the hardness of approximation re-

sults for the Euclidean k-median problem. Furthermore, we extend these hardness results to the

bi-criteria versions of Euclidean k-median and k-means problems. In Chapter 7, we conclude

the thesis with some open problems.
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Tight FPT Approximation for Constrained

k-Center/Supplier

In this chapter, we study a range of constrained versions of the k-supplier and k-center prob-

lems. In the classical (unconstrained) k-supplier problem, we are given a set of clients C in

a metric space X , with distance function d(., .). We are also given a set of feasible facility

locations L ⊆ X . The goal is to open a set F of k facilities in L to minimize the maxi-

mum distance of any client to the closest open facility, i.e., minimize, supplier-cost(F,C) ≡

maxj∈C
{
d(F, j)

}
, where d(F, j) is the distance of client j to the closest facility in F . The

k-center problem is a special case of the k-supplier problem where L = C. We study various

constrained versions of the k-supplier problem such as: capacitated, fault-tolerant, ℓ-diversity,

etc. These problems fall under a broad framework of constrained clustering. A unified frame-

work for constrained clustering was proposed by Ding and Xu [72] in the context of the k-

median and k-means objectives. We extend this framework to the k-supplier and k-center

objectives in this chapter. This unified framework allows us to obtain results simultaneously for

the following constrained versions of the k-supplier problem: r-gather, r-capacity, balanced,

chromatic, fault-tolerant, strongly private, ℓ-diversity, and fair k-supplier problems, with and

25
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without outliers. We design Fixed-Parameter Tractable (FPT) algorithms for these problems.

FPT algorithms have polynomial running time if the parameter under consideration is a con-

stant. This may be relevant even to a practitioner since the parameter k is a small number in

many real clustering scenarios. We obtain the following results:

• We give 3 and 2 approximation algorithms for the constrained k-supplier and k-center

problems, respectively, with FPT running time kO(k)·nO(1), where n = |C∪L|. Moreover,

these approximation guarantees are tight; that is, for any constant ε > 0, no algorithm

can achieve (3− ε) and (2− ε) approximation guarantees for the constrained k-supplier

and k-center problems in FPT time, assuming FPT ̸= W[2].

• We study the constrained k-supplier and k-center problems with outliers. Our algorithm

gives 3 and 2 approximation guarantees for the constrained outlier k-supplier and k-

center problems, respectively, with FPT running time (k + m)O(k) · nO(1), where n =

|C ∪ L| and m is the number of outliers.

• Our techniques generalise for distance function d(., .)z. That is, for any positive real

number z, if the cost of a client is defined by d(., .)z instead of d(., .), then our algorithm

gives 3
z

and 2
z

approximation guarantees for the constrained k-supplier and k-center

problems, respectively.

2.1 Overview
We defined the k-supplier problem in Definition 1 in Chapter 1. We redefine it here for easy

reference.

Definition 15 (k-Supplier Problem). Let (X , d) be a metric space. Let k be any positive integer,

and z be any positive real number. Given a set L ⊆ X of feasible facility locations, and a set

C ⊆ X of clients, find a set F ⊆ L of k facilities that minimises the cost: supplier-cost(F,C) ≡

maxj∈C

{
mini∈F

{
d(i, j)z

}}
.
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When L = C, the problem is known as the k-center problem. In the above definition, we did not

impose any constraints on the clients. Therefore, this version is also known as the unconstrained

k-supplier problem. In this paper, we will use the term k-supplier problem and unconstrained

k-supplier problem interchangeably. The k-supplier and k-center problems have natural ap-

plications in deciding the optimal location of placing facilities such as hospitals, schools, post

offices, etc., in a geographical area [65, 7]. It ensures that no client pays a very high transporta-

tion cost for availing of a particular facility. Furthermore, these problems are extensively used

for clustering large data sets in data mining, pattern recognition, information retrieval, etc. The

clients assigned to the same facility belong to the same cluster, and the corresponding facility

is known as the cluster center. Keeping this in mind, we will use the terms facility and center

interchangeably from now on.

In many applications, additional constraints are imposed on the clusters. For example, every

cluster must have at least r clients in privacy-preserving clustering. This problem is known

as the r-gather k-supplier/center problem or the lower bounded k-supplier/center problem [4,

131]. Similarly, in many resource allocation problems, we impose an upper bound constraint

on every facility location. That is, a facility can not serve more than u clients for some integer

constant u > 0. This ensures that the load is almost equally distributed among the facili-

ties. This problem is known as the capacitated k-supplier/center problem [24, 102, 61, 14].

Likewise, there are many other constrained versions of the k-supplier/center problems namely

fault-tolerant [103], fair [26], chromatic [72], ℓ-diversity [110], non-uniform [22] problems,

etc.

In the past, many constrained versions of the clustering problems were studied separately as

independent problems. Recently, in 2015, Ding and Xu [72] gave a unified framework for these

problems that they called the constrained clustering framework. They proposed this unified

framework in the context of the k-median and k-means problems in the continuous Euclidean

spaces. In this work, we extend the unified framework to the k-supplier and k-center objectives.
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Using this, we design FPT time approximation algorithms for a range of constrained k-supplier

problems. To put it another way, the unified framework allows us to use a common algorithmic

technique for various constrained k-supplier problems. A natural question we need to address

at the beginning of this work is: “why should one be interested in designing approximation

algorithms with FPT running time for these problems?" The answer lies in the fact that the k-

supplier and k-center problems are W[2]-hard parameterized by k [66, 78]. Therefore, we can

not obtain exact algorithms for the k-supplier and k-center problems in FPT running time unless

W[2] = FPT. Very recently, stronger FPT hardness results have been established for these

problems. The following are these two results that easily follow from [78], [94], [74], [128]

and [42].

Theorem 10. For any constant ε > 0, z > 0, and any function g : Z+ → R+, the k-supplier

problem cannot be approximated to factor (3
z − ε) in time g(k) · no(k) assuming ETH, and in

time g(k) · nO(1) assuming W[2] ̸= FPT.

Theorem 11. For any constant ε > 0, z > 0, and any function g : Z+ → R+, the k-center

problem can not be approximated to factor (2
z − ε) in time g(k) · no(k) assuming ETH, and in

time g(k) · nO(1) assuming W[2] ̸= FPT.

For the sake of completeness, we prove these two theorems in Section 2.6. Note that the above

hardness results apply to all the constrained k-supplier problems that we study in this paper

since the unconstrained version of the problem can be reduced to any of the constrained ver-

sions in polynomial time. Our main contribution is to give matching upper bounds for all the

constrained k-supplier problems. That is, we design FPT time 3
z

and 2
z

approximation algo-

rithms for various constrained k-supplier and k-center problems, respectively. Next, we define

the constrained clustering framework for the k-supplier and k-center problems.
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2.1.1 Constrained k-supplier framework

Let O = {O1, . . . , Ok} be any arbitrary partitioning of the client set C. Let F ⊆ L be any set

of k facilities. Let f ∗
i be a facility in F that minimizes the 1-supplier cost of partition Oi. That

is, f ∗
i is the facility in F that minimises maxx∈Oi

{d(x, f ∗
i )

z}. Then, the k-supplier cost of the

partitioning O with respect to the facility set F is given as follows:

Ψ(F,O) ≡ k
max
i=1

{
max
x∈Oi

{
d(x, f ∗

i )
z
}}

In other words, a partition Oi is completely assigned to a facility location f ∗
i in F , and the

assignment cost of every client in Oi is measured with respect to f ∗
i . Then, Ψ(F,O) is simply

the maximum assignment cost over all the clients. Furthermore, the optimal k-supplier cost

of O is given as follows: Ψ∗(O) ≡ min
k-center-set F

Ψ(F,O). Now, suppose that we are given a

collection S = {O1, . . . ,Ot} of t different partitionings of C. The goal of the constrained k-

supplier problem is to find a partitioning in S that has the minimum k-supplier cost. Formally,

we define the problem as follows:

Definition 16 (Constrained k-Supplier Problem). Let (X , d) be a metric space, k be any pos-

itive integer, and z be any positive real number. Given a set L ⊆ X of feasible facility loca-

tions, a set C ⊆ X of clients, and a set S of feasible partitionings of C, find a partitioning

O = {O1, O2, . . . , Ok} in S, that minimizes the cost function: Ψ∗(O) ≡ min
k-center-set F

Ψ(F,O).

The above definition encapsulates many constrained k-supplier problems. For example, con-

sider the r-gather k-supplier problem, in which the goal is to find a clustering O = {O1, . . . , Ok}

of the client set such that the ith cluster has at least ri clients in it, for some constant ri ≥ 0.

For this problem, the set S can be concisely defined as S := {O | for every cluster Oi ∈ O,

|Oi| ≥ ri}, where O = {O1, O2, . . . , Ok} is a partitioning of the client set. We study seven

other constrained k-supplier problems that satisfy the above definition of constrained k-supplier
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problem. These problems are r-capacity, balanced, chromatic, fault-tolerant, strongly private,

ℓ-diversity, and fair k-supplier problems. The definitions of these problems are given in Ta-

ble 2.1.

We want to point out that we are considering the soft assignment version of the constrained k-

supplier problems. That is, it is allowed to open more than one facility at any particular location

in L. This version differs from the hard assignment version, where a single copy of a facility

can be opened at any particular location in L. Note that the total number of open facilities

in both versions is at most k. The soft assignment version is easier than the hard assignment

version since the soft assignment version can be reduced to the hard assignment version by

creating k copies of every location in L. The hardness results stated in Theorems 10 and 11

hold for both the soft and hard assignment versions of the constrained k-supplier problems.

Note that all the problems in the table satisfy the Definition 16 of the constrained k-supplier

problem except the fault-tolerant k-supplier problem since its objective function is different

from Ψ(F,O). Next, we show that the fault-tolerant k-supplier problem can be reduced to

the chromatic k-supplier problem, which satisfies the definition of the constrained k-supplier

problem. In the fault-tolerant k-supplier problem, there is no explicit constraint imposed on

any cluster. However, the cost function is different from the classical k-supplier problem. That

is, for every client x ∈ C, we are given an integer ℓx ≤ k. Then, for a set F = {f1, . . . , fk}

of facility locations, the assignment cost of a client x is proportional to the distance to its ℓthx

closest facility location in F . Thus, the overall cost of a fault-tolerant instance is given as:

fault-tolerant-cost(F,C) ≡ maxx∈C
{
d′(F, x)z

}
, where d′(F, x) is the distance of x to the ℓthx

closest facility location in F . Therefore, the problem does not satisfy Definition 16 of the

constrained k-supplier problem. We reduce an arbitrary instance of the fault-tolerant k-supplier

problem to an instance of the chromatic k-supplier problem so that it satisfies the constrained

k-supplier framework. The reduction is the same as the one used by Ding and Xu [72] for

the k-median/means objective. Let I = (L,C, k, d, z, Sx) be any instance of the fault-tolerant
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# Problem Description

1.
r-Gather k-supplier
problem

Given k positive integers: r1, . . . , rk, find clustering O = {O1, ..., Ok}
with minimum Ψ∗(O) such that for all i, |Oi| ≥ ri

.

2.
r-Capacity k-supplier
problem

Given k positive integers: r1, . . . , rk, find clustering O = {O1, ..., Ok}
with minimum Ψ∗(O) such that for all i, |Oi| ≤ ri

3.
Balanced k-supplier
problem

Given positive integers: ℓ1, . . . , ℓk, and r1, . . . , rk, find clustering
O = {O1, ..., Ok} with minimum Ψ∗(O) such that for all i, ℓi ≤ |Oi| ≤ ri

4.
Chromatic k-supplier
problem

Given that every client has an associated color, find a clustering
O = {O1, ..., Ok} with minimum Ψ∗(O) such that for all i, Oi should
not have any two points with the same color.

5.
Fault-tolerant
k-supplier problem

Given positive integer lx ≤ k for every client x ∈ C, find a set F
of k centers, such that the maximum assignment cost of x to
lthx closest facility is minimized.

6.
Strongly private
k-supplier problem

Given a partitioning C1, . . . , Cω of the client set C, and a set of integers:
{ℓ1, . . . , ℓω}, find a clustering O = {O1, ..., Ok} with minimum Ψ∗(O)
that satisfies |Cj ∩Oi| ≥ ℓj for every i ∈ [k] and j ∈ [ω].

7.
ℓ-Diversity k-supplier
problem

Given a partitioning C1, . . . , Cω of the client set C, a real number ℓ > 1,
find a clustering O = {O1, ..., Ok} with minimum Ψ∗(O) such that
the fraction of points belonging to the same partition inside Oi is ≤ 1/ℓ.

8.
Fair k-supplier
problem

Given ω color classes C1, . . . , Cω (not necessarily disjoint), such that
every Cj is a subset of the client set C, and two fairness vectors
α, β ∈ [0, 1]ω, find a clustering O = {O1, . . . , Ok} with minimum Ψ∗(O)
such that it satisfies that βj · |Oi| ≤ |Oi ∩ Cj| ≤ αj · |Oi| for every
i ∈ [k] and j ∈ [ω].

Table 2.1: List of constrained k-supplier problems with FPT time partition algorithms (see
Section 2.5).

k-supplier problem, where Sx = {ℓx | x ∈ C} is a set of integers for the clients in C. Firstly,

we color each client in C with different color. This coloring is given by a bijective function

f : C → R, where R = {r1, . . . , r|C|} is a set of |C| different colors. Then, we create ℓx copies

of each client x and assign each copy the same color as x. Let C ′ be this new client set and

color on a client is denoted by function g : C ′ → R. This completes the construction of the

chromatic k-supplier instance. Let this new instance be I ′ = (L,C ′, k, d, z, g). Now, we show

the following lemma:

Lemma 1. Let I = (L,C, k, d, z, Sx) be any instance of the fault-tolerant k-supplier problem



32 Tight FPT Approximation for Constrained k-Center/Supplier

and I ′ = (L,C ′, k, d, z, g) be the corresponding instance of the chromatic k-supplier problems

as defined above. For any set F = {f1, . . . , fk} of facility locations, the fault-tolerant k-

supplier cost of C with respect to F is the same as the chromatic k-supplier cost of C ′ with

respect to F .

Proof. The fault-tolerant k-supplier cost of C with respect to F is maxx∈C
{
d′(F, x)z

}
, where

d′(F, x) is the distance of x to its ℓthx closest facility location in F . Now, let us evaluate the

chromatic k-supplier cost of C ′. For a client x ∈ C, let {x1, . . . , xℓx} denote the copies of

x in C ′. These copies share the same color. By the definition of the chromatic k-supplier

problem, a cluster can not contain two clients of the same color. In other words, {x1, . . . , xℓx}

must get assigned to different facility locations in F . Since all these clients are co-located, the

assignment cost is minimized when each of them is assigned to one of the ℓx closest facility

locations in F . Without loss of generality, let xℓx is the client that is assigned to ℓthx closest

facility location in F . Note that, xℓx has the maximum assignment cost among {x1, . . . , xℓx}.

This cost is the same as the assignment cost of x ∈ C in the fault-tolerant k-supplier instance.

Therefore, the overall chromatic k-supplier cost of the clients in C ′ is: maxx∈C
{
d′(F, x)z

}
.

This cost is the same as the fault-tolerant k-supplier cost of C with respect to F . This completes

the proof of the lemma.

From the above lemma, we can also say that any α-approximate solution to the reduced chro-

matic k-supplier instance is also an α-approximate solution to the original fault-tolerant k-

supplier instance, and vice-versa.

Now, we describe a general algorithmic technique to solve any problem that satisfies the defi-

nition of the constrained k-supplier problem. More precisely, we show that any constrained

k-supplier problem can be solved using two basic ingredients: the list k-supplier problem

and a partition algorithm. The notion of the list k-supplier problem was formalized by Bhat-

tacharya et al. [28] in the context of the k-median and k-means objectives. We extend the notion
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to the k-supplier objective as follows:

Definition 17 (List k-Supplier). Let I = (L,C, k, d, z) be any instance of the k-supplier prob-

lem. The goal of the problem is: given I, find a list L of k-center-sets (i.e., each element of the

list is a set of k elements from L) such that for any partitioning O = {O1, . . . , Ok} of the client

set C, the list L contains a k-center-set F such that Ψ(F,O) ≤ α · Ψ∗(O) for α = 3
z
. For the

k-center objective α = 2
z
.

Furthermore, we define a partition algorithm as follows:

Definition 18 (Partition Algorithm). Let I = (L,C, k, d, z) be any instance of the k-supplier

problem, and let S = {O1,O2, . . . ,Ot} be a collection of clusterings of C. Given a center

set F ⊆ L, a partition algorithm outputs a clustering in S that has the least clustering cost

Ψ(F,O) with respect to F .

Note that the set S differs for different constrained k-supplier problems; therefore, the parti-

tion algorithm differs for different constrained k-supplier problems. The simplest example of

the partition algorithm is for the unconstrained k-supplier problem. For the unconstrained k-

supplier problem, the set S is the collection of all possible k-partitionings of C and the partition

algorithm is simply the standard Voronoi partitioning algorithm. In other words, the algorithm

assigns a client to its closest facility location in F , and the obtained partitioning has the least

clustering cost with respect to F .

Suppose we have an algorithm for the list k-supplier problem and a partition algorithm for a

particular constrained k-supplier problem. Then we can obtain an approximation algorithm for

that constrained k-supplier problem. The following theorem proves this result:

Theorem 12. Let I = (L,C, k, d, z, S) be any instance of the constrained k-supplier problem,

and let AS be a partition algorithm for S with running time TA. Let B be any algorithm for

the list k-supplier problem with running time TB. Then, there is an algorithm that outputs a
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clustering O ∈ S that is an α-approximate solution for the constrained k-supplier instance I.

For the k-supplier objective, α = 3
z
, and for the k-center objective, α = 2

z
. Moreover, the

running time of the algorithm is O(TB + |L| · TA).

Proof. The algorithm is simple. We first run algorithm B to obtain a list L. For every k-center-

set in the list, the algorithm runs the partition algorithm AS on it. Then the algorithm outputs

a center set that gives the minimum clustering cost. Let F ′ be this k-center-set and O′ be the

corresponding clustering. We claim that (F ′,O′) is an α-approximation for the constrained

k-supplier problem.

Let O∗ be an optimal solution for the constrained k-supplier instance (L,C, k, d, z, S) and F ∗

denote the corresponding k-center-set. By the definition of the list k-supplier problem there is

a k-center-set F in the list L, such that Ψ(F,O∗) ≤ α ·Ψ(F ∗,O∗). Let O = AS(F ) ∈ S be the

optimal clustering corresponding to F . Thus, Ψ(F,O) ≤ α · Ψ(F ∗,O∗). Since (F ′,O′) gives

the minimum cost clustering in the list, we have Ψ(F ′,O′) ≤ Ψ(F,O). Therefore, Ψ(F ′,O′) ≤

α ·Ψ(F ∗,O∗).

The running time analysis is also simple. TB is the time to obtain the list L. Then, the algorithm

runs the partition procedure AS for every center set in the list; the running time of this step is

|L| · TA. Picking a minimum cost clustering from the list takes O(|L|) time. Hence the overall

running time is O(TB + |L| · TA).

The goal now becomes to design an algorithm for the list k-supplier problem and the partition

algorithms for different constrained k-supplier problems. In Section 2.4, we design an FPT

time algorithm for the list k-supplier problem. Formally, we state the result as follows:

Theorem 13. Given an instance I = (L,C, k, d, z) of the k-supplier problem. There is an

algorithm for the list k-supplier problem that outputs a list L of size at most kO(k) ·n. Moreover,

the running time of the algorithm is kO(k) · n+O(n2 log n), which is FPT in k.
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Using Theorems 12 and 13, we further obtain the following two corollaries:

Corollary 1 (Main Result). For any constrained version of the k-supplier problem that has a

partition algorithm with running time T , there exists a 3
z

approximation algorithm with running

time T · kO(k) · n+O(n2 log n).

Corollary 2 (Main Result). For any constrained version of the k-center problem that has a

partition algorithm with running time T , there exists a 2
z

approximation algorithm with running

time T · kO(k) · n+O(n2 log n).

The remaining task is designing partition algorithms for different constrained k-supplier prob-

lems. Note that all the problems described in Table 2.1 satisfy the definition of the constrained

k-supplier problem. Furthermore, in Section 2.5, we design FPT time partition algorithms for

these problems. Therefore, the above two corollaries imply FPT time 3
z

and 2
z

approxima-

tion algorithms for these problems. For the first six problems in Table 2.1, the running time of

the partition algorithms is kk · nO(1). For the seventh problem in the table, i.e., the ℓ-diversity

k-supplier problem, the running time of the partition algorithm is (ωk)ωk · nO(1). For the last

problem in the table, i.e., the fair k-supplier problem, the running time of the partition algo-

rithm is (kΓ)O(kΓ) · nO(1), where Γ is the number of distinct collection of color classes induced

by the colors of clients. We define the notation Γ more clearly in Section 2.5.2. Thus, we get

FPT time 3
z

and 2
z

approximation guarantees for these problems with respect to k-supplier

and k-center objectives, respectively. Formally, we state these results as follows:

Theorem 14. There is an FPT time 3
z

approximation algorithm for the following constrained

versions of the k-supplier problem:

1. r-gather k-supplier problem 2. r-capacity k-supplier problem

3. Balanced k-supplier problem 4. Chromatic k-supplier problem

5. Fault-tolerant k-supplier problem 6. Strongly private k-supplier problem

The running time of the algorithm is kO(k) · nO(1). Furthermore, for the k-center version, the

approximation guarantee is 2
z
.
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All the abovementioned problems generalize the unconstrained k-supplier and k-center prob-

lems. Therefore, from Theorems 10 and 11, it follows that better approximation guarantees

are not possible for the above problems in FPT time assuming ETH or W[2] ̸= FPT. Thus, it

settles the complexity of the above problems, parameterized by k. For the ℓ-diversity and fair

k-supplier problems, we obtain the following results:

Theorem 15. There is FPT time 3
z

and 2
z

approximation algorithms for the ℓ-diversity k-

supplier and k-center problems, respectively, with running time (kω)O(kω) · nO(1).

Theorem 16. There is FPT time 3
z

and 2
z

approximation algorithms for the fair k-supplier

and k-center problems, respectively, with running time (kΓ)O(kΓ) · nO(1), where Γ denote the

number of distinct collection of color classes induced by the colors of clients. Moreover, if

the color classes are pair-wise disjoint, then Γ = ω, and the running time of the algorithm is

(kω)O(kω) · nO(1).

The ℓ-diversity k-supplier problem for ω = 1 and ℓ = 1, is equivalent to the unconstrained k-

supplier problem. Also, the fair k-supplier problem for ω = 1, βj = 0, and αj = 1, is equivalent

to the unconstrained k-supplier problem. Therefore, better approximation guarantees are not

possible for these problems in FPT time parameterized by k and Γ (or ω). The statement simply

follows from Theorems 10 and 11.

We extend the constrained k-supplier framework to the outlier setting in the next subsection.

The discussion is analogous to the above discussion.

2.1.2 Constrained k-supplier framework with outliers

In practical scenarios, it often happens that a few clients are located at faraway locations from

the majority of the clients. These clients are called outliers. The presence of outliers forces

the algorithm to open the facilities close to the outliers. Due to this, the majority of the clients

have to pay high assignment costs. This leads to poor clustering of the dataset. To overcome
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this issue, we cluster the dataset without the outliers. This gives rise to the outlier k-supplier

problem. A mathematical formulation of the problem was given by Charikar et al. [40] for

which they gave a polynomial time 3-approximation algorithm. The following is the definition

of the outlier k-supplier problem:

Definition 19 (Outlier k-Supplier). Let (X , d) be a metric space. Let k and m be any positive

integers, and z be any positive real number. Given a set L ⊆ X of feasible facility locations,

and a set C ⊆ X of clients, find a subset Z ⊆ C of size at most m clients and a set F ⊆ L of

k facilities such that the k-supplier cost of C ′ := C \ Z is minimized: supplier-cost(F,C ′) ≡

maxj∈C′

{
mini∈F

{
d(i, j)z

}}
.

Similarly, we generalize the definition of constrained k-supplier problem to its outlier version,

as follows:

Definition 20 (Constrained Outlier k-Supplier Problem). Let (L,C, k, d, z,m) be any instance

of the outlier k-supplier problem and S be any collection of partitionings such that any parti-

tioning O ∈ S is a partitioning of some subset C ′ ⊆ C of size at least |C|−m. Find a clustering

O = {O1, O2, . . . , Ok} in S, that minimizes the objective function: Ψ∗(O) ≡ min
k-center-set F

Ψ(F,O).

Furthermore, we define the list outlier k-supplier problem and outlier partition algorithm, as

follows:

Definition 21 (List Outlier k-Supplier). Let I = (L,C, k, d, z,m) be any instance of the outlier

k-supplier problem and S be the collection of all possible k-partitionings of every subset C ′ ⊆

C of size at least |C| −m. Find a list L of k-center-sets (i.e., each element of the list is a set of

k elements from L) such that for any partitioning O ∈ S, the list L contains a k-center-set F

such that Ψ(F,O) ≤ α ·OPT (O) for α = 3
z
. For the k-center version α = 2

z
.

Definition 22 (Outlier Partition Algorithm). Let I = (L,C, k, d, z,m,S) be any instance of the

constrained outlier k-supplier problem. Given a center set F , an outlier partition algorithm

outputs a clustering in S that has the least clustering cost with respect to F .
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Suppose we have an algorithm for the list outlier k-supplier problem and a partition algorithm

for a particular constrained outlier k-supplier problem. Then, we can obtain an approximation

algorithm for that constrained outlier k-supplier problem. The following theorem state this

result and is analogous to Theorem 12 for the non-outlier version.

Theorem 17. Let I = (L,C, k, d, z,m,S) be any instance of the constrained outlier k-supplier

problem, and let AS be any outlier partition algorithm for S with running time TA. Let B

be any algorithm for the list outlier k-supplier problem with running time TB. Then, there

is an algorithm that outputs a clustering O ∈ S that is an α-approximate solution for the

constrained outlier k-supplier instance I. For the k-supplier objective, α = 3
z
, and for the

k-center objective, α = 2
z
. Moreover, the running time of the algorithm is O(TB + |L| · TA).

Proof. The proof is analogous to Theorem 12.

We design an FPT time algorithm for the list outlier k-supplier problem, parameterized by k

and m. Formally, we state the result as follows:

Theorem 18. Given an instance I = (L,C, k, d, z,m) of the outlier k-supplier problem. There

is an algorithm for the list outlier k-supplier problem that outputs a list L of size at most

(k +m)O(k) · n. Moreover, the running time of the algorithm is (k +m)O(k) · n+O(n2 log n),

which is FPT in k and m.

Using Theorems 17 and 18, we obtain the following two corollaries:

Corollary 3 (Main Result). For any constrained version of the outlier k-supplier problem that

has a partition algorithm with running time T , there exists a 3
z

approximation algorithm with

running time T · (k +m)O(k) · n+O(n2 log n).

Corollary 4 (Main Result). For any constrained version of the outlier k-center problem that

has a partition algorithm with running time T , there exists a 2
z

approximation algorithm with

running time T · (k +m)O(k) · n+O(n2 log n).
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We consider the outlier versions of all the problems described in Table 2.1. In Section 2.5, we

design FPT time partition algorithms for the outlier versions of all these problems. Thus, we

get FPT time 3
z

and 2
z

approximation algorithm for these problems with respect to the outlier

k-supplier and k-center objectives, respectively. Formally, we state the results as follows:

Theorem 19. There is an FPT time 3
z

approximation algorithm for the following constrained

versions of the outlier k-supplier problems:

1. r-gather outlier k-supplier problem 2. r-capacity outlier k-supplier problem

3. Balanced outlier k-supplier problem 4. Chromatic outlier k-supplier problem

5. Fault-tolerant outlier k-supplier problem 6. Strongly private outlier k-supplier problem

The running time of the algorithm is (k+m)O(k) ·nO(1). Furthermore, for the k-center version,

the approximation guarantee is 2
z
.

All the abovementioned problems generalize the unconstrained outlier k-supplier and k-center

problems. Unsurprisingly, better approximation guarantees are not possible for these problems

in FPT (in k and m) time, assuming ETH. We give a formal proof of this result in Section 2.7.

Thus, it settles the complexity of the abovementioned k-supplier problems, parameterized by k

and m. For the ℓ-diversity and fair outlier k-supplier problems, we obtain the following results:

Theorem 20. There is FPT time 3
z

and 2
z

approximation algorithms for the ℓ-diversity outlier

k-supplier and k-center problems, respectively, with running time (kω)O(kω) ·(k+m)O(k) ·nO(1).

Theorem 21. There is FPT time 3
z

and 2
z

approximation algorithms for the fair outlier k-

supplier and k-center problems, respectively, with running time (kΓ)O(kΓ) · (k+m)O(k) · nO(1),

where Γ denote the number of distinct collection of color classes induced by the colors of

clients. Moreover, if the color classes are pair-wise disjoint, then Γ = ω, and the running time

of the algorithm is (kω)O(kω) · (k +m)O(k) · nO(1).

The ℓ-diversity outlier k-supplier problem for m = 0, ω = 1, and ℓ = 1, is equivalent to the

unconstrained k-supplier problem. Also, the fair outlier k-supplier problem for m = 0, ω = 1,



40 Tight FPT Approximation for Constrained k-Center/Supplier

βj = 0, and αj = 1, is equivalent to the unconstrained k-supplier problem. Therefore, better

approximation guarantees are not possible for these problems in FPT time parameterized by

m, k, and Γ (or ω). The statement simply follows from Theorems 10 and 11.

Note that when the number of outliers is 0, any constrained version of the outlier k-supplier

problem simply corresponds to its non-outlier variant. Therefore, in Section 2.4, we simply de-

sign an algorithm for the list outlier k-supplier problem, and in Section 2.5, we design partition

algorithms for the outlier versions of the constrained k-supplier problems. That would imply

the results for their non-outlier counterparts too. In the next section, we discuss the known

results for all the problems described in Table 2.1.

2.2 Related Work
In this section, we mention the best-known results for different constrained k-supplier problems

that we study in this paper. These results are summarized in Table 2.2.

We want to point out that the r-gather, r-capacity, and balanced k-supplier problems that we

study in this paper impose cluster-wise constraints. However, the alternate definitions of the r-

gather, r-capacity, and balanced k-supplier problems impose constraints on individual facility

locations. Formally, the balanced k-supplier problem with location-wise constraints is defined

as follows:

Definition 23 (Balanced k-Supplier Problem with Location-Wise Constraints). Given an in-

stance I = (L,C, k, d, z) of the k-supplier problem, a lower bound function g : L → Z+, and

an upper bound function h : L→ Z+, find a set F ⊆ L of k facility and assignment ϕ : C → L

that minimizes the assignment cost maxx∈C
{
d(x, ϕ(x))z

}
and satisfies that g(f) ≤ |ϕ−1(f)| ≤

h(f) for every facility location f ∈ F .

1Bera et al. [26] did not explicitly mention the results for the ℓ-diversity clustering problem. However, the
results follow from [26] since the ℓ-diversity problem is a special case of fair clustering problem with disjoint
color classes as noted by Bandyapadhyay et al. [21].
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# Problem k-Supplier Objective k-Center Objective

Without Outliers With Outliers Without Outliers With Outliers

1.

r-Gather Clustering
(non-uniform version
with cluster-wise constraint)

- - - -

r-Gather Clustering
(uniform version)

3 [10]
(polynomial time)

5 [10]
(polynomial time)

2 [5]
(polynomial time)

4 [5]
(polynomial time)

2.

r-Capacity Clustering
(non-uniform version
with cluster-wise constraint)

- - - -

r-Capacity Clustering
(uniform version)

9 [73]
(polynomial time)

13 [62]
(polynomial time)

5 [102]
(polynomial time)

13 [62]
(polynomial time)

3.

Balanced Clustering
(non-uniform version
with cluster-wise constraint)

- - - -

Balanced Clustering
(uniform version)

9 [73]
(polynomial time)

13 [73]
(polynomial time)

6 [73]
(polynomial time)
4 [68]
(FPT time)

13 [73]
(polynomial time)

4. Chromatic Clustering - - - -

5.
Fault Tolerant Clustering
(non-uniform version)

- - - -

Fault Tolerant Clustering
(uniform version)

3 [103]
(polynomial time)

-
2 [103]
(polynomial time)

6 [95]
(polynomial time)

6.
Strongly Private
Clustering

5 [127]
(polynomial time)

-
4 [127]
(polynomial time)

-

7. ℓ-Diversity Clustering 1 (5,3) [26]
(polynomial time)

-
(3,3) [93]
(polynomial time)

-

8.
Fair Clustering
(disjoint color classes)

(5,3) [26]
(polynomial time)

-
(3,3) [93]
(polynomial time)

-

Fair Clustering
(overlapping color classes)

(5, 4∆ + 3)
[26]
(polynomial time)

-
(3, 4∆ + 3)
[93]
(polynomial time)

-

Table 2.2: The known results for the constrained k-supplier/center problems with and without
outliers for z = 1. We only mention the results for the soft assignment version of the problems;
however, some of these results also hold for the hard assignment version that we did not men-
tion explicitly for the sake of simplicity. No polynomial time constant factor approximation
algorithm is known for the ℓ-diversity and fair clustering problems. The algorithms of [26]
and [93] give 5 and 3 approximation guarantees corresponding to the k-supplier and k-center
objective respectively; however, they violate the fairness constraint by an additive factor of
4∆ + 3, where ∆ denotes the maximum number of color classes a client can be part of. When
the color classes are disjoint, the algorithms violate the fairness constraint by an additive factor
of 3.
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The above definition also encapsulates the r-gather and r-capacity k-supplier problems with

location-wise constraints. For the r-gather problem, h(f) = |C| for every facility location

f ∈ L, and for the r-capacity problem, g(f) = 0 for every facility location f ∈ L. Moreover,

when every facility location has the same values of g(f) and h(f), then the problems are known

as the uniform r-gather, r-capacity, and balanced k-supplier problems. It is easy to see that for

the uniform version, the problem with location-wise constraints is equivalent to the problem

with cluster-wise constraints. In other words, Definition 23 is the same as the definition given

in Table 2.1 for the uniform case. To the best of our knowledge, the non-uniform variant of the

problem with cluster-wise constraints has not been studied before. Furthermore, we believe that

it is non-trivial to obtain any polynomial time reduction between the problems with cluster-wise

constraints and location-wise constraints.

From Table 2.2, we note that most known approximation algorithms have polynomial running

time; however, they give much worse approximation guarantees than 3 and 2 for the k-supplier

and k-center versions, respectively. Furthermore, the approximation guarantees worsen for the

outlier version of these problems. Among the FPT time algorithms, the only known result is due

to Hu Ding [68] for the uniform balanced k-center problem without outliers. The author used

the classical 2-approximation algorithm of Teofilo F. Gonzalez [84] as a subroutine to obtain the

FPT time 4-approximation algorithm for the problem. The algorithms of [26] and [27] convert

an α-approximate solution of the unconstrained k-supplier problem to an (α+ 2)-approximate

solution of the fair k-supplier problem (problem 8 in Table 2.1) in polynomial time. These

are, however, not generalized to the outlier and constrained clustering settings. Moreover, the

algorithms do not give a tight approximation guarantee since α = (1+ ε)-approximate solution

for the unconstrained k-supplier problem is not possible with only k centers. We approach the

constrained problems through bi-criteria approximation for the unconstrained k-supplier prob-

lem. The bi-criteria relaxation allows us to obtain α = (1+ ε)-approximation using O(k log n)

centers. On the other hand, we show that from the point of view of tight approximation guar-
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antees, a bi-criteria approximation is not too restrictive. In particular, we show that any bi-

criteria solution contains an approximate solution (i.e., k centers) for the constrained version

of the problem. This gives a 3-approximation for the fair k-supplier problem in FPT time. In

Section 2.4, we describe the algorithm in detail. Note that our algorithm holds for both the

k-supplier and k-center objectives with and without outliers. Moreover, our algorithm works

for several other constrained clustering problems described in Table 2.1, and we expect this list

to grow further when new interesting problems are discovered. Moreover, these are the best ap-

proximation guarantees possible for these problems, parameterized by k (and m for the outlier

version). Next, we discuss the known results for each of the problems mentioned in Table 2.1

in more detail:

1. r-gather k-supplier problem: For the r-gather k-supplier problem with and without

outliers, Ahmadian and Swamy [10] gave 5 and 3 approximation algorithms, respectively

(see Theorems 15 and 16 of [10]). The running time of their algorithm is polynomial in

the input size, and it also holds for the non-uniform variant of the problem with location-

wise constraints. For the r-gather k-center problem (with uniform lower bounds) with and

without outliers, Aggarwal at al. [5] gave 4 and 2 approximation algorithms, respectively

(see Section 2.4 of [5]). The running time of their algorithm is polynomial in the input

size.

2. r-capacity k-supplier problem: For the r-capacity k-supplier and k-center problems

(without outliers), An et al. [14] gave 11 and 9 approximation algorithms, respectively

(see Theorems 1 and 6 of [14]). Their algorithm is polynomial time and also works

for the non-uniform variant of the problem with location-wise constraints. For the r-

capacity k-supplier problem (without outliers) with uniform upper bounds, Khuller and

Sussmann [102] gave 5 approximation algorithm.2 For the outlier version, Cygan and

2The authors call the soft assignment version of the r-capacity k-center problem as the capacitated multi-k-
center problem.
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Kociumaka [62] gave a 25-approximation algorithm for the r-gather k-supplier and k-

center problems with non-uniform upper bounds imposed on facility locations. More-

over, the authors improved the approximation guarantee to 13 for the uniform r-gather

k-supplier and k-center problems with outliers (see Theorem 1 and Corollary 1 of Theo-

rem 1 of [62]). All the abovementioned algorithms have polynomial running time.

3. Balanced k-supplier problem: For the balanced k-supplier/center problem with non-

uniform lower and upper bounds, no constant factor approximation is known yet. How-

ever, for the uniform lower bounds and non-uniform upper bounds on locations (with-

out outliers), Ding et al. [73] gave 13 and 9 approximation algorithms for the balanced

k-supplier and k-center problems, respectively. Furthermore, for the same variant, the

authors gave a 25 approximation algorithm for both the balanced k-supplier and k-center

problems with outliers. For the uniform lower bounds and uniform upper bounds (with-

out outliers), the authors improved the approximation bounds to 9 and 6 for the balanced

k-supplier and k-center problems, respectively. Furthermore, for the same variant, the

authors gave a 13 approximation algorithm for both the balanced k-supplier and k-center

problems with outliers. All the abovementioned algorithms have polynomial running

time.

For the balanced k-center problem (without outliers) with uniform lower and upper bounds,

Hu Ding [68] gave a 4-approximation algorithm with FPT running time kO(k) · nO(1). In

this work, we improve this approximation guarantee to 2. Furthermore, we give FPT

time 3-approximation algorithm for the balanced k-supplier problem.

4. Chromatic k-supplier problem: For the chromatic k-supplier problem, no constant fac-

tor approximation is known yet. However, for the k-median and k-means objectives, FPT

time approximation algorithms are known in the continuous Euclidean space and general

discrete metric spaces [72, 70, 21].

5. Fault-tolerant k-supplier problem: In the fault-tolerant k-supplier problem, given a
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facility set F ⊆ L, the cost of a client x ∈ C is proportional to the distance to its

ℓx closest facility location in F . If ℓx is the same for every x in C, then we call the

problem the uniform fault-tolerant k-supplier problem. On the other hand, if ℓx is not

the same for every x, then we call the problem the non-uniform fault-tolerant k-supplier

problem. For the non-uniform version, no constant factor approximation is known yet.

However, for the uniform fault-tolerant k-supplier and k-center problem (without out-

liers), Khuller et al. [103] gave 3 and 2 approximation algorithms, respectively. Recently,

Inamdar and Varadarajan gave a 6 approximation algorithm for the uniform fault-tolerant

k-center problem with outliers. However, no constant factor approximation is known for

the uniform fault-tolerant k-supplier problem with outliers.

6. Strongly private k-supplier problem: This problem has recently been proposed by

Rösner and Schmidt [127]. The authors gave 5 and 4 approximation algorithms for the

k-supplier and k-center versions, respectively, without outliers. No constant factor ap-

proximation algorithm is known for the problem with outliers.

7. ℓ-diversity k-supplier problem: Bandyapadhyay et al. [21] noted that the ℓ-diversity

clustering problem is a special case of the fair clustering problem when the color classes

are disjoint, and αj = 1/ℓ and βj = 0 for every color class Cj ∈ {C1, . . . , Cω}. There-

fore, the problem admit 7 and 5 approximation algorithms for the k-supplier and k-center

versions, respectively, without outliers [27]; however, the algorithms violate the con-

straint by an additive factor of 3, i.e., 0 ≤ |Oi ∩ Cj| ≤ |Oi|/ℓ + 3 for every cluster

Oi ∈ {O1, . . . , Ok} and color class Cj ∈ {C1, . . . , Cω}.

Another variant of the ℓ-diversity clustering problem was proposed by Li et al. [110].

Given an integer constant ℓ ≥ 0, the task is to find a clustering O = {O1, ..., Ot} of the

client set C with minimum Ψ∗(O) such that for every cluster Oi, |Oi| ≥ ℓ and Oi should

not have any two clients with the same color. Note that, unlike other clustering problems,

here, we do not have any restriction on the number of open centers. The authors gave a 2
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approximation algorithm for the problem for L = C.

8. Fair k-supplier problem: In this problem, we are given ω color classes: C1, . . . , Cω

that are subsets of the client set C and two fairness vectors α, β ∈ [0, 1]ω. When the

color classes are pair-wise disjoint and αj = βj = |Cj|/|C|, then 7 and 5 approximation

algorithms are known for the k-supplier and k-center versions, respectively, without out-

liers [27]. On the other hand, when the color classes are not necessarily disjoint, no true

constant factor approximation algorithm is known yet. The existing algorithms give 5

and 3 approximation guarantees for the k-supplier and k-center objectives, respectively;

however, they violate the fairness constraint by an additive factor of 4∆ + 3, where ∆

denote the maximum number of groups a client can be part of [26, 93].

2.3 Notations
Let I = (L,C, k, d, z,m) denote any instance of the unconstrained outlier k-supplier problem.

For the non-outlier version, m = 0. Let F ⊆ L be any given center set. Let C ′ be any subset of

C. Then, we define the unconstrained k-supplier cost of C ′ as:

supplier-cost(F,C ′) ≡ max
x∈C′

{
d(F, x)z

}
, where d(F, x) = min

f∈F

{
d(f, x)

}
.

If F is a singleton set {f}, then we simply use the notation: supplier-cost(f, C ′) instead of

supplier-cost({f}, C ′). Let Z∗ denote an optimal set of outliers, and F ∗ denote an optimal

k-center set for the unconstrained outlier k-supplier instance I. Then, we denote the optimal

unconstrained outlier k-supplier cost of the instance by OPT.

That is, OPT ≡ supplier-cost(F ∗, C \ Z∗).

Let O = {O1, . . . , Ok} be any partitioning of a subset C ′ of C. Let F be a set of facility

locations. Let f ∗
i be a facility in F that minimizes the 1-supplier cost of partition Oi. Then, the

k-supplier cost of O with respect to the facility set F is given as follows:
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Ψ(F,O) ≡ k
max
i=1

{
max
x∈Oi

{
d(x, f ∗

i )
z
}}

.

In other words, a partition Oi is completely assigned to the facility location f ∗
i in F , and the

cost of every client in Oi is measured with respect to f ∗
i . Then, Ψ(F,O) is simply the maximum

assignment cost over all the clients. Furthermore, the optimal k-supplier cost of O is given as

follows: Ψ∗(O) ≡ min
k-center-set F

Ψ(F,O).

2.4 Algorithm for List Outlier k-Supplier
In this section, we design an FPT (in m and k) time algorithm for the list outlier k-supplier

problem with running time (k + m)O(k) · nO(1). It implies a kO(k) · nO(1) time algorithm for

the list k-supplier problem without outliers. The algorithm is surprisingly simple. Let I =

(L,C, k, d, z,m) be any instance of the outlier k-supplier problem. The algorithm consists of

the following two parts:

1. A (1, O(lnn)) bi-criteria approximation algorithm for the outlier k-supplier problem.

The algorithm outputs a set S ⊆ L of O(k lnn) facilities and a set of Z ⊆ C of m

outliers such that every client in C \Z has assignment cost at most the optimal cost OPT

of the outlier k-supplier instance I.

2. For every outlier x in Z, let g(x) denote a facility in L that is closest from x. Let G =

{g(x) | x ∈ Z} be the set of such facilities. Let C ′ be any arbitrary subset of C of size at

least |C| −m. We then show that for any arbitrary partitioning O of C ′, there exists a k-

sized subset S ′ ⊆ S∪G that gives 3
z

approximation for O. Therefore, we create a listL of

all possible k-sized subsets of S∪G. The listL is the required solution to the list outlier k-

supplier problem. Moreover, the size of the list is |L| ≤ O(m+k lnn)k = (k+m)O(k)n.

We discuss the above two parts in more detail in Sections 2.4.1 and 2.4.2, respectively.
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2.4.1 Bi-criteria approximation

In this subsection, we design a (1, O(lnn)) bi-criteria approximation algorithm for the outlier

k-supplier problem. An (α, β) bi-criteria approximation algorithm is defined as follows:

Definition 24 (Bi-criteria Approximation). Let I = (L,C, k, d, z,m) be any instance of the

outlier k-supplier problem. An (α, β) bi-criteria approximation algorithm is an algorithm that

outputs a set F ′ ⊆ L of βk facilities and a set Z ′ ⊆ C of at most m outliers such that the cost

of the client set C \ Z ′ with respect to F ′ is at most α times the optimal cost of the instance.

That is,

supplier-cost(F ′, C \ Z ′) ≤ α · min
k-center-set F and |Z| ≤ m

{
supplier-cost(F,C \ Z)

}
= α · OPT

In the following lemma, we design an (α, β) bi-criteria approximation algorithm for the prob-

lem with α = 1 and β = O(lnn).

Lemma 2. Let I = (L,C, k, d, z,m) be any instance of the outlier k-supplier problem. Then, a

(1, O(lnn)) bi-criteria approximation algorithm exists for the problem. Moreover, the running

time of the algorithm is O(n2 log n).

Proof. We reduce the outlier k-supplier instance to a max k-coverage instance. Some sim-

ilar reductions have been previously carried out in the following works: [60, 134]. A max

k-coverage instance is denoted by (U,C , k), where U denotes the universal set and the set C is

a collection of subsets of U . The task of the max k-coverage problem is to select at most k sets

from C whose union covers the maximum number of elements from U . For now, assume we

know the optimal cost OPT of the outlier k-supplier instance. We then create a max k-coverage

instance (U,C , k), where U corresponds to the client set C. In other words, for every client

j ∈ C, there is an element ej in U . The set C corresponds to the facility location set L. That

is, for every facility location f ∈ L, there is a set Sf ∈ C . Furthermore, an element ej belongs
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to a set Sf if and only if d(j, f)z ≤ OPT.

Since there are k facilities in L that gives the optimal cost OPT for at least |C|−m clients in C,

there exists k sets in C that cover all but m elements of U . For the max k-coverage problem,

there exists a standard polynomial-time greedy algorithm that selects O(k lnn) sets from C

that covers at least as many elements of U as covered by the optimal k sets (see Section 35.3

of [59]). We use this greedy algorithm on (U,C ) to obtain a collection C ′ ⊂ C of O(k lnn) sets

that covers at least |U | −m elements of U . Let F ′ be the set of facility locations corresponding

to C ′. Let C ′ be the clients covered by F ′. Then, every client in C ′ has an assignment cost of at

most OPT to one of the facilities in F ′. Therefore, F ′ is a (1, O(lnn)) bi-criteria approximate

solution to the problem and Z ′ = C \ C ′ is the set of at most m outlier points.

The only remaining task is to guess the value OPT of the optimal solution. Since there are at

most |L| · |C| possible distances between a client and facility, we execute the greedy algorithm

for every possibility. We choose the smallest distance for which the greedy algorithm outputs

at most O(k lnn) sets and covers at least |U | −m elements of U . The overall running time of

the algorithm is polynomial in n. It can further be improved by performing a binary search on

the |L| · |C| possible distances. More precisely, the reduction to the max k-coverage instance

and the greedy algorithm both take O(n2) time. After that, O(log n) multiplicative factor due to

binary search gives the overall time of O(n2 log n) for the algorithm. This completes the proof

of the lemma.

The above algorithm also applies to the outlier k-center problem since the outlier k-center

problem is a special case of the outlier k-supplier problem. Next, we convert the bi-criteria

approximation algorithm to a list outlier k-supplier/center algorithm.
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2.4.2 Conversion: bi-criteria approximation to list outlier k-supplier algo-

rithm

We prove the following lemma.

Lemma 3. Let I = (L,C, k, d, z,m) be any instance of the outlier k-supplier problem. Let S

be any (1, O(lnn)) bi-criteria approximate solution of I and let Z be the corresponding set of

at most m outliers. Let g(x) denote a facility location in L that is closest to an outlier x ∈ Z.

Let G = {g(x) | x ∈ Z} be the set of such facilities. Let C ′ be any subset of C of size at least

|C| −m. Then, for any arbitrary partitioning O = {O1, . . . , Ok} of C ′, there exists a k-sized

subset S ′ of S ∪G that gives 3
z

approximation for the cost of O. That is,

Ψ(S ′,O) ≤ 3
z ·Ψ∗(O).

Proof. Suppose that for every client in C, the closest facility location in S ∪ G is given by a

function h : C → S ∪ G. Let FO = {f1, . . . , fk} denote the optimal facility set of O such that

partition Oi is assigned to center fi. Let xi be any client in Oi. First, we observe that the cost

of assigning xi to facility h(xi) is at most Ψ∗(O). That is, d(xi, h(xi))
z ≤ Ψ∗(O). To prove

this statement, consider the case when xi ∈ Z. Then h(xi) = g(xi). In other words, h(xi) is

the facility location in L that is closest to xi. Therefore, d(xi, h(xi))
z ≤ d(xi, fi)

z ≤ Ψ∗(O).

On the other hand, if xi ∈ C \Z, then the assignment cost d(xi, h(xi))
z is at most OPT since S

is a (1, O(lnn)) bi-criteria approximate solution of I. And, therefore, d(xi, h(xi))
z ≤ OPT ≤

Ψ∗(O).

Now, we show that the set S ′ := {h(x1), . . . , h(xk)} is a 3
z

approximation to the clustering

cost of O. That is, Ψ(S ′,O) ≤ 3
z · Ψ∗(O). The proof follows from the following sequence of

inequalities:

Ψ(S ′,O) ≤ k
max
i=1

{
supplier-cost(h(xi), Oi)

}



Tight FPT Approximation for Constrained k-Center/Supplier 51

≤ k
max
i=1

{
max
x∈Oi

{
d(h(xi), x)

z
}}

≤ k
max
i=1

{
max
x∈Oi

{(
d(x, fi) + d(fi, xi) + d(xi, h(xi))

)z}}
(using triangle inequality)

≤ k
max
i=1

{
max
x∈Oi

{(
d(x, fi) + d(fi, xi) + Ψ∗(O)1/z

)z}}
≤ k

max
i=1

{
max
x∈Oi

{(
2 ·Ψ∗(O)1/z +Ψ∗(O)1/z

)z}}
≤ k

max
i=1

{
max
x∈Oi

{(
3 ·Ψ∗(O)1/z

)z}}
= 3

z
·Ψ∗(O)

This completes the proof of the lemma.

We show a similar result for the outlier k-center problem with an improved approximation

guarantee, as follows:

Lemma 4. Let I = (C,C, k, d, z,m) be any instance of the outlier k-center problem. Let S

be any (1, O(lnn)) bi-criteria approximate solution of I and let Z be the set of at most m

outliers. Let C ′ be any subset of C of size at least |C|−m. Then, for any arbitrary partitioning

O = {O1, . . . , Ok} of C ′, there exists a k-sized subset S ′ of S ∪ Z that gives 2
z

approximation

for the cost of O. That is,

Ψ(S ′,O) ≤ 2
z ·Ψ∗(O)

Proof. Suppose that for every client in C, the closest facility location in S ∪ Z is given by a

function h : C → S ∪ Z. Let FO = {f1, . . . , fk} ⊆ C denote the optimal facility set of O

such that partition Oi is assigned to facility fi. Note that fi is also a client location. Now,

observe that the cost of assigning a client fi to facility location h(fi) is at most Ψ∗(O). That

is, d(fi, h(fi))z ≤ Ψ∗(O). To prove this statement, consider the case when fi ∈ Z, then

h(fi) = fi. Therefore, d(fi, h(fi))z = 0 ≤ Ψ∗(O). On the other hand, if fi ∈ C \ Z, then the
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assignment cost d(fi, h(fi))z is at most the optimal cost OPT since S is a (1, O(lnn)) bi-criteria

approximate solution of I. And, therefore, d(fi, h(fi))z ≤ OPT ≤ Ψ∗(O).

Now, we show that the set S ′ := {h(f1), . . . , h(fk)} is a 2
z

approximation to the clustering

cost of O. That is, Ψ(S ′,O) ≤ 2
z · Ψ∗(O). The proof follows from the following sequence of

inequalities:

Ψ(S ′,O) ≤ k
max
i=1

{
supplier-cost(h(fi), Oi)

}
≤ k

max
i=1

{
max
x∈Oi

{
d(h(fi), x)

z
}}

≤ k
max
i=1

{
max
x∈Oi

{(
d(x, fi) + d(fi, h(fi))

)z}}
, (using triangle inequality)

≤ k
max
i=1

{
max
x∈Oi

{(
d(x, fi) + Ψ∗(O)1/z

)z}}
≤ k

max
i=1

{
max
x∈Oi

{(
Ψ∗(O)1/z +Ψ∗(O)1/z

)z}}
= 2

z
·Ψ∗(O)

This completes the proof of the lemma.

The above two lemmas give the following corollary for the list outlier k-supplier/center prob-

lem.

Corollary 5 (Main Result). Given any instance I = (L,C, k, d, z,m) of the outlier k-supplier

problem. There is an algorithm that outputs a list L of k-center-sets such that for any arbitrary

partitioning O of any subset C ′ of C of size at least |C| −m, there is a center set F in the list

that gives 3
z

approximation for the clustering cost of O. That is,

Ψ(F,O) ≤ α ·Ψ∗(O), for α = 3
z

For the outlier k-center instance I = (C,C, k, d, z,m), the approximation factor is α = 2
z
.

Moreover, the size of the list is at most (k +m)O(k) · n and the running time of the algorithm is
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(k +m)O(k) · n+O(n2 log n), which is FPT in k and m.

Proof. By Lemma 3, we have that there is a k-sized subset S ′ ⊆ S ∪ G that gives 3
z

approxi-

mation for the clustering O. The size of the set S ∪G is at most m+ O(k lnn). We create the

list L by adding to it all possible k-sized subsets of S ∪G. Therefore, |L| = (m+O(k lnn))k.

If m ≤ k lnn, then |L| = kO(k) · (lnn)k. Further, using the inequality that (lnn)k ≤ kO(k) · n,

(for proof, see Hint 3.18 from the book: Parameterized Algorithms [63]) we get |L| ≤ kO(k) ·n.

On the other hand, if m > k lnn, then |L| ≤ mO(k). This proves that |L| ≤ (m+ k)O(k) · n for

the list outlier k-supplier problem.

Moreover, the sets S and Z can be computed in time O(n2 log n) using Lemma 2. And, the set

G can be computed from the set Z in time O(m ·n) = O(n2). Thus, the overall running time of

the algorithm is (k+m)O(k) · n+O(n2 log n). A similar proof for the k-center version follows

from Lemma 4. This proves the corollary.

2.5 Partition Algorithms
In this section, we design FPT time partition algorithms for all the problems mentioned in

Table 2.1 along with their outlier version. For the first six problems in the table, we define a

new hybrid problem that encapsulates all the constraints of these problems. Therefore, instead

of designing a partition algorithm for each problem separately, we design a partition algorithm

for the hybrid problem.

2.5.1 Partition Algorithms: r-Gather, r-Capacity, Balanced, Chromatic,

Fault-Tolerant, and Strongly-Private k-Service Problems

Formally, the problem is defined as follows:

Definition 25 (Hybrid k-Supplier). Given an instance I = (L,C, k, d, z,m) of the outlier k-

supplier problem, a partitioning of the client set C into ω color classes: C1, . . . , Cω, vectors:
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ℓ, r ∈ Zk and α, β ∈ Zω, find a subset Z ⊆ C of at most m outliers and a partitioning

O = {O1, . . . , Ok} of the set C\Z with minimum Ψ∗(O) such that it satisfies that ℓi ≤ |Oi| ≤ ri

and αj ≤ |Oi ∩ Cj| ≤ βj for every i ∈ [k] and j ∈ [ω].

The first six problems given in Table 2.1 along with their outlier versions are the special cases

of the hybrid k-supplier problem. Furthermore, the hybrid k-supplier problem satisfies the def-

inition of the constrained outlier k-supplier problem, i.e., Definition 20. For the sake of com-

pleteness, we describe how the hybrid k-supplier problem encapsulates the first six problems in

Table 2.1:

1. For every i ∈ [k] and j ∈ [ω], if ri = |C|, αj = 0, and βj = |C|, then the hybrid

k-supplier problem is equivalent to the r-gather outlier k-supplier problem.

2. For every i ∈ [k] and j ∈ [ω], if ℓi = 0, αj = 0, and βj = |C|, then the hybrid k-supplier

problem is equivalent to the r-capacity outlier k-supplier problem.

3. For every j ∈ [ω], if αj = 0 and βj = |C|, then the hybrid k-supplier problem is

equivalent to the balanced outlier k-supplier problem.

4. For every i ∈ [k] and j ∈ [ω], if ℓi = 0, ri = |C|, αj = 0, and βj = 1, then the hybrid

k-supplier problem is equivalent to the chromatic outlier k-supplier problem.

5. The fault-tolerant k-supplier problem can be reduced to the chromatic k-supplier problem

as described in Section 2.1.1. Therefore, the fault-tolerant outlier k-supplier problem is

also a special case of the hybrid k-supplier problem.

6. For every i ∈ [k] and j ∈ [ω], if ℓi = 0, ri = |C|, and βj = |C|, then the hybrid k-supplier

problem is equivalent to the strongly private outlier k-supplier problem.

Now, we give a partition algorithm for the hybrid k-supplier problem. The partition algorithm

generalizes the algorithms given in [72].
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Lemma 5. There is a kO(k) · nO(1) time partition algorithm for the hybrid k-supplier problem.

Proof. Let F be a given set of k facility locations. Let Z∗ be an optimal outlier set, and let

O∗ = {O∗
1, . . . , O

∗
k} be an optimal partitioning of C \ Z∗ that minimizes the objective function

Ψ(F,O). Every partition O∗
i is assigned to one of the facility locations in F . Since the algorithm

does not know O∗
i , it guesses that O∗

i is assigned to a facility f ∈ F . Since there are k facilities

in F , there are total kk possibilities of assigning every Oi to facilities in F . The algorithm also

makes a guess on the value of the optimal solution Ψ(F,O∗) over |L| · |C| possible distances

between clients in C and facility locations in L. For each particular guess, the algorithm checks

if there is some feasible assignment of clients to F satisfying the hybrid constraints. Then,

the algorithm outputs the feasible assignment with the minimum assignment cost over all the

possible guesses. Now, suppose that in a particular guess, O∗
i is assigned to a facility fi ∈ F and

the optimal cost is λ. The algorithm reduces the assignment problem to a circulation problem

on a flow network G = (V,E). The flow network is shown in Figure 2.1.

Figure 2.1: The flow network G = (V,E) that is used in the partition algorithm of the hybrid
k-supplier problem.

The vertex set V is partitioned into the following sets:
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1. A source vertex s, sink vertex t, and vertex o.

2. A vertex set VC corresponding to the client set C. In other words, for every client x ∈ C

there is a vertex vx in VC .

3. A vertex set VF that corresponds to the facility set F . In other words, for every facility

fi ∈ F there is a vertex vfi ∈ VF .

4. The vertex sets: Vf1 , . . . , Vfk . A vertex set Vfi is defined as {vfi,1, . . . , vfi,ω} such that a

vertex vfi,j corresponds to a facility fi ∈ F and a color class j ∈ [ω].

Furthermore, the edge set E is defined with the lower and upper bound flow constraints as

follows:

1. There is a directed edge (s, o) with a lower bound flow of |C| −m and an upper bound

flow of |C|. This edge ensures that at least |C| −m clients are assigned to F .

2. For every vertex vx ∈ VC , there is a directed edge (o, vx) with upper bound flow of 1 and

lower bound flow of 0. These edges ensure that a client is assigned at most one facility in

F .

3. For every vertex vx ∈ VC and vertex vfi,j ∈ Vfi , there is a directed edge (vx, vfi,j) if

and only if the client x belongs to color class Cj and d(x, fi)
z ≤ λ. These edges have

the upper bound flow of 1 and the lower bound flow of 0. These edges ensure a feasible

assignment of cost at most λ.

4. For every i ∈ [k] and j ∈ [ω], there is a directed edge (vfi,j, vfi) with lower bound flow

of αj and upper bound flow of βj . These edges ensures that for every color class j ∈ [ω]

and every facility fi ∈ F , the constraint αj ≤ |O∗
i ∩ Cj| ≤ βj is satisfied.
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5. For every i ∈ [k], there is a directed edge (vfi , t) with lower bound flow ℓi and upper

bound flow ri. These edges ensures that for every partition O∗
i ∈ {O∗

1, . . . , O
∗
k}, the

constraint ℓi ≤ |O∗
i | ≤ ri is satisfied.

It is easy to see that a feasible integral flow through the network G corresponds to an assign-

ment of at least |C| −m clients in C to F that satisfies the hybrid constraints. Moreover, the

assignment cost is at most λ. The circulation problem on G can be solved in polynomial time

using the algorithms in [76, 132, 23]. Since we run this algorithm for kk · |C| · |L| possible

guesses, the overall running time of the partition algorithm is kk · nO(1). This completes the

proof of the lemma.

In the next subsection, we design the partition algorithms for the remaining two problems in

Table 2.1.

2.5.2 Partition Algorithms: ℓ-Diversity and Fair Outlier k-Supplier Prob-

lems

Bandyapadhyay et al. [21] noted that the ℓ-diversity clustering problem is a special case of

the fair clustering problem. In other words, if the fair clustering problem has disjoint color

classes, and αj = 1/ℓ and βj = 0 for every color class Cj ∈ {C1, . . . , Cω}, then the problem is

equivalent to the ℓ-diversity clustering problem. Therefore, designing a partition algorithm for

the fair outlier k-supplier problem is sufficient.

For the fair k-median problem (without outliers), Bandyapadhyay et al. [21] designed an FPT

time partition algorithm. We simply extend their algorithm to the fair k-supplier problem

with outliers. Let I = (L,C, k, d, z,m,C1, . . . , Cω, α, β) be any instance of the fair outlier

k-supplier problem. Recall that the sets C1, . . . , Cω are the color classes, each of which is a

subset of the client set C. Moreover, any two color classes can overlap with each other. In

other words, a client in C might belong to a different color class. To simplify the problem,
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we partition the client set into Γ disjoint groups: P1, . . . , PΓ such that the points belonging to

the same group Pi belong to the same set of colored classes. In other words, if clients x and y

belong to the same group Pi, then for every color class Ct ∈ {C1, . . . , Cω}, x ∈ Ct if and only

if y ∈ Ct. Also, if x and y belong to different groups Pi and Pj , respectively, then there exists

a color class Ct ∈ {C1, . . . , Cω} such that x ∈ Ct and y /∈ Ct, or x /∈ Ct and y ∈ Ct. Note

that if the color classes are pair-wise disjoint, then Γ equals the number of color classes, i.e.,

Γ = ω. Now, we design FPT time partition algorithm for the fair outlier k-supplier problem

with running time (kΓ)kΓ · nO(1), where Γ is the number of distinct collection of color classes

induced by the colors of clients. Formally, we state the result as follows:

Lemma 6. For the fair outlier k-supplier problem, there is a (kΓ)kΓ · nO(1) time partition

algorithm, where Γ is the number of distinct collections of color classes induced by the colors

of clients.

Proof. Let F = {f1, . . . , fk} be the given set of facility locations for which we want an optimal

partitioning satisfying the fair outlier constraints. Let Z denote the optimal set of outliers and

OPT denote the optimal k-supplier cost of assigning C \ Z to F while satisfying the fair con-

straints. Since there are |F | · |C| possible distances between C and F , the algorithm tries each

possibility for OPT. For each possibility, the algorithm finds a feasible assignment of clients to

facilities. Then, the algorithm outputs that assignment that gives the minimum assignment cost.

The assignment problem can be modeled as an integer linear program; however, solving an

integer linear program is NP-hard in general. Therefore, we model the problem as a mixed in-

teger linear program, which can be solved in FPT time parameterized by the number of integer

variables. The following is a formal statement for the same:

Proposition 1 (Proposition 8.1 of [21]). Given a real-valued matrix A ∈ Rm×d, vector b ∈ Rm,

vector c ∈ Rd, and a positive integer p ≤ d. There is an FPT time algorithm that finds a vector

x = (x1, . . . , xd) ∈ Rd that minimizes c · x, and satisfies that A · x ≤ b and x1, . . . , xp ∈ Z.
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The running time of the algorithm is O(p2.5p+o(p)d4B), and the space complexity is polynomial

in B, where B is the bit size of the given instance.

Now, we model the assignment problem as a mixed integer linear program (MILP), as follows:

Constraints:
∑
f∈F

gx,f ≤ 1 for every client x ∈ C

∑
x∈Pi

gx,f = hf,i for every group Pi ∈ {P1, . . . , PΓ} and facility f ∈ F

∑
f∈F,x∈C

gx,f ≥ |C| −m for client set C and facility set F

∑
x∈Cj

gx,f ≤ αj ·
∑
x∈C

gx,f for every facility f ∈ F and color class Cj ∈ {C1, . . . , Cω}

∑
x∈Cj

gx,f ≥ βj ·
∑
x∈C

gx,f for every facility f ∈ F and color class Cj ∈ {C1, . . . , Cω}

0 ≤ gx,f ≤ 1 for every client x ∈ C and facility f ∈ F

hf,i ∈ Z≥0 for every group Pi ∈ {P1, . . . , PΓ} and facility f ∈ F

In the above MILP, for every client x ∈ C and facility f ∈ F , there is a fractional variable

gx,f ≤ 1 that denotes the fraction of client x assigned to facility f . Moreover, for every group

Pi ∈ {P1, . . . , PΓ} and facility f ∈ F , there is an integer variable hf,i that denotes the total

fraction of clients in Pi that is assigned to facility f . In other words, hf,i =
∑

x∈Pi
gx,f . The

third constraint of the MILP corresponds to the number of outliers being at most m. Lastly, the

fourth and fifth constraints of MILP correspond to the fairness constraints.

We solve the above mixed integer linear program in time O(kΓ)kΓ · nO(1) as per Proposition 1.

However, the obtained optimal solution contains fractional gx,f values. Next, we show that there
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always exists a solution with integral gx,f values that can be obtained in polynomial time. We

reduce the problem to the circulation problem on directed graphs. We construct a flow network

G = (V,E) with upper and lower bound flow requirements on every edge. The construction is

shown in Figure 2.2.

Figure 2.2: The flow network G = (V,E) that is used by the partition algorithm of the fair
outlier k-supplier problem.

The vertex set V contains a source vertex s, a sink vertex t, and an outlier regulating vertex

o. We will describe the functioning of o shortly. The rest of the vertex set is partitioned into

two sets: VC and VF,P . The vertex set VC corresponds to the client set C. In other words, for

every client x ∈ C there is a vertex vx ∈ C. The vertex set VF,P corresponds to facility set F

and groups P1, . . . , PΓ. In other words, for every facility f ∈ F and group Pi ∈ {P1, . . . , PΓ},

there is a vertex vf,i in VF,P . Furthermore, the edge set E is partitioned as follows. There is

an edge (s, o) with lower and upper bound flow requirement of exactly
∑

x∈C,f∈F gx,f . Note

that
∑

x∈C,f∈F gx,f is an integer since
∑

x∈C,f∈F gx,f =
∑Γ

i=1

∑
f∈F hi,f and hi,f ’s are integers.

Also note that
∑

x∈C,f∈F gx,f ≥ |C| −m as per Constraint 2 of the MILP. Therefore, it ensures

that at least |C| −m clients are assigned to F , and that’s why we call the vertex o the outlier

regulating vertex. Furthermore, the edge set E contains for every vertex vx ∈ C, an edge (o, vx)

with lower bound flow requirement 0 and upper bound flow requirement 1. These edges ensure

that a client is assigned to at most one facility in F . Furthermore, for every vertex vx ∈ VC and
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vf,i ∈ VF,P , there is an edge (vx, vf,i) if and only if x ∈ Pi. Each edge has a lower bound flow

requirement of 0 and an upper bound flow requirement of 1. Lastly, for every vertex vf,i ∈ VF,P ,

there is an edge (vf,i, t) with lower and upper bound flow requirement of exactly hf,i. These

edges ensure that exactly hf,i clients of Pi are assigned to any facility f ∈ F . It is easy to see

that the constructed flow network G admit a feasible flow if we send a flow of gx,f through every

edge (vx, vf,i). Moreover, this is the maximum flow that we can send through the network since

the capacity of edge (s, o) is
∑

x∈C,f∈F gx,f . Since the lower and upper bound requirements on

every edge is an integer, a feasible integral flow exists through the network. We find that flow

in polynomial time using the algorithms in [132, 76, 23]. Let the new integral flow through

(vx, vf,i) is g′x,f . Then, we show that the values g′x,f ’s also satisfy the MILP constraints. The

constraints (1)-(3) of the MILP are trivially satisfied from the flow network. Also note that∑
x∈Pi

g′x,f = hf,i due to the flow network. Therefore, the fair constraints (4) and (5) are

satisfied since
∑

x∈C gx,f =
∑

x∈C g′x,f and
∑

x∈Cj
gx,f =

∑
x∈Cj

g′x,f for every facility f ∈ F

and every color class Cj ∈ {C1, . . . , Cω}. These two equalities follow from the following two

sequences of equalities:

1. ∑
x∈C

gx,f =
Γ∑

i=1

∑
x∈Pi

gx,f =
Γ∑

i=1

hf,i =
∑
x∈C

g′x,f

2. ∑
x∈Cj

gx,f =
∑

i : Pi⊆Cj

∑
x∈Pi

gx,f =
∑

i : Pi⊆Cj

hf,i =
∑
x∈Cj

g′x,f

This completes the proof of the lemma.

2.6 FPT Hardness: k-Supplier and k-Center
In this section, we prove the FPT hardness of approximation result for the k-supplier and k-

center problems. We use a reduction from the dominating set problem that is defined as follows:
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Definition 26 (Dominating Set Problem). Given an integer k > 0, an undirected graph G =

(V,E), determine if there a subset S ⊆ V of k vertices such that every vertex in V \ S is

adjacent to at least one vertex in S.

Now, note the following FPT hardness result for the dominating set problem.

Theorem 22 ([74, 42, 128]). For any function g : Z+ → R+, there is no g(k) · no(k) time

algorithm for the dominating set problem assuming ETH, and no g(k) · nO(1) time algorithm

assuming W[2] ̸= FPT.

Furthermore, there exists a parameterized reduction from dominating set problem to the k-

center problem (see Theorem 9 in [78])3. This straightaway gives the following hardness result

for the k-center problem:

Theorem 11. For any constant ε > 0, z > 0, and any function g : Z+ → R+, the k-center

problem can not be approximated to factor (2
z − ε) in time g(k) · no(k) assuming ETH, and in

time g(k) · nO(1) assuming W[2] ̸= FPT.

This completes the hardness proof for the k-center problem. For the k-supplier problem, we

use a reduction from the set coverage problem. The set coverage problem is defined as follows:

Definition 27 (Set Coverage Problem). Given an integer k > 0, a set U , and a collection

C = {S1, . . . , Sm} of subsets of U , i.e., Sj ⊆ U for every j ∈ [m], determine if there exist k

sets in C that cover all elements in U .

Now, note that there exists a trivial reduction from the dominating set problem to the set cover-

age problem (see [99] for details). Therefore, Theorem 22 implies the following hardness result

for the set coverage problem:

3In [78], the definition of the k-center problem has z = 1.
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Theorem 23. For any function g : Z+ → R+, there is no g(k) · no(k) time algorithm for the set

coverage problem assuming ETH, and no g(k) · nO(1) time algorithm assuming W[2] ̸= FPT.

Furthermore, a parameterized reduction exists from the set coverage problem to the k-supplier

problem. The reduction is similar to the reduction from the hitting set problem (see Theorem

6 of [94]). For the sake of completeness, we describe the reduction here: given a set coverage

instance (U,C , k), we construct a k-supplier instance (C,L, d, k) as follows. For every set

Si ∈ C , we define a center fi ∈ L. For every element e ∈ U , we define a client xe ∈ C. Let

us define the distance function d(., .) as follows. For any two points xe, xe′ ∈ C, or fi, fj ∈ L,

the distance d(xe, xe′) = d(fi, fj) = 2. For any point xe ∈ C and fi ∈ L, if e /∈ Si, the

distance d(xe, fi) = 3; otherwise d(xe, fi) = 1. Furthermore, assume that d(., .) is a symmetric

function, i.e., d(x, y) = d(y, x) for every x, y ∈ C ∪L. Also assume that d(x, x) ≥ 0 for every

x ∈ C ∪ L. It is easy to see that d(., .) satisfies all the properties of a metric space.

Now, suppose that there exist k sets: Si1 , . . . , Sik in C that cover all elements of U , i.e., Si1 ∪

. . . ∪ Sik = U , then the center set F = {fi1 , . . . , fik} gives the k-supplier cost 1. On the other

hand, if there does not exist any k sets in C that could cover all elements of U , then for any

center set F ⊆ L of size k there would exist a point x ∈ C at a distance of 3 from F , i.e.,

d(F, x) = 3. Therefore, the k-supplier cost would be 3
z
. Since the set coverage problem is

W[2]-hard, it implies that the k-supplier problem can not be approximated to any factor better

than 3
z
, in polynomial time, assuming W[2] ̸= FPT. This reduction together with Theorem 23

give the following hardness result for the k-supplier problem:

Theorem 10. For any constant ε > 0, z > 0, and any function g : Z+ → R+, the k-supplier

problem cannot be approximated to factor (3
z − ε) in time g(k) · no(k) assuming ETH, and in

time g(k) · nO(1) assuming W[2] ̸= FPT.

This completes the hardness proof for the k-supplier problem.
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2.7 FPT Hardness: Outlier k-Supplier and k-Center
In this subsection, we establish FPT hardness of approximation results for the outlier k-supplier

and k-center problems. The proofs are trivial. For the outlier k-supplier problem, we obtain the

following result:

Theorem 24. For any constant ε > 0, z > 0, and any function g : Z+ × Z≥0 → R+, the

outlier k-supplier problem can not be approximated to factor (3
z−ε) in time g(k,m) ·nm+o(k),

assuming ETH.

Proof. For the sake of contradiction, assume that for some constant ε > 0, z > 0, and function

g : Z+ × Z≥0 → R+ the outlier k-supplier problem can be approximated to factor (3
z − ε)

in time g(k,m) · nm+o(k). For m = 0, the problem is the classical (non-outlier) k-supplier

problem. Therefore, the k-supplier problem can be approximated to factor (3
z − ε) in time

g(k, 0) · no(k) = h(k) · no(k) for some function h : Z+ → R+. It contradicts Theorem 10. Thus,

it proves the theorem.

Similarly, we obtain the following FPT hardness of approximation result for the outlier k-center

problem:

Theorem 25. For any constant ε > 0, z > 0, and any function g : Z+×Z≥0 → R+, the outlier

k-center problem can not be approximated to factor (2
z−ε) in time g(k,m) ·nm+o(k), assuming

ETH.

Proof. For the sake of contradiction, assume that for some constant ε > 0, z > 0, and function

g : Z+ × Z≥0 → R+ the outlier k-center problem can be approximated to factor (2
z − ε)

in time g(k,m) · nm+o(k). For m = 0, the problem is the classical (non-outlier) k-center

problem. Therefore, the k-center problem can be approximated to factor (2
z − ε) in time

g(k, 0) · no(k) = h(k) · no(k) for some function h : Z+ → R+. It contradicts Theorem 11. Thus,

it proves the theorem.
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Note that the above hardness results apply to all the outlier versions of constrained k-supplier

problems that we study in this paper since the unconstrained outlier version of the problem can

be reduced to any of the constrained versions in polynomial time.

Also note that the above two results do not eliminate the possibility of having the polynomial

time 3
z

and 2
z

approximation algorithms for the outlier k-supplier and k-center problems, re-

spectively. In fact, there exists polynomial time 3
z

and 2
z

approximation algorithms for the

outlier k-supplier [40] and k-center problem [37], respectively. Moreover, we can even obtain

the optimal solutions to the outlier k-supplier and k-center problems using a trivial O(nk+1k)

running time algorithm.
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Chapter 3

FPT Approximation for Constrained

k-Median/Means

In this chapter, we study a range of constrained versions of the k-median and k-means problem.

In the classical (unconstrained) k-median problem, we are given a set of clients C in a metric

space X , with distance function d(., .). We are also given a set of feasible facility locations

L ⊆ X . The goal is to open a set F of k facilities in L to minimize the sum of distances

of clients to the closest open facility, i.e., minimize, cost(F,C) ≡
∑

j∈C
{
d(F, j)

}
, where

d(F, j) is the distance of client j to the closest facility in F . The k-means problem is defined

similarly using squared distances (i.e., d2(., .) instead of d(., .)). In many applications, there

are additional constraints imposed on the clusters. For example, to balance the load among the

facilities in resource allocation problems, a capacity u is imposed on every cluster. In other

words, no more than u clients can be assigned to any facility/cluster. This problem is known as

the capacitated k-means/k-median problem. Likewise, various other applications have different

constraints, which give rise to different constrained versions of the problem. Surprisingly, no

constant-approximation algorithm is known for many of the constrained problems. Moreover,

the unconstrained problem itself is known to be W[2]-hard when parameterized by k. We work

67
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within the unified framework of Ding and Xu [72] that allows us to simultaneously obtain

FPT algorithms for a wide range of constrained clustering problems, namely: r-gather, r-

capacity, balanced, chromatic, fault-tolerant, ordered-weighted-average, strongly private, ℓ-

diversity, fair, and uncertain k-median/means problems, with and without outliers. In particular,

here are some of the main highlights of this work:

1. We give (3 + ε) and (9 + ε)-approximation algorithms for the constrained k-median

and k-means problems, respectively, with FPT running time (k/ε)O(k) · nO(1), where

n = |C ∪ L|.

2. We also study the problems when C ⊆ L, i.e., a facility can be opened at a client location.

For this special case, we design algorithms that give (2 + ε) and (4 + ε)-approximation

guarantees for the constrained k-median and k-means problems, respectively, with FPT

running time (k/ε)O(k) · nO(1), where n = |L|. Note that the case C ⊆ L subsumes the

case C = L. Therefore, this result also holds for the case when C = L.

3. We also study the constrained k-median/means problem with outliers. Our algorithms

give (3 + ε) and (9 + ε)-approximation guarantees for the constrained outlier k-median

and k-means problems, respectively, with FPT running time ((k + m)/ε)O(k) · nO(1),

where n = |C ∪ L| and m is the number of outliers. For the special case, when C ⊆ L,

the algorithms give (2 + ε) and (4 + ε)-approximation guarantees for the constrained

outlier k-median and k-means problems, respectively.

4. Since our algorithms are based on a simple sampling-based approach; we also obtain

constant-pass log-space streaming algorithms for the constrained k-median/means prob-

lems with and without outliers.

5. We show that the analysis of our algorithm is tight. That is, there are instances for which

our algorithm does not provide better than (3 − δ) and (9 − δ) approximation guarantee

corresponding to k-median and k-means objectives, respectively, for arbitrarily small
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constant δ > 0. Similarly, the analysis of our algorithm is tight for the special case

C ⊆ L.

3.1 Overview
The k-means and k-median problems are similar. We combine the discussion of these problems

by defining the k-service problem that encapsulates both these problems.

Definition 28 (k-Service Problem). Let (X , d) be a metric space. Let k be any positive integer,

and z be any positive real number. Given a set L ⊆ X of feasible facility locations, and a set

C ⊆ X of clients, find a set F ⊆ L of k facilities that minimises the cost: service-cost(F,C) ≡∑
x∈C

{
minf∈F

{
d(f, x)z

}}
.

For z = 1 the problem is known as the k-median problem, and for z = 2 the problem is

known as the k-means problem. The above definition is motivated by the facility location

problem [126] and differs from it in two ways. First, in the facility location problem, one is

allowed to open any number of facilities. Second, one has to pay for an additional facility

establishment cost for every open facility. Thus the k-service problem is equivalent to the

facility location problem for a fixed number of facilities and 0 facility establishment costs.

The k-service problem can also be viewed as a clustering problem, where the goal is to group

the objects that are similar to each other. The clustering algorithms are commonly used in data

mining, pattern recognition, and information retrieval [96]. Note that the clients assigned to the

same facility belong to the same cluster, and the corresponding facility is known as their cluster

center. Keeping this in mind, we will use the terms facility and center interchangeably from

now on.

The classical (unconstrained) k-means and k-median problems do not entirely capture the de-

sired clustering properties for many real-world applications. For example, consider the popular

k-anonymity principle [131]. The principle provides anonymity to a public database while
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keeping it meaningful simultaneously. One way to achieve this is to cluster the data in such a

way as to release only partial information related to the clusters obtained. Further, to protect the

data from the re-identification attacks, the clustering should be done so that each cluster gets

at least r data points. This method is popularly known as r-gather clustering [5]. Similarly,

we have r-capacity clustering problem where in addition to minimizing the clustering cost, we

have a constraint that no cluster can contain more than r clients [111, 2]. Likewise, there are

many other constrained versions of the k-median/means problems namely fault-tolerant [92],

fair [26], uncertain [60], ℓ-diversity [72], etc.

An important distinction between the constrained and unconstrained clustering version is the

locality property. In simple words, the locality property says that the points close to each other

should be part of the same cluster. This property holds for the unconstrained version of the prob-

lem. However, this may not necessarily hold for many of the constrained versions of the prob-

lem where minimizing clustering cost is not the only requirement. To understand this, consider

a center-set F = {f1, f2, . . . , fk} and let O = {O1, . . . , Ok} denote the clustering of the dataset

such that each client is assigned to its closest center in F . Note that the clustering O minimizes

the distance-based cost function but may not satisfy any additional constraints on the clusters.

For example, for the r-capacity problem, a cluster Oi might contain more than r clients. In a

constrained setting, we may need an algorithm that given a center-set {f1, ..., fk} as input, out-

puts a clustering O = {O1, . . . , Ok} which in addition to minimising
∑

i

∑
x∈Oi

d(x, fi)
z also

satisfies the given constraints on the clusters. Such an algorithm is called a partition algorithm.

In the unconstrained setting, the partition algorithm simply assigns clients to their closest cen-

ters in F . However, designing efficient partition algorithms for the constrained versions of the

problem is non-trivial. Ding and Xu [72] designed a partition algorithm for the r-capacity prob-

lem and a range of other constrained clustering problems. Later, we will see that the partition

algorithms are crucial in designing FPT algorithms for constrained clustering problems.

A partition algorithm allows us to go from a center set to an optimal clustering. What about
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the reverse direction? Given a clustering O = {O1, O2, . . . , Ok}, can we find a center set that

gives minimum clustering cost? The solution to this problem is simple. Construct a complete

weighted bipartite graph G = (Vl, Vr, E), where a vertex in Vl corresponds to a facility location

in L, and a vertex in Vr corresponds to a cluster Oj ∈ O. The weight on an edge (i, j) ∈ Vl×Vr

is equal to the cost of assigning the cluster Oj to the ith facility, i.e.,
∑

x∈Oj
d(x, i)z. We can

easily obtain an optimal assignment by finding a minimum cost perfect matching in graph G.

For a given set of k distinct facilities F = {f1, ..., fk} and a clustering O = {O1, . . . , Ok}, we

define optimal assignment cost by the cost function:

Φ(F,O) ≡ min
permutation π

{
k∑

i=1

∑
x∈Oi

d(x, fπ(i))
z

}
. (3.1)

In other words, Φ(F,O) is the cost of a minimum cost perfect matching in graph G. From now

on, we will call any set of k distinct facilities {f1, . . . , fk} as a k-center-set.

Note that we are considering the hard assignment version of the clustering problems. That is,

we are not allowed to open more than one facility at any location in L. This version differs from

the soft assignment version, where more than one facility can be opened at any location in L.

Note that the total number of open facilities in both versions is at most k. The soft assignment

version is easier than the hard assignment version since the soft assignment version can be

reduced to the hard assignment version by creating k copies of every location in L. Moreover,

it has been observed that the soft-assignment version allows us to obtain better approximation

guarantees than the hard-assignment version [61, 111]. For our discussion, we will call a center-

set a soft center-set if it contains a facility location multiple times. Otherwise, we call it a hard

center-set. In fact, a soft center set is a multi-set. We will avoid using the term multi-set to keep

our discussion simple.

In the past, the constrained versions of the clustering problems were studied separately as in-

dependent problems. More recently, in 2015, Ding and Xu [72] gave a unified framework
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for these problems that they called the constrained clustering framework. They proposed this

unified framework in the context of the k-median and k-means problems in the continuous

Euclidean spaces where L = Rp
and C is a finite subset of Rp

. In this work, we extend the

framework to arbitrary discrete metric spaces.

3.1.1 Constrained k-service framework

We define the constrained k-service problem in discrete metric space as follows:

Definition 29 (Constrained k-service problem). Let (X , d) be a metric space, k be any positive

integer, and z be any positive real number. Given a set L ⊆ X of feasible facility locations,

a set C ⊆ X of clients, and a set S of feasible partitionings of C, find a partitioning O =

{O1, O2, . . . , Ok} in S, that minimizes the cost function: Φ∗(O) ≡ min
k-center-set F

Φ(F,O).

The key component of the above definition is the set of feasible clusterings S. Using it,

we can define any constrained version of the k-service problem. Note that S could contain

an exponential number of distinct partitionings, i.e., |S| ≥ exp(n, k). However, for many

constrained clustering problems, the set S can be defined concisely using a simple set of

mathematical constraints. For example, the set S for the r-gather problem can be defined as

S := {O | for every partition Oi ∈ O, |Oi| ≥ ri}, where O = {O1, O2, . . . , Ok} is a partition-

ing of the client set. We study nine other constrained clustering problems: r-capacity, balanced,

chromatic, fault-tolerant, ordered-weighted-average, strongly private, ℓ-diversity, fair, and un-

certain k-service problems. The definitions of these problems are given in Table 3.1. Note

that the problems: fault-tolerant, ordered-weighted-average, and uncertain k-service problems

do not satisfy Definition 29 of the constrained k-service problem since their objective func-

tions are different than Φ∗(O). However, each of these problems can be reduced to a dif-

ferent problem that satisfies Definition 29 of the constrained k-service problem. Ding and

Xu [72] showed these reductions for the fault-tolerant and uncertain k-service problems. For

the ordered-weighted-average k-service problem, Byrka et al. [36] showed a reduction to the
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fault-tolerant k-service problem. Thus all three problems indirectly satisfy the definition of the

constrained k-service problem.

# Problem Description

1.
r-Gather k-service
problem

Given k positive integers: r1, . . . , rk, find clustering O = {O1, ..., Ok}
with minimum Φ∗(O) such that for all i, |Oi| ≥ ri

.

2.
r-Capacity k-service
problem

Given k positive integers: r1, . . . , rk, find clustering O = {O1, ..., Ok}
with minimum Φ∗(O) such that for all i, |Oi| ≤ ri

3.
Balanced k-service
problem

Given positive integers: ℓ1, . . . , ℓk, and r1, . . . , rk, find clustering
O = {O1, ..., Ok} with minimum Φ∗(O) such that for all i, ℓi ≤ |Oi| ≤ ri

4.
Chromatic k-service
problem

Given that every client has an associated color, find a clustering
O = {O1, ..., Ok} with minimum Φ∗(O) such that for all i, Oi should
not have any two points with the same color.

5.
Fault-tolerant
k-service problem

Given positive integer ℓx ≤ k for every client x ∈ C,
find a set F of k centers, such that the sum of service cost of the clients
to ℓx of nearest centers out of F = {f1, f2, . . . , fk}, is minimised.

6.
Ordered-Weighted-
Average k-service
problem

Given a vector (w1, ..., wk) of non-increasing weights, find a center set
{f1, ..., fk} such that

∑
x∈C

∑k
j=1wj ·

(
dj(x)

)z
is minimised.

Here,
(
d1(x), ..., dk(x)

)
is a non-decreasing ordering of

(
d(x, f1), ..., d(x, fk)

)
.

7.
Strongly private
k-service problem

Given a partitioning C1, . . . , Cω of the client set C, and a set of integers:
{ℓ1, . . . , ℓω}, find a clustering O = {O1, ..., Ok} with minimum Φ∗(O) that
satisfies |Cj ∩Oi| ≥ ℓj for every i ∈ [k] and j ∈ [ω].

8.
ℓ-Diversity k-service
problem

Given a partitioning C1, . . . , Cω of the client set C, a real number ℓ > 1,
find a clustering O = {O1, ..., Ok} with minimum Φ∗(O) such that
the fraction of points belonging to the same partition inside Oi is ≤ 1/ℓ.

9.
Fair k-service
problem

Given ω color classes C1, . . . , Cω (not necessarily disjoint), such that every
Cj is a subset of the client set C, and two fairness vectors α, β ∈ [0, 1]ω,
find a clustering O = {O1, . . . , Ok} with minimum Φ∗(O) such that it
satisfies that βj · |Oi| ≤ |Oi ∩ Cj| ≤ αj · |Oi| for every i ∈ [k] and j ∈ [ω].

10.
Uncertain k-service
problem

Given a discrete probability distribution for every client, i.e., for a client
x ∈ C there is a set Dx = {x1, . . . , xh} such that x takes the value xi

with probability tix and
∑h

i=1 t
i
x ≤ 1. Find a clustering O = {O1, ..., Ok}

and facility set F = {f1, . . . , fk} such that
∑

x∈C minfj∈F d(x, fj)
z

is minimized, where d(x, fj)
z =

∑h
i=1 t

i
x · d(xi, fj)

z.

Table 3.1: List of constrained k-service problems with FPT time partition algorithms (see
Section 3.9).

It has been observed in the past works [72, 28] that any constrained version of k-median/means
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can be solved using a partition algorithm and a solution to a very general “list” version of the

clustering problem which we discuss next 1.

Definition 30 (List k-Service Problem). Let I = (L,C, k, d, z) be an arbitrary instance of

the k-service problem, O = {O1, . . . , Ok} be an arbitrary clustering of the client set C, and

0 < ε ≤ 1 be an arbitrary constant. The goal of the problem is to find a list L of k-center-sets

(i.e., each element of the list is a set of k elements from L) such that with probability at least

1−1/n, the list L contains a k-center-set F such that Φ(F,O) ≤ α ·Φ∗(O) for α = 3
z
+ ε and

n = |C ∪ L|. For the special case when C ⊆ L, the approximation guarantee is α = 2
z
+ ε.

Definition 31 (Partition Algorithm). Let I = (L,C, k, d, z) be any instance of the k-service

problem, and let S = {O1,O2, . . . ,Ot} be a collection of clusterings of C. Given a center

set F ⊆ L, a partition algorithm outputs a clustering in S that has the least clustering cost

Φ(F,O) with respect to F .

Note that the set S differs for different constrained clustering problems; therefore, the partition

algorithm differs for various constrained clustering problems. However, the algorithm for the

list k-service problem is the same for every constrained clustering problem. Suppose we have an

algorithm for the list k-service problem and a partition algorithm for a particular constrained k-

service problem; then, we can obtain an approximation algorithm for that constrained k-service

problem. The following theorem proves this result:

Theorem 26. Let I = (L,C, k, d, z, S) be any instance of the constrained k-service problem,

and let AS be a partition algorithm for S with running time TA. Let B be any algorithm for the

list k-service problem with running time TB. Then, there is an algorithm that, with probability at

least 1− 1/n, outputs a clustering O ∈ S that is an α-approximate solution for the constrained

k-service instance I. Moreover, the running time of the algorithm is O(TB + |L| · TA).

1This notion of list version of the clustering problem was implicitly present in the work of Ding and Xu [72].
Bhattacharya et al. [28] formalized this as the list k-means problem.
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Proof. The algorithm is simple. We first run algorithm B to obtain a list L. For every k-center-

set in the list, the algorithm runs the partition algorithm AS on it. Then the algorithm outputs

a center set that gives the minimum clustering cost. Let F ′ be this k-center-set and O′ be the

corresponding clustering. We claim that (F ′,O′) is an α-approximation for the constrained

k-service problem with probability at least 1− 1/n.

Let O∗ be an optimal solution for the constrained k-service instance (L,C, k, d, z, S) and F ∗

denote the corresponding k-center-set. By the definition of the list k-service problem, with

probability at least 1 − 1/n, there is a k-center-set F in the list L, such that Φ(F,O∗) ≤

α · Φ(F ∗,O∗). Let O = AS(F ) ∈ S be the optimal clustering corresponding to F . Thus,

Φ(F,O) ≤ α ·Φ(F ∗,O∗). Since (F ′,O′) gives the minimum cost clustering in the list, we have

Φ(F ′,O′) ≤ Φ(F,O). Therefore, Φ(F ′,O′) ≤ α · Φ(F ∗,O∗).

The running time analysis is also simple. TB is the time to obtain the list L. Then, the algorithm

runs the partition procedure AS for every center set in the list; the running time of this step is

|L| · TA. Picking a minimum cost clustering from the list takes O(|L|) time. Hence the overall

running time is O(TB + |L| · TA).

The goal is to design an algorithm for the list k-service problem and the partition algorithms

for different constrained clustering problems. In Section 3.5, we design an algorithm for the

list k-service problem with FPT running time. Formally, we state the result as follows:

Theorem 27. Let I = (L,C, k, d, z,O, ε) be any instance of the list k-service problem. There is

an algorithm that outputs a list L of size at most O
(
(log n) · (k/ε)O(k z 2)

)
, where n = |C∪L|.

Moreover, the running time of the algorithm is O
(
n · (k/ε)O(k z 2)

)
, which is FPT in k.

Using Theorems 26 and 27, we further obtain the following two corollaries:

Corollary 6 (Main Result: k-Median). For any constrained version of the k-median problem

that has a partition algorithm with running time T , there exists a (3 + ε)-approximation algo-
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rithm that succeeds with probability at least 1−1/n and has running time T ·(k/ε)O(k)·(log n)+

O (n · (k/ε)O(k)). For the special case when C ⊆ L, the algorithm gives (2+ε)-approximation

guarantee.

Corollary 7 (Main Result: k-Means). For any constrained version of the k-means problem that

has a partition algorithm with running time T , there exists a (9 + ε)-approximation algorithm

that succeeds with probability at least 1 − 1/n and has running time T · (k/ε)O(k) · (log n) +

O (n · (k/ε)O(k)). For the special case when C ⊆ L, the algorithm gives (4+ε)-approximation

guarantee.

The remaining task is to design partition algorithms for different constrained clustering prob-

lems. For all the problems mentioned in Table 3.1, we design their partition algorithms in Sec-

tion 3.9. To summarize, all the problems in Table 3.1 except the ℓ-diversity and fair k-service

problems, the running time of the partition algorithms is kk · nO(1). Most of these partition

algorithms were first designed by Ding and Xu [72]. For the ℓ-diversity k-service problem, the

running time of the partition algorithm is (ωk)ωk ·nO(1) [21]. For the fair k-service problem, the

running time of the partition algorithm is (kΓ)O(kΓ) · nO(1), where Γ is the number of distinct

collection of color classes induced by the colors of clients [21]. We describe the notation Γ in

more detail in Section 3.9.6. Using an algorithm for the list k-service problem and partition al-

gorithms, we obtain FPT time (3+ ε) and (9+ ε) approximation guarantees for these problems

with respect to k-median and k-means objectives, respectively. Formally, we state these results

as follows:

Theorem 28. There is an FPT time (3
z
+ ε)-approximation algorithm for the following con-

strained versions of the k-service problem:

1. r-gather k-service problem 2. r-capacity k-service problem

3. Balanced k-service problem 4. Chromatic k-service problem

5. Fault-tolerant k-service problem 6. Ordered-Weighted-Average k-service problem

7. Strongly private k-service problem 8. Uncertain k-service problem
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The running time of the algorithm is (k/ε)O(k z2) · nO(1). For the special case when C ⊆ L, the

algorithm gives (2
z
+ ε)-approximation guarantee.

Theorem 29. There is an FPT time (3
z
+ ε)-approximation algorithm for the ℓ-diversity k-

service problem with running time (kω/ε)O(k·(ω+z
2)) ·nO(1). For the special case when C ⊆ L,

the algorithm gives (2
z
+ ε)-approximation guarantee.

Theorem 30. There is an FPT time (3
z
+ ε)-approximation algorithm for the fair k-service

problem with running time (kΓ/ε)O(k·(Γ+z
2)) · nO(1), where Γ denote the number of distinct

collection of color classes induced by the colors of clients. Moreover, if the color classes are

pair-wise disjoint, then Γ = ω, and the running time of the algorithm is (kω/ε)O(k·(ω+z
2)) ·

nO(1). For the special case when C ⊆ L, the algorithm gives (2
z
+ε)-approximation guarantee.

We extend the constrained clustering framework to the outlier setting in the next subsection.

The discussion will be analogous to the above discussion.

3.1.2 Constrained k-service framework with outliers

In practical scenarios, it often happens that a few clients are located at faraway locations from

the majority of the clients. These clients are called outliers. Outliers force the algorithm to

open the facilities close to the outliers. Due to this, the majority of the clients have to pay

high assignment costs. This leads to poor clustering of the dataset. To overcome this issue,

we cluster the dataset without the outliers. This gives rise to the outlier k-service problem.

A mathematical formulation of the problem was first proposed by Charikar et al. [40]. The

following is the definition of the outlier k-service problem:

Definition 32 (Outlier k-Service). Let (X , d) be a metric space. Let k and m be any positive

integers, and z be any positive real number. Given a set L ⊆ X of feasible facility locations,

and a set C ⊆ X of clients, find a subset Z ⊆ C of size at most m clients and a set F ⊆ L
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of k facilities such that the k-service cost of C ′ := C \ Z is minimized: service-cost(F,C ′) ≡∑
x∈C′

{
minf∈F

{
d(x, f)z

}}

Charikar et al. [40] designed a bi-criteria approximation algorithm for the problem that gives

an O(1)-approximation guarantee while violating the number of outliers by a factor of (1 + ε).

Chen [43] gave the first constant factor approximation algorithm for the outlier k-median

problem. Recently, Krishnaswamy et al. [106] designed the (7.081 + ε) and (53.002 + ε)-

approximation algorithms for the outlier k-median and k-means problems, respectively. Frig-

gstad et al. [81] gave a bi-criteria approximation algorithm for the outlier k-means problem that

gives a (25+ε)-approximation guarantee and opens (1+ε) facilities. Recently, Feng et al. [80]

gave a (6 + ε)-approximation algorithm for the outlier k-means problem (C ⊆ L = X ), with

FPT running time of O
(
n · βk

(
k+m
ε

)k), for some constant β > 0. In this work, we improve

this result by giving a (4 + ε)-approximation algorithm for the outlier k-means problem and

a (2 + ε)-approximation algorithm for the outlier k-median problem when C ⊆ L = X with

FPT running time O
(
n ·
(
k+m
ε

)O(k)
)

. For the general case (when C is not necessarily a subset

of L), our algorithm gives a (9 + ε)-approximation guarantee for the outlier k-means problem

and (3 + ε)-approximation guarantee for the outlier k-median problem with FPT running time

O
(
n ·
(
k+m
ε

)O(k)
)

. Furthermore, we extend the algorithm to the constrained versions of the

outlier k-service problem. The constrained outlier k-service problem is defined as follows:

Definition 33 (Constrained Outlier k-Service Problem). Let (L,C, k, d, z,m) be any instance

of the outlier k-service problem and S be any collection of partitionings such that every parti-

tioning O ∈ S is a partitioning of some subset C ′ ⊆ C of size at least |C|−m. Find a clustering

O = {O1, O2, . . . , Ok} in S, that minimizes the objective function: Φ∗(O) ≡ min
k-center-set F

Φ(F,O).

Furthermore, we define the list outlier k-service problem and outlier partition algorithm, as

follows:

Definition 34 (List Outlier k-Service Problem). Let I = (L,C, k, d, z,m) be an arbitrary
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instance of the outlier k-service problem, O = {O1, . . . , Ok} be an arbitrary partitioning of

the some subset C ′ ⊆ C of size at least |C| −m, and 0 < ε ≤ 1 be an arbitrary constant. The

goal of the problem is to find a list L of k-center-sets (i.e., each element of the list is a set of k

elements from L) such that with probability at least 1− 1/n, the list L contains a k-center-set

F such that Φ(F,O) ≤ α · Φ∗(O) for α = 3
z
+ ε and n = |C ∪ L|. For the special case when

C ⊆ L, the approximation guarantee α = 2
z
+ ε.

Definition 35 (Outlier Partition Algorithm). Let I = (L,C, k, d, z,m) be an instance of the

outlier k-service problem, and let S = {O1,O2, . . . ,Ot} be a collection of clusterings such

that each Oi is a clustering of of some subset of C ′ ⊆ C of size at least |C|−m. Given a center

set F ⊆ L, an outlier partition algorithm outputs a clustering in S that has the least clustering

cost Φ(F,O) with respect to F .

Suppose we have an algorithm for the list outlier k-service problem and a partition algorithm

for a specific constrained outlier k-service problem. We can obtain an approximation algorithm

for that constrained outlier k-service problem. The following theorem state this result and is

analogous to Theorem 26 of the non-outlier version.

Theorem 31. Let I = (L,C, k, d, z,m,S) be any instance of the constrained outlier k-service

problem, and let AS be an outlier partition algorithm for S with running time TA. Let B be

any algorithm for the list outlier k-service problem with running time TB. Then, there is an

algorithm that, with probability at least 1 − 1/n, outputs a clustering O ∈ S that is an α-

approximate solution for the constrained outlier k-service instance I. Moreover, the running

time of the algorithm is O(TB + |L| · TA).

Proof. The proof is analogous to the proof of Theorem 26.

The goal now becomes to design an algorithm for the list outlier k-service problem and outlier

partition algorithms for different constrained versions of the outlier k-service problems. In
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Section 3.5, we design an algorithm for the list outlier k-service problem with FPT running

time parameterized by m and k. Formally, we state the result as follows:

Theorem 32. Let I = (L,C, k, d, z,m,O, ε) be any instance of the list outlier k-service prob-

lem. There is an algorithm that outputs a listL of size at most O
(
(log n) · ((k +m)/ε)O(k z 2)

)
.

Moreover, the running time of the algorithm is O
(
n · ((k +m)/ε)O(k z 2)

)
, which is FPT in k

and m.

Using Theorems 31 and 32, we obtain the following two main results:

Corollary 8 (Main Result: Outlier k-Median). For any constrained version of the outlier k-

median problem that has a partition algorithm with running time T , there exists a (3 + ε)-

approximation algorithm that succeeds with probability at least 1− 1/n and has running time

T · ((k +m)/ε)O(k) · (log n) +O (n · ((k +m)/ε)O(k)). For the special case when C ⊆ L, the

algorithm gives (2 + ε)-approximation guarantee.

Corollary 9 (Main Result: Outlier k-Means). For any constrained version of the outlier k-

means problem that has a partition algorithm with running time T , there exists a (9 + ε)-

approximation algorithm that succeeds with probability at least 1− 1/n and has running time

T · ((k +m)/ε)O(k) · (log n) +O (n · ((k +m)/ε)O(k)). For the special case when C ⊆ L, the

algorithm gives (4 + ε)-approximation guarantee.

We consider the outlier versions of all the problems described in Table 3.1. In Section 3.9, we

design FPT time partition algorithms for the outlier versions of all these problems. Thus, we

get FPT time (3 + ε) and (9 + ε) approximation algorithms for the outlier versions of these

problems with respect to the k-median and k-means objectives, respectively. Formally, we state

the results as follows:

Theorem 33. There is an FPT time (3
z
+ ε)-approximation algorithm for the outlier versions

of the following constrained k-service problems:
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1. r-gather k-service problem 2. r-capacity k-service problem

3. Balanced k-service problem 4. Chromatic k-service problem

5. Fault-tolerant k-service problem 6. Ordered-Weighted-Average k-service problem

7. Strongly private k-service problem 8. Uncertain k-service problem

The running time of the algorithm is ((k + m)/ε)O(k z2) · nO(1). For the special case when

C ⊆ L, the algorithm gives (2
z
+ ε)-approximation guarantee.

Theorem 34. There is an FPT time (3
z
+ ε)-approximation algorithm for the outlier version

of the ℓ-diversity k-service problem with running time ((k +m)ω/ε)O(k·(ω+z
2)) ·nO(1). For the

special case when C ⊆ L, the algorithm gives (2
z
+ ε)-approximation guarantee.

Theorem 35. There is an FPT time (3
z
+ ε)-approximation algorithm for the outlier version of

the fair k-service problem with running time ((k +m)Γ/ε)O(k·(Γ+z
2)) · nO(1), where Γ denote

the number of distinct collection of color classes induced by the colors of clients. Moreover,

if the color classes are pair-wise disjoint, then Γ = ω, and the running time of the algorithm

is ((k +m)ω/ε)O(k·(ω+z
2)) · nO(1). For the special case when C ⊆ L, the algorithm gives

(2
z
+ ε)-approximation guarantee.

This completes the discussion on the constrained outlier k-service problem. Next, we convert

our algorithm to a streaming algorithm. We require a streaming version of the list outlier

k-service algorithm and a streaming version of the partition algorithm. In Section 3.8, we

design a constant-pass log-space streaming algorithm for the list outlier k-service problem. In

Section 3.9, we design streaming partition algorithms for the outlier versions of some of the

problems given in Table 3.1. Although the single-pass streaming algorithms are considered

useful, it is interesting to know that there are constant-pass streaming algorithms for many

outlier versions of the constrained k-service problem.
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3.2 Related Work
A unified framework for the constrained k-means/k-median problems was introduced by Ding

and Xu [72]. Using this framework, they designed (1 + ε)-approximation algorithms for var-

ious constrained clustering problems with FPT running time parameterized by k. However,

their study was limited to the Euclidean space where L = Rp
and C is a finite subset of Rp

.

They obtained the results using an algorithm for the list version of the k-means problem (even

though it was not formally defined in their work). The running time of their algorithm was

O(np · (log n)k · 2poly(k/ε)) and the list size was (log n)k · 2poly(k/ε). Bhattacharya et al. [28] for-

mally defined the list k-service problem. They obtained a faster algorithm for the list k-service

problem with running time of O(np · (k/ε)O(log(k/ε))) and list size of (k/ε)O(log(k/ε)). We use a

sampling-based approach similar to the algorithm of Bhattacharya et al. [28]. Our work differs

from the previous works in the following ways:

1. Working in a metric space instead of the Euclidean space poses challenges as some of

the main tools used for analysis in the Euclidean setting cannot be used in metric spaces.

We carefully devise and prove new sampling lemmas that makes the high-level analysis

of Bhattacharya et al. [28] go through.

2. Bhattacharya et al. [28] gave an algorithm for the list-k-means problem with list size

|L| = (k
ε
)O( k

ε
) and running time O(np|L|). Their algorithm explores a rooted tree of size

(k
ε
)O( k

ε
) and depth k where the degree of every non-leaf vertex is (k

ε
)O( 1

ε
). Every node in

this tree has an associated center and the path from root to a leaf node gives one of the

k-center-sets for the output list. The algorithm has an unavoidable iteration of depth k

since their analysis works only when the centers are picked one-by-one in k iterations.

We circumvent this inherent restriction by using a constant factor approximate solution

F to the unconstrained k-means/median problem for the given dataset (C,L). That is,

service-cost(F,C) ≤ α · OPT, where OPT denotes the optimal k-means/median cost.
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Then the sampling algorithm runs in a single iteration where poly(k
ε
) points from C are

Dz-sampled with respect to F . Thus, we obtain the list L in a single shot. This technique

helps us in designing streaming algorithm for the problem.

3. We study the hard-assignment version of the constrained k-service problem which is

harder than the soft-assignment version of the problem. The hard and soft assignment

versions are equivalent in the continuous Euclidean space where L = Rp
. The reason

is that if two facilities are opened at the same facility location, then one of the facilities

can be moved by an infinitely small distance to convert a soft-assignment to a hard-

assignment. Therefore, the previous works on the constrained clustering problem did not

consider the distinction between soft and hard assignment.

4. We extend the constrained k-median/means framework to the outlier setting. We de-

sign ((k + m)/ε)O(k) · nO(1) time algorithm for the outlier version of the constrained

k-median/means problems in general metric spaces, where n = |C ∪ L| and m is the

number of outliers.

Ours is the first algorithm for many problems that achieves a constant approximation in FPT

running time. Please see Table 3.2 for the known results. Independent of our work, Bandy-

opadhyay et al. [21] designed similar algorithms as ours using coreset techniques. However,

they did not study the problem in hard-assignment and outlier settings.

We want to point out that the r-gather, r-capacity, and balanced k-service problems that we

study in this paper impose cluster-wise constraints. However, the alternate definitions of the

r-gather, r-capacity, and balanced k-service problems impose constraints on individual facility

locations. Formally, the balanced k-service problem with location-wise constraints is defined

as follows:

Definition 36 (Balanced k-service Problem with Location-Wise Constraints). Given an in-

stance I = (L,C, k, d, z) of the k-service problem, a lower bound function g : L→ Z+, and an
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upper bound function h : L→ Z+, find a set F ⊆ L of k facility and assignment ϕ : C → L that

minimizes the assignment cost
∑

j∈C mini∈F d(j, i)z and satisfies that g(f) ≤ |ϕ−1(f)| ≤ h(f)

for every facility location f ∈ F .

The above definition also encapsulates the r-gather and r-capacity k-service problems with

location-wise constraints. For the r-gather problem, h(f) = |C| for every facility location

f ∈ L, and for the r-capacity problem, g(f) = 0 for every facility location f ∈ L. Moreover,

when every facility location has the same values of g(f) and h(f), then the problems are known

as the uniform r-gather, r-capacity, and balanced k-service problems. It is easy to see that for

the uniform version, the problem with location-wise constraints is equivalent to the problem

with cluster-wise constraints. In other words, Definition 36 is the same as the definition given

in Table 3.1 for the uniform case. To the best of our knowledge, the non-uniform variant of the

problem with cluster-wise constraints has not been studied before. Furthermore, we believe that

it is non-trivial to obtain any polynomial time reduction between the problems with cluster-wise

constraints and location-wise constraints.

As we mentioned earlier, the unconstrained metric k-median problem is hard to approximate

within a factor strictly smaller than (1 + 2/e), and the metric k-means problem is hard to

approximate within a factor strictly smaller than (1 + 8/e). Surprisingly this lower bound

persists even if we allow an FPT running time [53]. The problem also has a matching upper

bound algorithm with an FPT running time [53]. Therefore, the unconstrained k-means and

k-median problems in the metric setting are relatively well understood. On the other hand,

our understanding of most constrained versions of the problem is still far from complete. We

believe that our work is important in understanding constrained problems in general metric

spaces.
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# Problem k-Median Objective k-Means Objective

Without Outliers With Outliers Without Outliers With Outliers

1.

r-Gather Clustering
(non-uniform version
with cluster-wise constraint)

- - - -

r-Gather Clustering
(uniform version)

7.2 (for C = L)
(FPT time) [69]

-
86.9 (for C = L)
(FPT time) [69]

-

2.

r-Capacity Clustering
(non-uniform version
with cluster-wise constraint)

- - - -

r-Capacity Clustering
(uniform version)

(3 + ε) [52]
(FPT time)

-
(9 + ε) [52]
(FPT time)

-

3.

Balanced Clustering
(non-uniform version
with cluster-wise constraint)

- - - -

Balanced Clustering
(uniform version)

7.2 (for C = L)
(FPT time) [69]

-
86.9 (for C = L)
(FPT time) [69]

-

4. Chromatic Clustering - - - -

5.
Fault Tolerant Clustering
(non-uniform version)

93 [92]
(polynomial time)

-
O(1) [95]
(polynomial time)

O(ℓ) [95]
(polynomial time)

Fault Tolerant Clustering
(uniform version)

4 [130]
(polynomial time)

- - -

6.
Ordered-Weighted-Average
Clustering

93 [36]
(polynomial time)

- - -

7.
Strongly Private
Clustering

- - - -

8. ℓ-Diversity Clustering 2 (4.675, 1) [27]
(polynomial time)

-
(62.856, 1) [27]
(polynomial time)

-

9.
Fair Clustering
(disjoint color classes)

(4.675, 1) [27]
(polynomial time)

-
(62.856, 1) [27]
(polynomial time)

-

Fair Clustering
(overlapping color classes)

(4.675, 4∆ + 3)
(polynomial time)
[26]

-
(O(1), 4∆ + 3)
(polynomial time
[26]

-

10.
Uncertain Clustering
(assigned version)

(6.35 + ε)
(for C ⊆ L) [60]
(polynomial time)

-
(74 + ε)
(for C ⊆ L) [60]
(polynomial time)

-

Table 3.2: The known results for the constrained k-median/means problems with and without
outliers. We only mention the results for the soft assignment version of the problems; however,
some of these results also hold for the hard assignment version that we did not mention explic-
itly for the sake of simplicity. No polynomial time constant factor approximation algorithm is
known for the ℓ-diversity and fair clustering problems. The algorithms of [26] and [27] give
O(1) approximation guarantees corresponding to the k-median and k-means objective respec-
tively; however, they violate the fairness constraint by an additive factor of 4∆ + 3, where ∆
denotes the maximum number of color classes a client can be part of. When the color classes
are disjoint, the algorithms violate the fairness constraint by an additive factor of 1.
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We discuss the known results for each of the problems mentioned in Table 3.1 in more detail:

1. r-gather k-service problem: For the uniform r-gather k-median problem, the algorithms

of [129] and [9] can be adapted to obtain an O(1)-approximation guarantee [10]. Under

the assumption of C = L, Hu Ding [69] gave FPT time (3λ+2)-approximation algorithm

for the uniform r-gather k-median problem and 18λ + 16 approximation algorithm for

the uniform r-gather k-means problem. Here, λ denotes the approximation guarantee

of any unconstrained k-median or k-means algorithm. We can use the FPT algorithm

of Addad et al. [53], which has λ = 1 + 2/e for the unconstrained k-median problem

and λ = 1 + 8/e for the unconstrained k-means problem. Moreover, these bounds are

tight, assuming Gap-ETH. Thus, the algorithm of Hu Ding [69] gives at best 7.2 and

86.9-approximation for the r-gather k-median and k-means problems, respectively.

2. r-capacity k-service problem: For the capacitated k-service problem, no constant-factor

approximation is known yet, even in the uniform setting. However, various bi-criteria

approximation algorithms are known for the problem [112, 111, 34, 67], which either

violate the capacity or cardinality constraint (the constraint on the number of open facili-

ties) by a constant factor. The problem has been also studied in FPT time parameterized

by k [139, 2, 52]. The best-known algorithm is due to Addad et al. [52]; the authors de-

signed the FPT time 3 and 9 approximation algorithms for the non-uniform capacitated

k-median and k-means problems, respectively. However, their algorithm holds when the

non-uniform capacities on imposed on the locations. On the other hand, our algorithm

holds when the non-uniform capacities are imposed on the clusters. Our algorithm gives

the same bounds as that of [52] for the uniform capacitated case. Moreover, we extend

our algorithm to the outlier and streaming settings.

3. Balanced k-service problem: Under the assumption of C = L, Hu Ding [69] gave FPT
2Bera et al. [27] did not explicitly mention the results for the ℓ-diversity clustering problem. However, the

results follow from [27] since the ℓ-diversity problem is a special case of fair clustering problem with disjoint
color classes as noted by Bandyapadhyay et al. [21].
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time (3λ+ 2)-approximation algorithm for the uniform balanced k-median problem and

18λ + 16 approximation algorithm for the uniform balanced k-means problem. Here, λ

denotes the approximation guarantee of any unconstrained k-median or k-means algo-

rithm. We can use the FPT algorithm of Addad et al. [53], which has λ = 1 + 2/e for

the unconstrained k-median problem and λ = 1 + 8/e for the unconstrained k-means

problem. Moreover, these bounds are tight, assuming Gap-ETH. Thus, the algorithm of

Hu Ding [69] gives at best 7.2 and 86.9-approximation for the balanced k-median and

k-means problems, respectively.

4. Chromatic k-service problem: The problem was formulated by Ding and Xu [71] and

it has certain applications in cell biology [70]. Ding and Xu [72, 71] gave a PTAS for the

chromatic k-median and k-means problems in the Euclidean space (i.e., C ⊆ L = Rp
)

and Bhattacharya et al. [28] improved the running time of the algorithm. No constant

factor approximation algorithm is known for the problem in the general metric spaces.

5. Fault-tolerant k-service problem: In the fault-tolerant k-service problem, given a fa-

cility set F ⊆ L, the cost of a client x ∈ C is the sum of the distances to its ℓx closest

facility locations in F . If ℓx is the same for every x in C, then we call the problem

the uniform fault-tolerant k-service problem. On the other hand, if ℓx is not the same

for every x, then we call the problem the non-uniform fault-tolerant k-service problem.

For the non-uniform fault-tolerant k-median problem, the first approximation algorithm

was given by Anthony et al. [15]. The algorithm had a O(log n)-approximation guaran-

tee. Hajiaghayi et al. [92] gave an improved 93-approximation algorithm for the problem.

For the uniform fault-tolerant k-median problem, a better approximation guarantee of 4 is

known due to Swamy and Shmoys [130]. For the outlier fault-tolerant k-means problem,

Inamdar and Varadarajan [95] gave O(ℓ)-approximation algorithm.

6. Ordered-weighted-average (OWA) k-service problem: The problem was first pro-

posed by Byrka et al. [36]. The authors reduced the OWA k-service problem to the
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fault-tolerant k-service problem with client multiplicities. The client multiplicity means

that each client j ∈ C could have multiple copies in the instance. This reduction gave

a 93-approximation for the OWA k-median problem, using the 93-approximation algo-

rithm of the fault-tolerant k-median problem [92]. However, since the multiplicity could

be exponential in |C|, a straightforward implementation of the algorithm of Hajiaghayi et

al. [92] does not run in polynomial time. However, the authors showed that the algorithm

of Hajiaghayi et al. [92] could be adapted to run in polynomial time for the fault-tolerant

k-median problem with client multiplicities.

7. Strongly private k-service problem: This problem has recently been proposed by Rös-

ner and Schmidt [127] in the context of the k-center objective. The authors gave 5 and 4

approximation algorithms for the k-supplier and k-center versions, respectively, without

outliers. However, no constant factor approximation algorithm is known for the problem

for the k-service objective.

8. ℓ-diversity k-service problem: Bandyapadhyay et al. [21] noted that the ℓ-diversity clus-

tering problem is a special case of the fair clustering problem when the color classes are

disjoint, and αj = 1/ℓ and βj = 0 for every color class Cj ∈ {C1, . . . , Cω}. Therefore,

the problem admit 4.675 and 20.443 approximation algorithms for the k-median and k-

means versions, respectively, without outliers [27]; however, the algorithms violate the

constraint by an additive factor of 3, i.e., 0 ≤ |Oi ∩ Cj| ≤ |Oi|/ℓ + 3 for every cluster

Oi ∈ {O1, . . . , Ok} and color class Cj ∈ {C1, . . . , Cω}.

Another variant of the ℓ-diversity clustering problem was proposed by Li et al. [110].

Given an integer constant ℓ ≥ 0, the task is to find a clustering O = {O1, ..., Ot} of the

client set C with minimum Φ∗(O) such that for every cluster Oi, |Oi| ≥ ℓ and Oi should

not have any two clients with the same color. Note that, unlike other clustering problems,

here, we do not have any restriction on the number of open centers.

9. Fair k-service problem: In this problem, we are given ω color classes: C1, . . . , Cω
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that are subsets of the client set C and two fairness vectors α, β ∈ [0, 1]ω. No true

constant factor approximation algorithm is known for the problem yet. The existing

algorithms give O(1) approximation guarantee for the k-median and k-means objectives,

respectively; however, they violate the fairness constraint by an additive factor of 4∆+3,

where ∆ denote the maximum number of groups a client can be part of [26]. For the case

of disjoint color classes, the fairness constraint is violated by an additive factor of 1 [27].

10. Unfair k-service problem (Probabilistic Clustering): The problem was proposed by

Cormode and McGregor [60]. The authors defined the input instance in the following

manner: A client j in C is represented by a random variable Xj such that j is present

at the location x ∈ X with probability tjx, i.e., P [Xj = x] = tjx. Certainly, we have∑
x∈X tjx ≤ 1 for every client j ∈ C. Also, note that the probability could be less than

one since it is possible that a client might not exist at all. The cost function is defined in

two ways: unassigned and assigned, as follows.

(a) Unassigned Cost: In this case, we output a center-set F that minimizes the follow-

ing cost function:

k-median:
∑

(x1,x2,...,xn)∈Xn

(
n∏

j=1

Pr[Xj = xj] ·
n∑

j=1

d(xj, F )

)

k-means:
∑

(x1,x2,...,xn)∈Xn

(
n∏

j=1

Pr[Xj = xj] ·
n∑

j=1

d2(xj, F )

)

Here, n := |C|, and d(x, F ) := minf∈F {d(x, f)} denote the distance of x to the

closest facility location.

Let F ∗ be an optimal center-set corresponding to the above objective function. We

assign a client j to a facility location in F based on its realized position. Suppose

xj is the realized position of the client j. Then we assign j to a facility location that

is closest to xj .
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(b) Assigned Cost: In this case, we assign a client to a cluster center prior to its realiza-

tion. Therefore, we assume that for a client j, all its realizations are assigned to the

same center. The goal is to output a center set F and an assignment σ : C → F that

minimizes the following cost function:

k-median:
∑

(x1,x2,...,xn)∈Xn

(
n∏

j=1

Pr[Xj = xj] ·
n∑

j=1

d(xj, σ(j))

)

k-means:
∑

(x1,x2,...,xn)∈Xn

(
n∏

j=1

Pr[Xj = xj] ·
n∑

j=1

d2(xj, σ(j))

)

Cormode and McGregor [60] showed that using the linearity of expectation, the

problem can be equivalently stated as finding a clustering O = {O1, ..., Ok} and

facility set F = {f1, . . . , fk} such that
∑

x∈C minfj∈F d(x, fj) is minimized, where

d(x, fj)
z =

∑h
i=1 t

i
x · d(xi, fj).

The unassigned version of these problems is quite simple. In this case, both problems

can be simply reduced to their weighted unconstrained counterparts by linearity of ex-

pectation (see Section 5 of [60]). Thus we get a (2.675 + ε)-approximation for the

uncertain k-median problem [35] and (9 + ε)-approximation for the uncertain k-means

problem [8]. Therefore, in this work, we only study these problems with respect to their

assigned objectives.

For the assigned version, Lammersen and Schmidt [108] gave the first coreset construc-

tion for the assigned version of the uncertain k-median problem. Cormode and McGre-

gor [60] reduced the assigned version of the uncertain k-service problem to its weighted

unconstrained counterpart, with a certain loss in the approximation factor. In particu-

lar, they gave a (2α + 1)-approximation algorithm for the uncertain k-median problem

and a (8α + 2)-approximation algorithm for the uncertain k-means problem 3. Here,

3For the uncertain k-means objective, Cormode and McGregor [60] did not state the (8α+ 2)-approximation,
explicitly. However, this result can be obtained using the same technique used to obtain the (2α+1)-approximation
for the uncertain k-median problem. The (2α + 1)-approximation algorithm for the uncertain k-median problem
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α is the approximation guarantee of any unconstrained k-median/k-means algorithm.

The current best approximation guarantee for the unconstrained k-median problem is

(2.675 + ε) [35], and the unconstrained k-means problem is (9 + ε) [8]. Substituting

these α values, we obtain (6.35 + ε)-approximation for the uncertain k-median problem,

and (74 + ε)-approximation for the uncertain k-means problem. All the above-stated

approximation guarantees assume that C ⊆ L = X .

3.3 Notations and Identities
This section defines the notations and identities that we frequently use in the paper. We

define the unconstrained k-service cost of a client set S with respect to a center set F as

service-cost(F, S) :=
∑

x∈S minf∈F d(f, x)z. For a singleton set {f}, we denote

service-cost({f}, S) shortly by service-cost(f, S). For an instance I = (L,C, k, d, z), we de-

note the optimal (unconstrained) k-service cost of the instance by OPT(L,C, k).

The following is the binomial approximation inequality that we use to simplify the terms with

large exponents.

Fact 1 (Binomial Approximation). For ε · n ≤ 1/2, we have (1 + ε)n ≤ (1 + 2εn)

Proof. We prove using induction on n. For the base case, n = 0; therefore, the fact holds

trivially. Then, we assume that the induction hypothesis holds for n = k. That is (1 + ε)k ≤

1 + 2εk for εk ≤ 1/2. Then, we show that induction hypothesis holds for n = k + 1 for

ε(k + 1) ≤ 1/2. The proof follows from the following sequence of inequalities:

(1 + ε)k+1 ≤ (1 + 2kε)(1 + ε)

(∵ εk ≤ ε(k + 1) ≤ 1/2 and using induction hypothesis for n = k)

is stated in Theorem 10 of [60]. In this theorem, if we replace the triangle-inequality with approximate triangle-
inequality for the k-means objective, we would obtain an (8α+ 2)-approximation guarantee.
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= 1 + 2εk + ε+ 2ε2k

≤ 1 + 2εk + ε+ ε, (∵ εk ≤ 1/2)

= 1 + 2ε(k + 1).

Hence proved.

We use the following fact to carry out the trade-off between two values a and b. We will choose

the value of δ according to our requirements.

Fact 2. For any δ, z, a, b > 0, we have (a+ b)z ≤ (1 + δ)z · bz +
(
1 + 1

δ

)z · az.

Proof. There are two possibilities: a ≤ δ · b or a > δ · b. For the first case, we have (a+ b)z ≤

(1+ δ)z · bz. For the second case, we have (a+ b)z ≤
(
1 + 1

δ

)z · az. Hence we get the required

result.

Since we are working on the metric spaces, triangle inequality becomes a powerful tool to prove

the required bounds. We need to generalize the triangle inequality since we deal with a general

cost function dz. The following inequality is the generalization of the triangle inequality and

simply follows from the power-mean inequality.

Fact 3 (Approximate triangle inequality). For a set of points {a, b, c} ∈ X , d(a, b)z ≤ 2
z−1 ·(

(d(a, c)z + d(c, b)z
)
. Similarly for a set of four points {a, b, c, d} ∈ X we have d(a, b)z ≤

3z−1 ·
(
(d(a, c)z + d(c, d)z + d(d, b)z

)

In the following lemma, we use uniform sampling to obtain a constant approximation for any

arbitrary cluster S. A similar version of the lemma has been used in multiple other works to

analyze sampling-based algorithms (for example, see Lemma 3.1 in [16]).
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Lemma 7. For a set S ⊆ C, let f ∗ be any center in L. If we uniformly sample a point x in S

and open a facility at the closest location in L, then the following identity holds:

E[service-cost(t(x), S)] ≤ 3
z · service-cost(f ∗, S),

where t(x) is the closest facility location from x.

Proof. The proof follows from the following sequence of inequalities.

E[service-cost(t(x), S)]

=
1

|S|

(∑
x∈S

service-cost(t(x), S)

)

=
1

|S|

(∑
x∈S

∑
x′∈S

d(t(x), x′)z

)

≤ 3z−1

|S|

(∑
x∈S

∑
x′∈S

(d(f ∗, x′)z + d(x, f ∗)z + d(t(x), x)z)

)
, (using Fact 3)

≤ 3z−1

|S|

(∑
x∈S

∑
x′∈S

(d(f ∗, x′)z + d(x, f ∗)z + d(f ∗, x)z)

)
, (by defn. of t(x))

=
3z−1

|S|

(∑
x∈S

service-cost(f ∗, S) +
∑
x′∈S

service-cost(f ∗, S) +
∑
x′∈S

service-cost(f ∗, S)

)

=
3z−1

|S|

(
3|S| · service-cost(f ∗, S)

)
= 3

z
· service-cost(f ∗, S)

Note that, in the above lemma, it is not necessary to open a facility at the closest location from

x. Rather, we can open a facility at a location that is at least as close to x as f ∗. In the next

lemma, we show that if we are allowed to open a facility location at client locations as well,

then it gives a better approximation guarantee.
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Lemma 8. For a set S ⊆ C, let f ∗ be any center in L. If we uniformly sample a point x in S

and open a facility at x, then the following identity holds:

E[service-cost(x, S)] ≤ 2
z · service-cost(f ∗, S)

Proof. The proof follows from the following inequalities.

E[service-cost(x, S)] =
1

|S|

(∑
x∈S

service-cost(x, S)

)

=
1

|S|

(∑
x∈S

∑
x′∈S

d(x, x′)z

)

≤
2
z−1

|S|

(∑
x∈S

∑
x′∈S

(d(f ∗, x′)z + d(x, f ∗)z)

)
, (using Fact 3)

=

2
z−1

|S|

(
2|S| · service-cost(f ∗, S)

)
= 2

z
· service-cost(f ∗, S)

3.4 A Simple List k-Service Algorithm
In this section, we design an algorithm for the soft version of the list k-service problem. That

is, we can open more than one facility at a location in L while keeping the total number of

open facilities to most k. The algorithm is simple; however, it can not be extended to the

hard-assignment version. We use the techniques similar to Section 2.4; we convert the bi-

criteria approximation algorithm for the unconstrained k-service problem to the list k-service

algorithm. The bi-criteria approximation algorithm is defined as follows:

Definition 37 (Bi-criteria Approximation). Let I = (L,C, k, d, z) be any instance of the un-
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constrained k-service problem. An (α, β) bi-criteria approximation algorithm is an algorithm

that outputs a set F ′ ⊆ L of βk facilities such that the cost of the client set C with respect to F ′

is at most α times the optimal cost of the instance. That is,

service-cost(F ′, C) ≤ α · min
k-center-set F

{
service-cost(F,C)

}
= α · OPT(L,C, k)

We convert an (α, β) bi-criteria approximate solution to a list k-service solution using the fol-

lowing theorem:

Lemma 9. Let I = (L,C, k, d, z) be any instance of the k-service problem. Let S be any (α, β)

bi-criteria approximate solution of I. Let L be the list of all k-sized soft-subsets of S. Then,

for any arbitrary partitioning O = {O1, . . . , Ok} of C, there exists a k-sized set S ′ in the list L

that gives (3
z−1 · (α + 2))-approximation to the optimal assignment cost of O. That is,

Φ(S ′,O) ≤ (3
z−1 · (α + 2)) · Φ∗(O).

Proof. Let FO = {f1, . . . , fk} ⊆ L be an optimal soft-center set of O. That is, Φ(FO,O) =

Φ∗(O). For any point x ∈ C ∪ FO, let g(x) denote a facility in S that is closest to x. That is,

g(x) := argmins∈S
{
d(s, x)

}
. We define a new soft-center set S ′ := {g(f1), . . . , g(fk)} ⊆ S.

We show that S ′ is a (3
z−1 · (α + 2))-approximate solution to O. The proof follows from the

following sequence of inequalities:

Φ(S ′,O) =
k∑

i=1

∑
x∈Oi

{d(x, g(fi))z}

≤
k∑

i=1

∑
x∈Oi

(
d(x, fi) + d(fi, g(fi))

)z
, (using triangle inequality)

≤
k∑

i=1

∑
x∈Oi

(
d(x, fi) + d(fi, g(x))

)z
, (from definition of g(fi))
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≤
k∑

i=1

∑
x∈Oi

(
d(x, fi) + d(fi, x) + d(x, g(x))

)z
, (using triangle inequality)

≤ 3
z−1
·

k∑
i=1

∑
x∈Oi

(
d(x, fi)

z + d(fi, x)
z + d(x, g(x))z

)
, (using Fact 3)

= 3
z−1
·

k∑
i=1

∑
x∈Oi

(
2 · d(x, fi)z + d(x, g(x))z

)
,

= 3
z−1
· 2 · Φ∗(O) + 3

z−1
·

k∑
i=1

∑
x∈Oi

d(x, g(x))z,

= 3
z−1
· 2 · Φ∗(O) + 3

z−1
·
∑
x∈C

d(x, g(x))z,

= 3
z−1
· 2 · Φ∗(O) + 3

z−1
· service-cost(S,C),

= 3
z−1
· 2 · Φ∗(O) + 3

z−1
· α · OPT(L,C, k), (∵ S is an α-approximation)

≤ 3
z−1
· (2 + α) · Φ∗(O),

(∵ unconstrained cost is always smaller then the constrained cost)

This proves that S ′ is a (3
z−1 · (α + 2))-approximate solution to O. Note that S ′ ⊆ S and L is

the list of k-sized soft-subsets of S; therefore S ′ ∈ L. This proves the lemma.

To use the above lemma, we require a bi-criteria approximation algorithm for the uncon-

strained k-service problem. Interestingly, there exists a polynomial time randomized
(
1 +

ε,O(ln(1/ε))
)

bi-criteria approximation algorithm due to Neal Young [140]. The algorithm

outputs O(k ln(1/ε)) centers such that the expected unconstrained k-service cost of the client

set with respect to the center set is at most (1 + ε) times the optimal. There also exists a

polynomial time deterministic
(
1 + ε,O(ln(1/ε)/ε)

)
bi-criteria approximation algorithm due

to Chandra Chekuri [41]. We substitute the algorithm of Chandra Chekuri [41] in the previous
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lemma; therefore, α = 1 + ε and β = O(ln(1/ε)/ε). We set ε = ε′/3
z−1

for some constant

ε′ ≤ 1. Then, the above lemma gives the following result for the list k-service problem:

Corollary 10 (Main Result). Let I = (L,C, k, d, z,O, ε) be any instance of the list k-service

problem. Then, there is an algorithm that outputs a list L of size (k ln(1/ε)/ε)O(k) such that it

contains a k-sized soft-center-set that is (3
z
+ ε′)-approximation to the optimal clustering cost

of O. The running time of the algorithm is (k ln(1/ε)/ε)O(k) · nO(1), which is FPT in k.

The above algorithm is simple; however, it has the following main limitations:

1. The algorithm does not hold for the hard assignment version of the list k-service problem.

The set S ′ obtained using FO could have duplicate facilities since it is possible that two

distinct facilities fi, fj ∈ FO, their closest facilities in g(fi) and g(fj) in S could be the

same.

2. The algorithm does not give improved approximation guarantee for the special case when

C ⊆ L.

3. We do not know how to extend the algorithm to the outlier setting while achieving the

same approximation guarantee of (3
z
+ ε).

4. We do not know how to convert the algorithm to the streaming algorithm.

In the next section, we use a different approach to solve the problem, and we do not face these

limitations.

3.5 Algorithm for List Outlier k-Service Problem
In this section, we design an FPT (in m and k) time algorithm for the list outlier k-service

problem with running time (k + m)O(kz2) · nO(1). It implies a kO(kz2) · nO(1) time algorithm

for the list k-service problem without outliers. Moreover, our algorithm works in the outlier
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setting. Our algorithm is based on Dz-sampling technique: given a center set F and client set

C, sampling a point from the client set C w.r.t. center set F using the distribution where the

sampling probability of a client x ∈ C is service-cost(F, {x})
service-cost(F,C)

=
minf∈F d(f, x)z∑

y∈C minf∈F d(f, y)z
. If F is

empty, then Dz-sampling is the same as uniform sampling. Please see Algorithm 3.1 for the

list outlier k-service problem.

List-Outlier-k-Service (L,C, k, d, z, ε,m)
Inputs: Outlier k-service instance (L,C, k, d, z,m) and accuracy ε
Output: A list L, each element in L being a k-center set

Constants: β = 4z−1 ·
(
zz · 3z2+4z+3

ε z+1
+ 1

)
; γ =

zz · 3z2+5z+1

ε z
; η =

αβ γ k · 3z+2

ε2

(1) Run any α-approximation algorithm with α = poly(k +m) for the unconstrained
(k +m)-service instance (C,C, k +m, d, z) and let F be the obtained center-set.

(k-means++ [16] is one such algorithm.)
(2) L ← ∅
(3) Repeat (log n) · 2k times:
(4) Sample a multi-set M of ηk points from C using Dz-sampling w.r.t.

center set F
(5) M ←M ∪ F
(6) T ← ∅
(7) For every point x in M :
(8) T ← T ∪ {k facilities in L that are closest to x}
(9) For all subsets S of T of size k:
(10) L ← L ∪ {S}
(11) return(L)

Algorithm 3.1: Algorithm for the list outlier k-service problem

Let us discuss some of the main ideas of the algorithm and its analysis. First, note that as

per the algorithm description, the list size is 2k ·
(
(η+1)k2+mk

k

)
· (log n), which is bounded by

O
(
(log n) · ((k +m)/ε)O(kz2)

)
for the parameters given. This is because in step (9), the al-

gorithm considers all possible k sized subsets of (multi)set T of size (η + 1)k2 + mk. We

now discuss the approximation guarantee. Note that in the first step, we obtain a (m + k)-

sized center-set F ⊆ C which is an α-approximation for the unconstrained (k + m)-service

instance (C,C, k + m, d, z). Any α polynomial in k and m suffices for our analysis. That
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is, service-cost(F,C) ≤ α · OPT(C,C, k +m). One such algorithm is the k-means++ al-

gorithm [16] that gives an O(4z · log(k + m))-approximation guarantee and a running time

O(n(k +m)), where k +m are the number of centers.

Now, let us see how the center-set F can help us. Let us focus on any cluster Oi of a target

clustering O = {O1, . . . , Ok}. We note that the closest facility to a uniformly sampled client

from any client set Oi provides a constant approximation to the optimal 1-median/means cost

for Oi in expectation (see Lemma 7). Unfortunately, we cannot uniformly sample from Oi

directly since Oi is not known to us. Given this, our main objective should be to use F to try

to sample uniformly from Oi so that we could achieve a constant approximation for Oi. Let us

do a case analysis based on the distance of points in Oi from the nearest point in F . Consider

the following two possibilities: The first possibility is that the points in Oi are close to F . If

this is the case, we can uniformly sample a point from F instead of Oi. This would incur some

extra cost. However, the cost is small and can be bounded. To cover this first possibility, the

algorithm adds the entire set F to the set of sampled points M (see line (5) of the algorithm).

The second possibility is that the points in Oi are far away from F . In this case, we can Dz-

sample the points from C. Since the points in Oi are far away, the sampled set would contain

a good portion of points from Oi, and the points will be almost uniformly distributed. We will

show that almost uniform sampling is sufficient to apply Lemma 7 on Oi. However, we would

have to sample many points to boost the success probability. This requirement is taken care of

by line (4) of the algorithm. Note that we may need to use a hybrid approach for analysis since

the real case may be a combination of the first and second possibilities. Most of the ingenuity

of this work lies in formulating and proving appropriate sampling lemmas to make this hybrid

analysis work.

To apply Lemma 7, we need to fulfill one more condition. We need the closest facility loca-

tion from a sampled point. This requirement is handled by lines (7) and (8) of the algorithm.

However, note that the algorithm picks k-closest facility locations instead of just one facility
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location. We will show that this step is crucial to obtain a hard-assignment solution for the

problem. Finally, the algorithm adds all the potential center sets to a list L (see lines (9) and

(10) of the algorithm). The algorithm repeats this procedure (log n) · 2k times to boost the suc-

cess probability (see line (3) of the algorithm). We prove the following result (restatement of

Theorem 32):

Theorem 36. Let 0 < ε ≤ 1 and z ≥ 1. Let (L,C, k, d, z,m) be any outlier-k-service instance.

Let O = {O1, O2, . . . , Ok} be any arbitrary clustering of some arbitrary subset C ′ ⊆ C of size

at least |C| − m. The algorithm List-Outlier-k-Service, with probability at least

1− 1/n, outputs a list L of size O
(
(log n) · ((k +m)/ε)O(k z 2)

)
such that there is a k-center-

set S ∈ L in the list such that Φ(S,O) ≤ (3
z
+ ε) · Φ∗(O). Moreover, the running time of the

algorithm is O
(
n · ((k +m)/ε)O(k z 2)

)
. For the special case when C ⊆ L, the approximation

guarantee is (2
z
+ ε).

Firstly, we analyse the case when C is not necessarily a subset of L. The analysis of the special

case C ⊆ L is similar; however there are subtle differences. We analyse the special case in

Section 3.6.

Let Z ⊆ C be (unknown) target set of at most m outliers, O = {O1, O2, . . . , Ok} be the

(unknown) target clustering of C \ Z, and F ∗ = {f ∗
1 , f

∗
2 , . . . , f

∗
k} be the optimal center set

of O. Suppose Oi is assigned to f ∗
i , and ∆(Oi) denote its assignment cost, i.e., ∆(Oi) =

service-cost(f ∗
i , Oi). We classify the clusters into two categories: low-cost cluster set W and

high-cost cluster set H .

W := {Oi | service-cost(F,Oi) ≤
ε

α γ k
· service-cost(F,C), for 1 ≤ i ≤ k}

H := {Oi | service-cost(F,Oi) >
ε

α γ k
· service-cost(F,C), for 1 ≤ i ≤ k}

In other words, the set W contains the clusters with low-cost and H contains the clusters with
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high-cost with respect to F . The set M that is obtained in lines (4) and (5) of the algorithm has

the following property:

Property-I: For any cluster Oi ∈ {O1, O2, . . . , Ok}, with probability at least 1/2,

there is a point si in M such that the following holds:

service-cost(t(si), Oi) ≤


(
3z +

ε

2

)
·∆(Oi) +

ε

2
z+1

k
· OPT(C,C, k +m), if Oi ∈ W

(
3z +

ε

2

)
·∆(Oi), if Oi ∈ H

where t(si) denotes any facility location that is closer to si than f ∗
i , i.e., d(si, t(si)) ≤

d(si, f
∗
i ).

We prove the above property in Sections 3.5.1 and 3.5.2. Next, we note the following lemma:

Lemma 10. Let Z ⊆ C be any arbitrary set of at most m outliers, O = {O1, . . . , Ok} be any

clustering defined over the client set C \Z, and F ∗ = {f ∗
1 , f

∗
2 , . . . , f

∗
k} ⊆ L be an optimal cen-

ter set of O. Then OPT(C,C, k +m) ≤ 2
z ·
∑k

i=1∆(Oi), where ∆(Oi) = service-cost(f ∗
i , Oi).

Proof. Let Fc := {g(f ∗
1 ), g(f

∗
2 ), . . . , g(f

∗
k )} be the set such that g(f ∗

i ) denote the client in Oi

that is closest from f ∗
i . Note that Φ(Fc,O) ≤

∑k
i=1 2

z · ∆(Oi). The proof follows from the

following sequence of inequalities:

Φ(Fc,O) =
k∑

i=1

∑
x∈Oi

d(x, g(f ∗
i ))

z

≤
k∑

i=1

∑
x∈Oi

(
d(x, f ∗

i )
z + d(f ∗

i , g(f
∗
i ))

z
)

(using triangle inequality)

≤
k∑

i=1

∑
x∈Oi

(
d(x, f ∗

i ) + d(f ∗
i , x)

)z (using the definition. of g(f ∗
i ))

= 2
z
·

k∑
i=1

∑
x∈Oi

d(x, f ∗
i )

z
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= 2
z
·

k∑
i=1

∆(Oi)

Now, consider each point in Z = {z1, . . . , zm}, as a cluster of its own. Let us denote these

clusters by {Ok+1, Ok+2, . . . , Ok+m}, i.e., Ok+i = {zi}. Based on it, let us define a new clus-

tering O′ := {O1, O2, . . . , Ok+m} having k +m clusters. Let F ′ := Fc ∪ Z be a center-set for

O′ such that for 1 ≤ i ≤ k, a cluster Oi is assigned to f ∗
i ; and for k + 1 ≤ i ≤ k + m, a

cluster Ok+i is assigned to zi. Thus we get Φ(F ′,O′) = Φ(Fc,O) ≤
∑k

i=1 2
z ·∆(Oi). More-

over, note that F ′ is a feasible center set and O′ is a feasible clustering for the unconstrained

(k+m)-service instance (C,C, k+m, d, z). Thus OPT(C,C, k +m) ≤ Φ(F ′,O′). Hence we

get OPT(C,C, k +m) ≤ 2
z ·
∑k

i=1∆(Oi). This proves the lemma.

Now we use the above lemma and property to prove Theorem 36. The lemma and property

together implies that Ts := {t(s1), t(s2), . . . , t(sk)} is a

(
3
z
+ ε

)
-approximation for O, with

probability at least 1/2k. 4 Now note that the facility locations that are closest to si satisfy the

definition of t(si). Moreover, the algorithm adds one such facility location to set T (see line (8)

of the algorithm). Therefore there is a center-set Ts in the list that gives (3
z
+ ε)-approximation

for O. To boost the success probability to 1−1/n, the algorithm repeats the process (log n) ·2k

times (see line (3) of the algorithm). Based on these arguments, it looks like we got the desired

result. However, there is one issue that we need to take care of. Remember, we are looking for

a hard assignment for the problem, and the set Ts could be a soft center-set, since the closest

facility locations might be the same for two si’s. In other words, t(si) could be the same as t(sj)

for some i ̸= j. However, we show that there is another hard center-set in the list L, that gives

the required approximation for the problem. To obtain a hard center-set, we use of line (8) of

the algorithm. In line (8), the algorithm picks the k closest facility locations from L instead of

4Note that the probabilities can be multiplied since M can be partitioned into k groups and we actually show
that the good point si for Oi is either in F or is in any group with probability at least 1/2.
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just one. Note that it is not necessary to open a facility at a closest location in L. Rather we can

open a facility at any location f in L that is at least as close to si as f ∗
i , i.e., d(si, f) ≤ d(si, f

∗
i )

(see Property-I).

Let T (si) denote a set of k closest facility location for si. We show that there is a hard center-set

Th := {f1, . . . , fk} ⊂ ∪iT (si), such that d(si, fi) ≤ d(si, f
∗
i ) for every 1 ≤ i ≤ k. We define

Th using the following simple subroutine:

FindFacilities

(1) Th ← ∅

(2) for i ∈ {1, ..., k}:

(3) if f ∗
i ∈ T (si):

(4) Th ← Th ∪ {f ∗
i }

(5) else

(6) let f be any facility in T (si) that is not in Th

(7) Th ← Th ∪ {f}

Lemma 11. Th = {f1, f2, . . . , fk} contains exactly k different facilities such that for every

1 ≤ i ≤ k, we have d(si, fi) ≤ d(si, f
∗
i ).

Proof. Firstly, we show that all facilities in Th are different. Since f ∗
i is different for different

clusters, the if statement always adds different facilities to Th. And, the else statement only

adds a facility to Th that is not present in Th. Therefore, all the facilities in Th are different.

Now we prove the second property, i.e., d(si, fi) ≤ d(si, f
∗
i ) for every 1 ≤ i ≤ k. The property

is trivially true for the facilities that are added in the if statement. For the facilities added in the

else statement, we know that T (si) does not contain f ∗
i . Since T (si) is a set of k-closest facility

locations, for any facility location f in T (si), d(si, f) ≤ d(si, f
∗
i ). Thus any facility added in

the else statement has d(si, f) ≤ d(si, f
∗
i ). This completes the proof.
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Thus Th ∈ L is a hard center-set, which gives (3
z
+ε)-approximation to the problem. We prove

Property-I and Lemma 10 in the following subsections.

Now, we analyse Theorem 36 for the case when C is a subset of L. In other words, we are

allowed to open a facility at a client location. For this case, the algorithm can open the facilities

at the locations {s1, s2, . . . , sk} instead of t(si)’s, and it would not need to execute lines (7)

and (8). Furthermore, it can be shown that {s1, s2, . . . , sk} gives (2
z
+ ε)-approximation to the

optimal clustering cost of O. However, note that {s1, s2, . . . , sk} could be a soft center-set. To

obtain a hard center-set, the algorithm must execute lines (7) and (8). In that case, the analysis

differs slightly. We discuss these details in Section 3.6.

3.5.1 Proof of Property-I: Low-Cost Clusters

Let Oi be a low-cost cluster, i.e., service-cost(F,Oi) ≤
ε

α γ k
· service-cost(F,C). For a point

x ∈ X , let c(x) denote the closest location in F , i.e., c(x) = argminf∈F{d(x, f)}. Based on

the definition of c(x), consider a multi-set Mi := {c(x) | x ∈ Oi}. Since Oi has a low cost

with respect to F , the points in Oi are close to points from F . Consider uniformly sampling a

point from Mi. In the next lemma, we show that a uniformly sampled point from Mi is a good

enough center for Oi.

Lemma 12. Let p be a point sampled uniformly at random from Mi. Then the following bound

holds:

E[service-cost(t(p), Oi)] ≤

(
3
z
+

ε

2

)
·∆(Oi) +

ε

2
z+1

k
· OPT(C,C, k +m).

Proof. The proof follows from the following sequence of inequalities.
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E[service-cost(t(p), Oi)]

=
1

|Oi|
·

(∑
p∈Mi

service-cost(t(p), Oi)

)

=
1

|Oi|
·

(∑
p∈Mi

∑
x∈Oi

d(x, t(p))z

)

=
1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

d
(
x, t(c(x′))

)z)

≤ 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

(d(x, x′) + d(x′, c(x′)) + d(c(x′), t(c(x′))))
z

)
,

(using triangle inequality)

≤ 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

(d(x, x′) + d(x′, c(x′)) + d(c(x′), f ∗
i ))

z

)
,

(by the defn. of t(x))

≤ 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

(d(x, x′) + d(x′, c(x′)) + d(x′, c(x′)) + d(x′, f ∗
i ))

z

)
,

(using triangle inequality)

Let us use Fact 2, by setting a = 2 · d(x′, c(x′)) and b = d(x, x′) + d(x′, f ∗
i ). We get the

following expression, for any δ > 0:

≤ 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

((
1 +

1

δ

)z

· (d(x, x′) + d(x′, f ∗
i ))

z + (1 + δ)z · 2
z
· d(x′, c(x′))z

))

=

(
1 +

1

δ

)z

· 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

(d(x, x′) + d(x′, f ∗
i ))

z

)
+

(1 + δ)z · 1

|Oi|
·

(∑
x′∈Oi

|Oi| · 2
z
· d(x′, c(x′))z

)

By lemma 7, we have

E[service-cost(t(x), Oi)] ≤
1

|Oi|
·
(∑

x′∈Oi

∑
x∈Oi

(d(x, x′) + d(x′, f ∗
i ))

z
)
≤ 3

z ·∆(Oi). Thus,
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we get:

E[service-cost(t(p), Oi)]

≤
(
1 +

1

δ

)z

· 3
z
·∆(Oi) + (1 + δ)z · 1

|Oi|
·

(∑
x′∈Oi

|Oi| · 2
z
· d(x′, c(x′))z

)

=

(
1 +

1

δ

)z

· 3
z
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,Oi)

=

1 +
ε

z · 3
z+2


z

· 3
z
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,Oi),

(by substituting δ =

z · 3
z+2

ε
)

≤

1 + 2z · ε

z · 3
z+2

 · 3z ·∆(Oi) + 2
z
(1 + δ)z · service-cost(F,Oi),

(using Fact 1)

≤

(
3
z
+

ε

2

)
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,Oi)

≤

(
3
z
+

ε

2

)
·∆(Oi) + 2

z
(2δ)z · service-cost(F,Oi), (∵ 1 ≤ δ, for ε ≤ 1)

≤

(
3
z
+

ε

2

)
·∆(Oi) +

4
z
· δ

z
· ε

α γ k
· service-cost(F,C),

(∵ service-cost(F,Oi) ≤
ε

α γ k
· service-cost(F,C))

≤

(
3
z
+

ε

2

)
·∆(Oi) +

ε

2
z+1

α k
· service-cost(F,C), (∵ γ =

zz · 3z2+5z+1

εz
)

≤

(
3
z
+

ε

2

)
·∆(Oi) +

ε

2
z+1

k
· OPT(C,C, k +m),

(∵ service-cost(F,C) ≤ α · OPT(C,C, k +m))
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This completes the proof of the lemma.

Since the above lemma estimates the average cost corresponding to a sampled point, there

has to be a point p in Mi such that service-cost(t(p), Oi) ≤

(
3
z
+

ε

2

)
· ∆(Oi) +

ε

2
z+1

k
·

OPT(C,C, k +m). Since Mi is only composed of the points from F , and we keep the entire

set F in M (see line (5) of the algorithm), therefore Property-I is satisfied for every low-cost

cluster Oi ∈ W .

3.5.2 Proof of Property-I: High-Cost Clusters

Let Oi be a high-cost cluster, i.e., service-cost(F,Oi) >
ε

α γ k
· service-cost(F,C). Since the

cost of the cluster is high, some points of Oi are far away from the center set F . We partition

Oi into two sets: On
i and Of

i , as follows.

On
i := {x | d(c(x), x)z ≤ R

z
, for x ∈ Oi}, where R

z
=

1

β
· service-cost(F,Oi)

|Oi|

Of
i := {x | d(c(x), x)z > R

z
, for x ∈ Oi}, where R

z
=

1

β
· service-cost(F,Oi)

|Oi|

In other words, On
i represents the set of points that are near to the center set F and Of

i represents

the set of points that are far from the center set F . Recall that our prime objective is to obtain

a uniform sample from Oi so we can apply lemma 7. To achieve that we consider sampling

from On
i and Of

i separately. The idea is as follows. To sample a point from Of
i , we use the

Dz-sampling technique and show that it gives an almost uniform sample from Of
i . For On

i , we

use F as its proxy and sample a point from F instead. However, doing so would incur an extra

cost. We show that the extra cost is proportional to service-cost(F,On
i ), which can be bounded
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easily. To bound the extra cost, we use the following lemma.

Lemma 13. For R
z
=

1

β
· service-cost(F,Oi)

|Oi|
, we have service-cost(F,On

i ) ≤ εz+1

z z · 3 z2+5z+2
·

∆(Oi).

Proof. We have,

∆(Oi) ≥ service-cost(f ∗
i , O

n
i )

=
∑
x∈On

i

d(f ∗
i , x)

z

≥
∑
x∈On

i

d(c(x), f ∗
i )

z

2
z−1 − d(x, c(x))z

 , (using Fact 3)

=
∑
x∈On

i

d(c(x), f ∗
i )

z

2
z−1

− service-cost(F,On
i )

≥
∑
x∈On

i

d(c(f ∗
i ), f

∗
i )

z

2
z−1

− service-cost(F,On
i ).

Using Fact 3, we get service-cost(c(f ∗
i ), Oi) ≤ 2

z−1 · (∆(Oi) + |Oi| · d(c(f ∗
i ), f

∗
i )

z). Since

service-cost(F,Oi) ≤ service-cost(c(f ∗
i ), Oi), we get

d(c(f ∗
i ), f

∗
i )

z ≥
service-cost(F,Oi)− 2

z−1 ·∆(Oi)

2
z−1|Oi|

. Using this, the previous expression simplifies

to:

∆(Oi) ≥ |On
i |


service-cost(F,Oi)− 2

z−1
·∆(Oi)

4
z−1
· |Oi|

− service-cost(F,On
i )

= |On
i | ·

βR
z

4
z−1 − |O

n
i | ·

∆(Oi)

2
z−1
· |Oi|

− service-cost(F,On
i ),
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( ∵ R
z
=

1

β
· service-cost(F,Oi)

|Oi|
)

≥ service-cost(F,On
i ) · β

4
z−1 − |O

n
i | ·

∆(Oi)

2
z−1
· |Oi|

− service-cost(F,On
i ),

(∵ service-cost(F,On
i ) ≤ |On

i | ·R
z
)

≥
(β − 4

z−1
)

4
z−1 service-cost(F,On

i )−∆(Oi), (∵ |On
i | ≤ |Oi| ≤ 2

z−1
· |Oi|)

On rearranging the terms of the expression, we get

service-cost(F,On
i ) ≤

2 · 4
z−1

β − 4
z−1 ·∆(Oi)

≤ εz+1

zz · 3z2+5z+2
·∆(Oi) ∵ β = 4

z−1
·
(
zz · 3z2+4z+3

εz+1
+ 1

)

Hence proved.

Since we are using F as a proxy for On
i , we define a multi-set Mn

i := {c(x) | x ∈ On
i },

where c(x) denote the location in F that is closest to x, i.e., c(x) = argminf∈F{d(x, f)}.

Furthermore, we define another multi-set Mi := Of
i ∪Mn

i . In the following lemma, we show

that there is a point in Mi that is a good center for Oi. The lemma is similar to lemma 12 of the

low-cost clusters.

Lemma 14. Let p be a point sampled uniformly at random from Mi. Then the following bound

holds:

E[service-cost(t(p), Oi)] ≤

(
3
z
+

ε

4

)
·∆(Oi)
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Proof. E[service-cost(t(p), Oi)]

=
1

|Oi|
·

(∑
p∈Mi

service-cost(t(p), Oi)

)

=
1

|Oi|
·

∑
x′∈On

i

service-cost(t(c(x′)), Oi) +
∑
x′∈Of

i

service-cost(t(x′), Oi)

 .

We evaluate these two terms separately.

1. The first term:

∑
x′∈On

i

service-cost(t(c(x′)), Oi)

=
∑
x′∈On

i

∑
x∈Oi

d(x, t(c(x′)))z

≤
∑
x′∈On

i

∑
x∈Oi

(d(x, x′) + d(x′, c(x′)) + d(c(x′), t(c(x′))))
z
,

(using triangle-inequality)

≤
∑
x′∈On

i

∑
x∈Oi

(d(x, x′) + d(x′, c(x′)) + d(c(x′), f ∗
i ))

z
,

(by the defn. of t(c(x′)))

≤
∑
x′∈On

i

∑
x∈Oi

(d(x, x′) + d(x′, c(x′)) + d(x′, c(x′)) + d(x′, f ∗
i ))

z
,

(using triangle-inequality)

≤
∑
x′∈On

i

∑
x∈Oi

((
1 +

1

δ

)z

· (d(x, x′) + d(x′, f ∗
i ))

z + 2
z
(1 + δ)z · d(x′, c(x′))z

)
,

(using Fact 2).
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2. The second term:

∑
x′∈Of

i

service-cost(t(x′), Oi) ≤
∑
x′∈Of

i

∑
x∈Oi

(d(x, x′) + d(x′, t(x′)))z,

(using triangle-inequality)

≤
∑
x′∈Of

i

∑
x∈Oi

(d(x, x′) + d(x′, f ∗
i ))

z,

(by the defn. of t(x′)).

On combining the two terms, we get the following expression:

E[service-cost(t(p), Oi)] ≤
(
1 +

1

δ

)z

· 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

(d(x, x′) + d(x′, f ∗
i ))

z

)

+ (1 + δ)z · 1

|Oi|
·

∑
x′∈On

i

|Oi| · 2
z
d(x′, c(x′))z



Using Lemma 7, we have

E[service-cost(t(x), Oi)] ≤
1

|Oi|
·
(∑

x′∈Oi

∑
x∈Oi

(d(x, x′) + d(x′, f ∗
i ))

z
)
≤ 3

z ·∆(Oi). Thus,

we get the following:

E[service-cost(t(p), Oi)]

≤
(
1 +

1

δ

)z

· 3
z
·∆(Oi) + (1 + δ)z · 1

|Oi|
·

∑
x′∈On

i

|Oi| · 2
z
· d(x′, c(x′))z


=

(
1 +

1

δ

)z

· 3
z
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,On

i )



112 FPT Approximation for Constrained k-Median/Means

=

1 +
ε

z · 3
z+3


z

· 3
z
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,On

i ),

(by substituting δ =

z · 3
z+3

ε
)

≤

1 + 2z · ε

z · 3
z+3

 · 3z ·∆(Oi) + 2
z
(1 + δ)z · service-cost(F,On

i ),

(using Fact 1)

=

(
3
z
+

ε

8

)
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,On

i ),

=

(
3
z
+

ε

8

)
·∆(Oi) + 2

z
· (2δ)z · service-cost(F,On

i ), ∵ 1 ≤ δ, for ε ≤ 1

≤

(
3
z
+

ε

8

)
·∆(Oi) +

ε

8
·∆(Oi), (using lemma 13)

=

(
3
z
+

ε

4

)
·∆(Oi)

This completes the proof of the lemma.

We obtain the following corollary by applying Markov’s inequality to the previous lemma.

Corollary 11. For any 0 < ε ≤ 1 and point p sampled uniformly at random from Mi, we have:

Pr

[
service-cost(t(p), Oi) ≤

(
3
z
+

ε

2

)
·∆(Oi)

]
>

ε

3
z+2 .

Let us call a point p, a good point if t(p) gives
(
3
z
+ ε

2

)
-approximation for Oi. We obtain the

following corollary from the previous corollary.
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Corollary 12. There are at least

ε · |Oi|
3
z+2

 good points in Mi.

Now, our goal is to obtain one such good point from Mi. We are done if F contains any good

point since the algorithm adds the entire set F to M . As a result, Property I is satisfied for

high-cost cluster Oi. On the other hand, if F does not contain any good point, then there is

no good point in Mn
i as well. It simply means that all good points are present in Of

i . We use

the Dz-sampling technique to sample these good points. Let G ⊆ Of
i denote the set of good

points. Then we have |G| ≥

ε · |Oi|
3
z+2

. Using this fact, we prove the following lemma.

Lemma 15. For any point p ∈ Of
i and any Dz-sampled point x ∈ C, we have: Pr[x = p] ≥

ε

α β γ k |Oi|
= τ and Pr

[
service-cost(t(x), Oi) ≤

(
3
z
+ ε

2

)
·∆(Oi)

]
≥ ε2

αβ γ k · 3z+2

Proof. For any point p ∈ Of
i , Pr[x = p] =

dz(p, c(p))

service-cost(F,C)
≥

R
z

service-cost(F,C)
=

1

β |Oi|
· service-cost(F,Oi)

service-cost(F,C)
≥ ε

α β γ k |Oi|

Let Z denote an indicator random variable, such that Z = 1 if service-cost(t(x), Oi) ≤
(
3
z
+

ε
2

)
·∆(Oi) and 0 otherwise.

Pr[Z = 1 ] ≥
∑
p∈G

Pr[x = p ] · Pr[Z = 1 | x = p ]

≥
∑
p∈G

ε

α β γ k |Oi|
· 1

= |G| · ε

α β γ k |Oi|
≥ ε2

αβ γ k · 3
z+2

This completes the proof of the lemma.
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The above lemma states that every point in Cf
i has a sampling probability of at least τ . More-

over, a sampled point gives

(
3
z
+ ε

2

)
-approximation for Oi with probability at least ε2(

αβ γ k · 3z+2

) .

To boost this probability, we sample η :=
αβ γ k · 3z+2

ε2
points independently from C using Dz-

sampling (see line (4) of the algorithm). It follows that, with probability at least 1/2, there

is a point in the sampled set that gives

(
3
z
+ ε

2

)
-approximation for Oi. Hence, Property-I is

satisfied for high-cost cluster Oi. Also, in line(4) of the algorithm, we sample η · k points, i.e.,

η points corresponding to each cluster. Hence, Property-I holds for every cluster in H .

3.6 Analysis of List Outlier k-Service Algorithm: Special Case

C ⊆ L

Since we are dealing with a special case, all the previous lemmas (i.e., Lemma 12, 13, 14,

and 15) are valid here as well. We only update Lemmas 12 and 14 with approximation guarantee

of 2
z

instead of 3
z
. We show that M has the following property when C ⊆ L:

Property-II: When C ⊆ L, for any cluster Oi ∈ {O1, O2, . . . , Ok}, there is a point

si in M such that with probability at least 1/2, the following holds:

service-cost(ui(si), Oi) ≤


(
2z +

ε

2

)
·∆(Oi) +

ε

2z+1 k
· OPT(C,C, k +m), if Oi ∈ W

(
2z +

ε

2

)
·∆(Oi), if Oi ∈ H.

Here, for any point x ∈ C ∪ L, ui(x) denotes a location that is as close to x as

its closest point in Oi. In other words, if p = argminy∈Oi
{d(y, x)} is the closest

location in Oi, then d(x, ui(x)) ≤ d(x, p).

We prove Property-II for the low-cost and high-cost clusters in 3.6.1 and 3.6.2, respectively. Us-
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ing Property-II and Lemma 10, the set {u1(s1), u2(s2), . . . , uk(sk)} is
(
2
z
+ ε

2

)
-approximation

for O with probability at least 1/2k. To boost the success probability to 1− 1/n, the algorithm

repeats the procedure (log n) · 2k times (see line (3) of Algorithm 3.1). Note that si is always a

possible candidate for u(si), and it is added to the set T in line (8) of the algorithm. Therefore,

L contains a set that is

(
2
z
+

ε

2

)
-approximation for O. However, the set {s1, s2, . . . , sk} could

be a soft center-set. Now we show that there is a hard center-set Th = {f1, f2, . . . , fk} in the

list, which gives

(
2
z
+

ε

2

)
-approximation. Our argument is based on the fact that we can open

a facility at any location ui(si), which is at least as close to si as the closest location in Oi (see

Property-II). Let pi denote a location in Oi that is closest to si i.e. pi = argminx∈Oi
d(x, si).

We show that d(si, fi) ≤ d(si, pi) for every 1 ≤ i ≤ k. The following analysis is very similar

to the analysis that we did in Section 3.5 for the general case. The only difference is that f ∗
i is

replaced with pi.

Let T (si) denote a set of k closest facility locations for a sampled point si ∈ M (see line(8) of

the algorithm). We define Th = {f1, f2, . . . , fk} using the following simple subroutine:

FindFacilities

(1) Th ← ∅

(2) for i ∈ {1, ..., k}:

(3) if pi ∈ T (si):

(4) Th ← Th ∪ {pi}

(5) else

(6) let f be any facility in T (si) that is not in Th

(7) Th ← Th ∪ {f}

Since size of each T (si) is exactly k, Th will contain k facilities at the end of the for-loop.

Lemma 16. The subroutine picks a set Th = {f1, f2, . . . , fk} of k distinct facilities such that
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for every 1 ≤ i ≤ k, d(si, fi) ≤ d(si, pi).

Proof. Firstly, we show that all facilities in Th are different. Since, pi is different for different

clusters, the if statement adds facilities to Th that are different. And, the else statement only

adds a facility to Th that is not present in Th. Therefore, all the facilities in Th are different.

Now we prove the second property, i.e., d(si, fi) ≤ d(si, pi) for every 1 ≤ i ≤ k. The property

is trivially true for the facilities added in the if statement. For the facilities added in the else

statement, we know that T (si) does not contain pi. Since T (si) is a set of k-closest facility

locations, for any facility location f in T (si), d(si, f) ≤ d(si, pi). Thus any facility added in

the else statement has d(si, f) ≤ d(si, pi). This completes the proof.

Thus Th ∈ L is a hard center-set, which gives (2
z
+ ε)-approximation for the problem. Now

we prove Property-II for the low-cost and high-cost clusters.

3.6.1 Proof of property-II: Low-cost clusters

Let Oi be a low-cost cluster, i.e., service-cost(F,Oi) ≤
ε

α γ k
· service-cost(F,C). For a point

x ∈ X , let c(x) denote the closest location in F , i.e., c(x) = argminf∈F{d(x, f)}. Based on

the definition of c(x), consider a multi-set Mi := {c(x) | x ∈ Oi}. Since Oi has a low cost

with respect to F , the points in Oi are close to points from F . Consider uniformly sampling a

point from Mi. In the next lemma, we show that a uniformly sampled point from Mi is a good

enough center for Oi.

Lemma 17. Let p be a point sampled uniformly at random from Mi. Then the following bound

holds:

E[service-cost(ui(p), Oi)] ≤

(
2
z
+

ε

2

)
·∆(Oi) +

ε

2
z+1

k
· OPT(C,C, k +m)
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Proof. The proof follows from the following sequence of inequalities.

E[service-cost(ui(p), Oi)] =
1

|Oi|
·

(∑
p∈Mi

service-cost(ui(p), Oi)

)

=
1

|Oi|
·

(∑
p∈Mi

∑
x∈Oi

d(x, ui(p))
z

)

=
1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

d(x, ui(c(x
′)))z

)

≤ 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

( d(x, x′) + d(x′, c(x′)) + d(c(x′), ui(c(x
′))) )

z

)
,

(using triangle inequality)

≤ 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

(d(x, x′) + d(x′, c(x′)) + d(c(x′), x′))
z

)
,

(by the defn. of ui(c(x
′)))

=
1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

(d(x, x′) + 2d(x′, c(x′)))
z

)

Let us use Fact 2 by setting b = d(x, x′) and a = 2 · d(x′, c(x′)). We obtain the following

expression, for any δ > 0:

≤ 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

((
1 +

1

δ

)z

· d(x, x′)z + (1 + δ)z · 2
z
d(x′, c(x′))z

))

=

(
1 +

1

δ

)z

· 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

d(x, x′)z

)

+ (1 + δ)z · 1

|Oi|
·

(∑
x′∈Oi

|Oi| · 2
z
d(x′, c(x′))z

)

=

(
1 +

1

δ

)z

· E[service-cost(x,Oi)] + 2
z
(1 + δ)z · service-cost(F,Oi)

≤
(
1 +

1

δ

)z

· 2
z
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,Oi), (using lemma 8)
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=

1 +
ε

z · 3
z+2


z

· 2
z
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,Oi),

(by substituting δ =

z · 3
z+2

ε
)

≤

1 + 2z · ε

z · 3
z+2

 · 2z ·∆(Oi) + 2
z
(1 + δ)z · service-cost(F,Oi), (using Fact 1)

=

(
2
z
+

ε

2

)
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,Oi),

≤

(
2
z
+

ε

2

)
·∆(Oi) + 2

z
· (2δ)z · service-cost(F,Oi), ∵ 1 ≤ δ, for ε ≤ 1

≤

(
2
z
+

ε

2

)
·∆(Oi) +

4
z
· δ

z
· ε

α γ k
· service-cost(F,C),

(∵ service-cost(F,Oi) ≤
ε

α γ k
· service-cost(F,C))

≤

(
2
z
+

ε

2

)
·∆(Oi) +

ε

2
z+1

α k
· service-cost(F,C), ∵ γ =

zz · 3z2+5z+1

εz

≤

(
2
z
+

ε

2

)
·∆(Oi) +

ε

2
z+1

k
· OPT(C,C, k),

(∵ service-cost(F,C) ≤ α · OPT(C,C, k +m))

This completes the proof of the lemma.

By the above lemma, we can claim that there is a point p in Mi such that service-cost(ui(p), Oi) ≤(
2
z
+

ε

2

)
·∆(Oi) +

ε

2
z+1

k
· OPT(C,C, k). Since Mi is only composed of the points from F

and F is contained in M , Property- II is satisfied for every low-cost cluster Oi ∈ W . Next we
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analyze the high-cost clusters.

3.6.2 Proof of property-II: High-cost clusters

Let Oi be a high-cost cluster, i.e., service-cost(F,Oi) >
ε

α γ k
· service-cost(F,C). Since the

cost of the cluster is high, some points of Oi are far away from the center set F . We partition

Oi into two sets: On
i and Of

i , as follows.

On
i := {x | d(c(x), x)z ≤ R

z
, for x ∈ Oi}, where R

z
=

1

β
· service-cost(F,Oi)

|Oi|

Of
i := {x | d(c(x), x)z > R

z
, for x ∈ Oi}, where R

z
=

1

β
· service-cost(F,Oi)

|Oi|

In other words, On
i represents the set of points that are near to the center set F and Of

i represents

the set of points that are far from the center set F . Recall that our prime objective is to obtain

a uniform sample from Oi so we can apply lemma 7. To achieve that we consider sampling

from On
i and Of

i separately. The idea is as follows. To sample a point from Of
i , we use the

Dz-sampling technique and show that it gives an almost uniform sample from Of
i . For On

i , we

use F as its proxy and sample a point from F instead. However, doing so would incur an extra

cost. We bound the extra cost using the Lemma 13 from the previous section. Since we are

using F as a proxy for On
i , we define a multi-set Mn

i := {c(x) | x ∈ On
i }, where c(x) denote

the location in F that is closest to x, i.e., c(x) = argminf∈F{d(x, f)}. Furthermore, we define

another multi-set Mi := Of
i ∪Mn

i . In the following lemma, we show that there is a point in Mi

that is a good center for Oi.

Lemma 18. Let p be a point sampled uniformly at random from Mi. Then the following bound

holds:

E[service-cost(ui(p), Oi)] ≤

(
2
z
+

ε

4

)
·∆(Oi)
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Proof. E[service-cost(ui(p), Oi)]

=
1

|Oi|
·

(∑
p∈Mi

service-cost(ui(p), Oi)

)

=
1

|Oi|
·

∑
x′∈On

i

service-cost(ui(c(x
′)), Oi) +

∑
x′∈Of

i

service-cost(ui(x
′), Oi)



We evaluate these two terms separately.

1. The first term:

∑
x′∈On

i
service-cost(ui(c(x

′)), Oi)

=
∑
x′∈On

i

∑
x∈Oi

d(x, ui(c(x
′)))z

≤
∑
x′∈On

i

∑
x∈Oi

(
d(x, x′) + d(x′, c(x′)) + d(c(x′), ui(c(x

′)))
)z
,

(using triangle-inequality)

≤
∑
x′∈On

i

∑
x∈Oi

(
d(x, x′) + d(x′, c(x′)) + d(c(x′), x′))

)z
,

(by the defn. of ui(c(x
′)))

=
∑
x′∈On

i

∑
x∈Oi

(
d(x, x′) + 2d(x′, c(x′)))

)z
,

≤
∑
x′∈On

i

∑
x∈Oi

((
1 +

1

δ

)z

· d(x, x′)z + 2
z
(1 + δ)z · d(x′, c(x′))z

)

(using Fact 2)

2. The second term:
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∑
x′∈Of

i
service-cost(ui(x

′), Oi)

≤
∑
x′∈Of

i

∑
x∈Oi

(d(x, x′) + d(x′, ui(x
′)))z, (using triangle-inequality)

=
∑
x′∈Of

i

∑
x∈Oi

d(x, x′)z, (by the defn. of ui(x
′), for x′ ∈ Of

i , d(x′, ui(x
′)) = 0)

Now we combine the two terms; we get the following expression:

E[service-cost(ui(p), Oi)]

≤
(
1 +

1

δ

)z

· 1

|Oi|
·

(∑
x′∈Oi

∑
x∈Oi

d(x, x′)z

)
+ (1 + δ)z · 1

|Oi|
·

∑
x′∈On

i

|Oi| · 2
z
· d(x′, c(x′))z


=

(
1 +

1

δ

)z

· E[service-cost(x,Oi)] + 2
z
(1 + δ)z · service-cost(F,On

i )

≤
(
1 +

1

δ

)z

· 2
z
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,On

i ), (using lemma 7)

=

1 +
ε

z · 3
z+3


z

· 2
z
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,On

i ),

(by substituting δ =

z · 3
z+3

ε
)

≤

1 + 2z · ε

z · 3
z+3

 · 2z ·∆(Oi) + 2
z
(1 + δ)z · service-cost(F,On

i ), (using Fact 1)

=

(
2
z
+

ε

8

)
·∆(Oi) + 2

z
(1 + δ)z · service-cost(F,On

i ),

=

(
2
z
+

ε

8

)
·∆(Oi) + 2

z
· (2δ)z · service-cost(F,On

i ), ∵ 1 ≤ δ, for ε ≤ 1

≤

(
2
z
+

ε

8

)
·∆(Oi) +

ε

8
·∆(Oi), (using lemma 13)
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=

(
2
z
+

ε

4

)
·∆(Oi)

This completes the proof of the lemma.

We obtain the following corollary by applying Markov’s inequality to the previous lemma.

Corollary 13. If we sample a point p ∈Mi, uniformly at random, then for ε ≤ 1:

Pr

[
service-cost(ui(p), Oi) ≤

(
2
z
+

ε

2

)
·∆(Oi)

]
≥ ε

2
z+2 >

ε

3
z+2

Since Corollary 11 is similar to Corollary 13, all the further arguments made in Section 3.5.2

are valid here as well. Thus with probability at least 1/2, there is a point x in the sampled set

M such that ui(x) gives

(
2
z
+

ε

2

)
-approximation for Oi. In other words, Property-II holds

for every high-cost cluster in H .

3.7 A Matching Lower Bound on Approximation
In this section, we show that the algorithm List-Outlier-k-Service does not provide

better than (3
z − δ′) approximation guarantee for arbitrarily small δ′ > 0 (and 2

z − δ′ for the

special case C ⊆ L). In other words, the analysis of our algorithm is tight. To show this, we

create a bad instance for the problem in the following manner. Let G = (V,E) be an undirected

weighted graph with vertex set V := C ∪ L. The shortest weighted path between two vertices

defines the distance metric d(., .). The set C is partitioned into subsets: C1, C2, . . . , Ck, and

L is partitioned into subsets: L1, L2, . . . , Lk. The subgraphs over C1 ∪ L1, C2 ∪ L2, . . . , and

Ck ∪ Lk are identical to each other. A subgraph over Ci ∪ Li is defined as follows: all the

clients are connected to a common facility location f ∗
i with a unit weight edge. Each client is

connected to a distinct set of k facility locations with an edge of weight (1− δ). We denote this

set by T (x) for a client x ∈ Ci. Figure 3.1 shows this subgraph. Lastly, all pairs of subgraphs
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Ci ∪ Li and Cj ∪ Lj are connected with an edge (f ∗
i , f

∗
j ) of weight ∆ ≫ |C|. This completes

the construction of the bad instance.

Consider the unconstrained outlier k-service problem with m = 0 (no outliers allowed). It is

easy to see that O = {C1, C2, . . . , Ck} is the optimal clustering for this instance. The optimal

cost of a cluster Ci is service-cost(f ∗
i , Ci) = |Ci|, and the optimal cost of the entire instance is

OPT(L,C, k) =
∑

i |Ci| = |C|.

: Client Location

: Facility Location

Figure 3.1: An undirected weighted subgraph on Ci ∪ Li.

Now, we show that the list L produced by the algorithm List-Outlier-k-Service does

not contain a center-set that could provide better than (3
z − δ′)-approximation to O. To show

this, we examine every center-set in the list L produced by List-Outlier-k-Service.

Note that the set T obtained in line (8) of the algorithm does not contain any optimal facility

location f ∗
i because f ∗

i does not belong to T (x). Therefore, no center set in the list contains

any of the optimal facility locations {f ∗
1 , ..., f

∗
k}. Now we evaluate the clustering cost corre-

sponding to every center set in the list. Let F = {f1, f2, . . . , fk} be a center-set in the list. We

have two possibilities for the facilities in F . The first possibility is that at least two facilities

in F belong to the same subgraph Ci ∪ Li. In this case, the cost of the clustering would be

service-cost(F,O) > ∆ ≫ OPT(L,C, k). So, in this case, F gives an unbounded clustering
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cost. Let us consider the second possibility that all the facilities in F belong to different sub-

graphs. Without loss of generality, we assume that fi ∈ Li. Since fi can not be the optimal

facility location, we can further assume that fi ∈ T (x) for some x ∈ Ci. The cost of a cluster in

this case is service-cost(fi, Ci) = (3−δ)z(|Ci|−1)+(1−δ)z > (3−δ)z(|Ci|−1) . Hence, the

overall cost of the instance is Φ(F,O) > (3−δ)z ·(|C|−k) ≥ (3−δ)z ·|C|−3z k ≥ (3
z−δ′)·|C|,

for δ′ = 3z−1 · z δ +
3
z
k

|C|
. Therefore, the list does not contain any center set that can provide

better than (3
z − δ′) approximation guarantee to the optimal clustering O.

Theorem 37. For any 0 < δ′ ≤ 1, there are instances of the k-service problem for which the

algorithm

List-Outlier-k-Service does not provide better than (3
z − δ′) approximation guar-

antee.

Now, let us examine the same bad instance when we have the flexibility to open a facility at a

client location. In this case, we have a third possibility that F = {f1, f2, . . . , fk} such that fi is

some client location in Ci. The cost of a cluster in this case is service-cost(fi, Ci) = 2
z·(|Ci|−1)

and the overall cost the instance is Φ(F,O) = 2
z ·|C|−2z ·k = (2

z−δ′)·|C|, for δ′ = 2
z ·k/|C|.

So for the special case C ⊆ L, we obtain the following theorem.

Theorem 38. For any 0 < δ′ ≤ 1, there are instances of the k-service problem (with C ⊆ L),

for which the algorithm List-Outlier-k-Service does not provide better than (2
z−δ′)

approximation guarantee.

3.8 Streaming Algorithms
In this section, we convert the algorithm of the constrained outlier k-service problem to a

constant-pass log-space streaming algorithm. The offline algorithm for the constrained outlier

k-service problem has two main components: the list outlier k-service algorithm and the outlier

partition algorithm. The list outlier k-service procedure is common to all constrained versions
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of the problem. However, the outlier partition algorithm differs for different constrained ver-

sions. We convert the algorithm List-Outlier-k-Service to a streaming algorithm in

the following manner:

Conversion of List-Outlier-k-Service to Streaming Algorithm:

1. In the first pass, we run a streaming α-approximation algorithm for the instance

(C,C, k + m, d, z). For this, we use the streaming algorithm of Braverman et

al. [32]. The algorithm gives a constant-approximation with the space complexity

of O((k +m) · log n).

2. In the second pass, we perform the Dz-sampling step using the reservoir sampling

technique [135].

3. In the third pass, we find the k-closest facility locations for every point in M .

This gives us the following result:

Lemma 19. There is a 3-pass streaming algorithm for the list outlier k-service problem. The

algorithm outputs a list of size f(k,m, ε, z) · log n. Moreover, the running time of the algorithm

is O(n · f(k,m, ε)) and space complexity is f(k,m, ε, z) · log n, where f(k,m, ε, z) = ((k +

m)/ε)O(kz2).

Now, we need to design the partition algorithms for the constrained clustering problems in the

streaming setting. For the chromatic k-service problems, there does not exist any deterministic

log-space streaming algorithm (see Section 4.5 of [87]). In Section 3.9.4 we show that this

impossibility result also holds for the strongly-private k-service problem. For the ℓ-diversity

and fair k-service problems, we neither know any log-space streaming algorithm nor any im-

possibility result. For the remaining constrained clustering problems mentioned in Table 3.1,
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we design the streaming partition algorithms for their outlier and non-outlier versions in Sec-

tion 3.9. Together with Lemma 19, we obtain the following results for the constrained clustering

problems:

Theorem 39. There is a 6-pass streaming algorithm for the outlier version of the r-gather,

r-capacity, and balanced k-service problems that gives a (3
z
+ ε)-approximation guarantee.

The algorithm has the space complexity of O(f(k,m, ε, z) · log n) and the running time of

O(f(k,m, ε, z) · nO(1)), where f(k,m, ε, z) = ((k + m)/ε)O(kz2). For the special case when

C ⊆ L, the algorithm gives (2
z
+ ε)-approximation guarantee.

Corollary 14. There is a 6-pass streaming algorithm for the r-gather, r-capacity, and balanced

k-service problems that gives a (3
z
+ ε)-approximation guarantee. The algorithm has the

space complexity of O(f(k, ε, z) · log n) and the running time of O(f(k, ε, z) · nO(1)), where

f(k, ε, z) = (k/ε)O(kz2). For the special case when C ⊆ L, the algorithm gives (2
z
+ ε)-

approximation guarantee.

Theorem 40. There is a 4-pass streaming algorithm for the fault-tolerant, ordered-weighted-

average, and uncertain k-service problems that gives a (3
z
+ ε)-approximation guarantee. The

algorithm has the space complexity of O(f(k, ε, z)· log n) and the running time of O(f(k, ε, z)·

n), where f(k, ε, z) = (k/ε)O(kz2). For the special case when C ⊆ L, the algorithm gives

(2
z
+ ε)-approximation guarantee.

Theorem 41. There is a 5-pass streaming algorithm for the outlier version of the fault-tolerant,

ordered-weighted-average, and uncertain k-service problems that gives a (3
z
+ε)-approximation

guarantee. The algorithm has the space complexity of O(f(k,m, ε, z) · log n) and the running

time of O(f(k,m, ε, z) ·n), where f(k,m, ε, z) = ((k+m)/ε)O(kz2). For the special case when

C ⊆ L, the algorithm gives (2
z
+ ε)-approximation guarantee.
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3.9 Partition Algorithms
In this section, we design partition algorithms for the outlier and non-outlier versions of the

constrained k-service problems mentioned in Table 3.1. We also convert each of these algo-

rithms to log-space streaming algorithms or show that such an algorithm does not exist. In the

streaming setting, the clients in C arrive as a stream of points, and the partition algorithm has

to assign each client to a facility location in given set F such that the clustering constraints are

satisfied.

3.9.1 r-gather/r-capacity/balanced k-service problem

We design a partition algorithm for the balanced k-service problem. The same partition algo-

rithm is also used for the r-gather and r-capacity k-service problems since they are the special

versions of the balanced k-service problem. Let I = (L,C, k, d, z,m, ℓ1, . . . , ℓk, r1, . . . , rk) be

any arbitrary instance of the balanced outlier k-service problem. Let F = {f1, . . . , fk} be a

given set of facility locations. Let Z be an optimal set of outliers and O = {O1, . . . , Ok} be an

optimal partitioning of C \Z with respect to F that satisfies the balanced clustering constraints.

Since we do not know which cluster is assigned to which facility location in F , we exhaustively

consider all kk possibilities. Without loss of generality, we assume that cluster Oi is assigned to

facility location fi. Now we reduce the partitioning problem to a min-cost circulation problem

on a flow network G = (V,E). The vertex set V is composed of the following vertices:

1. A source vertex s, sink vertex t, and vertex o.

2. A vertex set VC corresponding to the client set C. In other words, for every client x ∈ C

there is a vertex vx in VC .

3. A vertex set VF that corresponds to the facility set F . In other words, for every facility

fi ∈ F there is a vertex vfi ∈ VF .
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Furthermore, the edge set E is composed of the following edges, each with lower and upper

bound flow constraints:

1. There is a directed edge (s, o) with a lower bound flow of |C| −m and an upper bound

flow of |C|. This edge ensures that at least |C| −m clients are assigned to F . The cost

of the edge is 0.

2. For every vertex vx ∈ VC , there is a directed edge (o, vx) with upper bound flow of 1 and

lower bound flow of 0. These edges ensure that a client is assigned to at most one facility

in F . The cost of each edge is 0.

3. For every vertex vx ∈ VC and vertex vfi ∈ VF , there is a directed edge (vx, vfi) with

upper bound flow of 1 and lower bound flow of 0. The cost of each edge (vx, vfi) is

proportional to the distance d(x, fi).

4. For every vfi ∈ VF , there is a directed edge (vfi , t) with lower bound flow ℓi and upper

bound flow ri. These edges ensures that each partition Oi ∈ {O,
1 . . . , Ok} satisfies the

constraint: ℓi ≤ |Oi| ≤ ri. The cost of each edge is 0.

It is easy to see that a feasible integral flow through the network G corresponds to an assignment

of at least |C| −m clients in C to F that satisfies the clustering constraints. The minimum cost

circulation problem on G can be solved in polynomial time using the algorithms in [76, 132, 23].

Since we run this algorithm for kk possible guesses of assigning Oi’s to fi’s, the overall running

time of the partition algorithm is kk · nO(1), where n = |C ∪L|. Formally, we state the result as

follows:

Lemma 20. There is a kO(k) · nO(1) time partition algorithm for the outlier version of the

balanced k-service problem, where n = |C ∪ L|.

To convert the partition algorithm to a streaming algorithm, we use the following result:
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Definition 38. Let z be any positive real number. Let G = (VF , VC , E) be an edge-weighted

bipartite graph with partitions VF and VC . Further, we associate a number nv with each vertex

v ∈ VC . We say that G approximately represents the pair (F,C), where F is a set of k facility

locations and C is the client set if the following conditions are satisfied:

• The set VF = F . Each client x ∈ C is mapped to a unique vertex v in VC – call this

vertex ϕ(x). Further nv is equal to |ϕ−1(v)|.

• For each client x ∈ C and facility f ∈ F , the weight of the edge (ϕ(x), f) in G is within

(1± ε) of d(x, f)z.

Theorem 42. Given a pair (F,C), there is a single pass streaming algorithm that builds a

bipartite graph G that approximately represents this pair. The space used by this algorithm

(which includes the size of G) is O
(
k2 · 2k · (k + log n+ log∆) ·

(
k · 6k · log n+ kk · logk(1

ε
)
))

,

where ∆ is the aspect ratio defined as ∆ =
maxx∈C,f∈F d(x, f)

minx∈C\F,f∈F d(x, f)
, n = |C ∪ F |, and k = |F |.

Further, the dependence on log∆ can be removed by adding one more pass to the algorithm.

Before proving Theorem 42, let us see how it gives streaming partition algorithm. We again

formulate the flow formulation in an analogous manner – the only change is that the subgraph

on the vertex set VC and VF is replaced with the approximate graph representation using Theo-

rem 42 and the upper bound capacity on edge (o, v) is changed to nv for every vertex v ∈ VC . It

is easy to see that an optimal cost flow in the flow network corresponds to (1+ε)-approximation

to the cost of optimal partitioning. After finding an optimal flow, the algorithm must assign the

clients to the facility locations in F . For this, the algorithm makes one more pass through the

client set and assigns a client x to that facility location f to which a non-zero flow is going via

edge (ϕ(x), vf ). After assigning a client to a facility location, the algorithm reduces the flow by

one unit on appropriate edges. In total, the algorithm makes three passes through the client set

— two passes to create an approximate graph representation of (F,C) and one pass to assign

clients to the facility locations in F . Formally, we state the result as follows:
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Lemma 21. There is a 3 pass streaming partition algorithm for the outlier version of the bal-

anced k-service problem. The algorithm outputs a (1 + ε)-approximate clustering with re-

spect to the optimal partitioning. The space used by the algorithm is O(f(k, ε) · log n) where

f(k, ε) = kO(k) · logk(1/ε) and n = |C ∪ L|.

Now, we prove Theorem 42.

Proof of Theorem 42

For each center f ∈ F , we define a set of buckets Bf as follows: the bucket b(f, i) corresponds

to the values [(1 + ε)i, (1 + ε)i+1). Let dmin and dmax denote the minimum and the maximum

between a pair of points in C \F and F , respectively (so ∆ = dmax/dmin). We define the buck-

ets b(f, i) for i = log1+ε dmin, . . . , log1+ε dmax. As above, Bf denotes the collection of buckets

corresponding to f . Clearly, |Bf | = O( log∆
ϵ

).

Now we consider the set Bf1 × Bf2 . . . × Bfk – an element of this set is called a hyper-

bucket. In other words, a hyperbucket is a k−tuple (b(f1, i1), . . . , b(fk, ik)). Each point p ∈ C

can be mapped to a hyperbucket in the natural manner – define ϕ(p) to be the hyperbucket

(b(f1, i1), . . . , b(fk, ik)), where ij is such that d(p, fj) ∈ [(1+ε)ij , (1+ε)ij+1) for j = 1, . . . , k.

Call a hyper-bucket b to be empty if ϕ−1(b) is empty. We now count the number of non-empty

hyper-buckets. For a center f and index i, call the bucket b(f, i) interesting if there is another

center f ′ such that [(1 + ε)i, (1 + ε)i+1) ∩ [ε · ||f − f ′||, ||f − f ′||/ε] is non-empty. Call a

hyperbucket (b(f1, i1), . . . , b(fk, ik)) interesting if all the buckets b(fj, ij) in it are interesting.

We first count the number of interesting hyperbuckets:

Claim 1. The number of interesting hyperbuckets is O
(
kk · logk(1

ε
)
)
.

Proof. For a fixed center f , the number of interesting buckets b(f, i) is O(k log(1
ε
)). Since all
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the buckets in a hyperbucket needs to be interesting, the result follows.

We now count the number of non-interesting hyperbuckets.

Claim 2. Let b(f, i) be a non-interesting bucket for some center f and index i. Then the number

of non-empty non-interesting hyperbuckets containing b(f, i) is O(6k).

Proof. Consider such a hyperbucket b containing b(f, i). Let p be a point such that ϕ(p) is b.

Let f ′ be a center other than f . Two cases arise:

• (1 + ε)i+1 ≤ εd(f, f ′) : In this case,

d(p, f ′) ∈ d(f, f ′)± d(f, p) ∈ (1± ε) · d(f, f ′).

Therefore, there are at most 3 choices for the index i′ such that b(f ′, i′) is one of the

coordinates of p.

• d(f, f ′) ≤ ε(1 + ε)i : Here,

d(p, f ′) ∈ d(f, f ′)± d(f, p) ∈ (1± ε) · d(f, p).

Again, there are at most 3 choices for i′ as above.

From the above argument, it is clear that the number of non-empty non-interesting hyperbuckets

b containing b(f, i) is O(6k). This proves the claim.

We can now count the number of non-empty non-interesting hyperbuckets. Consider such a

bucket b. There must be a coordinate b(f, i) in it which is non-interesting – there are O(k log∆)

choices for b(f, i). For each such choice, the above claim shows that there are O(6k) choices for
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the remaining coordinates of b. Thus, we see that the total number of non-empty hyperbuckets

is O(k · 6k log∆ + kk · logk(1
ε
)).

We can describe the streaming algorithm. The bipartite graph will have all the non-empty

hyperbuckets on the right side and the k centers F on the left side. The length of an edge

between a hyperbucket (b(f1, i1), . . . , b(fk, ik)) and a center fj will be (1 + ε)z·ij . Initially, the

right side of the bipartite graph will be empty (because all hyperbuckets are empty). Whenever

a new point p is seen, the algorithm computes ϕ(p). If this hyperbucket is not present in the

right side of the bipartite graph, we add a new vertex corresponding to it. The algorithm can

also maintain the cardinality of ϕ−1(b) for every non-empty bucket b (this will be stored in the

variable nv, where v is a vertex in the right side of the graph). The theorem now follows from the

fact that the number of edges is equal to k times the number of non-empty hyperbuckets, and the

space required to maintain nv values is log n times the number of non-empty hyperbuckets. This

proves that there is a single pass streaming algorithm that builds graph G. The space used by this

algorithm (which includes the size of G) is O
(
(k + log n) ·

(
k · 6k · log∆ + kk · logk(1

ε
)
))

.

Note that the space required depends on log∆, whereas we would really like it to depend on

log n instead. We discuss this next.

Removing the dependence on ∆: Let D denote the set of all pair-wise distances between the

centers (so |D| ≤ k2). The following is the key observation:

Lemma 22. Let p be a point in C, and f be the closest center to it. For any center f ′ ∈ F ,

d(p, f ′) lies in the range [u/4, 4u] for some u ∈ D ∪ {d(p, f)}.

Proof. Assume d(p, f ′) ≥ 4d(p, f), otherwise the lemma is already true. Then

d(f, f ′) ≥ d(p, f ′)− d(p, f) ≥ 3d(p, f).
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Therefore,

d(p, f ′) ≤ d(f, f ′) + d(p, f) ≤ 4d(f, f ′)

3
,

and

d(p, f ′) ≥ d(f, f ′)− d(p, f) ≥ 2d(f, f ′)

3
.

We fix a solution to the partition problem (of course, the algorithm does not know it, but it

will help in the algorithm description). For a point x, let dx denote the distance from x to the

closest center, Let d⋆ be the maximum over all points x of dx. We do know d⋆, we can find it

by performing a pass over the data.

Now suppose we guess the maximum u ∈ D such that any point p ∈ C which is not assigned

to a center in F within distance 4dx is assigned to a center f ′ such that d(p, f ′) lies in the range

[u/4, 4u] (the lemma above ensures that such a value u exists). 5 If d⋆ happens to be larger than

u, we update u to d⋆. We know that the cost of the solution is at least Ω(u
z
).

Now, we contract all distances in the metric which are smaller than u/n2 – again we cannot do

this directly in the streaming manner, but whenever a point p arrives, we will view all distances

to centers which are less than u/n2 to be 0. Since the optimal cost is Ω(u
z
), this distance

contraction affects the optimal value by at most a factor of (1 + 1/n). So now, all non-zero

distances between a point p and a center f ∈ F such that p can be potentially assigned to f lie

in the range [u/n2, 4u]. Thus ∆ becomes polynomially bounded. However one issue remains –

each point p can only be assigned to a center (other than it’s nearest center) which is at most 4u

distance away. We need to incorporate this fact in the graph structure as well. For each point

p, let F (p) be the set of centers to which it can be assigned (these are the centers which are at

most 4u distance away, or the center closest to p). Note that there are 2k choices for F (p).

5In the algorithm implementation, we will run this for all possible values of u ∈ D. This will increase the
space complexity by a factor of k2.
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We modify the construction of G. Recall that the right side of G had one vertex for every

hyperbucket b. Now we will have one vertex for every pair (b, S), where S is a subset of F . If

ϕ(p) is the hyperbucket b, then we assign p to the pair (b, F (p)). The result of this construction

is that the log∆ can now be replaced with log n but at the cost of multiplying the overall space

requirement by a factor of k2 · 2k and adding one more pass. This proves the Theorem 42.

3.9.2 Fault-tolerant k-service problem

The fault-tolerant k-service problem does not satisfy Definition 29 of the constrained k-service

problem. Therefore, the techniques we developed for the constrained clustering problems may

not work for the fault-tolerant k-service problem. However, Ding and Xu [72] showed that the

fault-tolerant k-service problem can be reduced to the chromatic k-service problem. Since the

chromatic k-service problem satisfy Definition 29 of the constrained k-service problem, we can

solve the fault-tolerant k-service problem using the same set of techniques. In the fault-tolerant

k-service problem, we are given a positive integer ℓx ≤ k for every client x ∈ C (see definition

5 in Table 3.1). The reduction to the chromatic k-service problem goes as follows: we create

ℓx copies for each client x ∈ C and assign each copy the same color. For two clients x, y ∈ C

if x ̸= y, their copies have different colors. Ding and Xu [72] showed that an α-approximation

for the reduced chromatic k-service problem is also an α-approximation to the fault-tolerant

k-service problem, and vice-versa for any α ≥ 1. However, the partition algorithm for the

fault-tolerant k-service problem is simple and does not require a reduction to the chromatic

k-service problem. Given a facility set F and a client x ∈ C, the algorithm simply assigns x to

ℓx closest facility locations in F . Computing k closest facility location from x is a trivial step.

Formally, we state the result as follows:

Lemma 23. There is a single pass streaming partition algorithm for the fault-tolerant k-service

problem with O(k · |C|) running time, where C is the client set, and k is the size of the center

set. The algorithm only stores O(k) points in the memory.
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The extension to the outlier setting is also simple: the algorithm identifies the m clients as

outliers that have the highest assignment cost. For this, the algorithm requires additional Ω(m)

space and O(m logm) time (assuming the max-heap implementation). Note that in the stream-

ing setting, the algorithm can not assign a client to a facility until it identifies it as a non-outlier.

Therefore, in the streaming setting, the set of m outliers are identified in the first pass, and

non-outliers are assigned to facility locations in the second pass. Formally, we state the result

as follows:

Lemma 24. There is a two-pass streaming partition algorithm for the outlier version of the

fault-tolerant k-service problem with running time O(k · |C| +m logm). Moreover, the algo-

rithm stores only O(k +m) points in the memory.

Note that the streaming version of the list k-service algorithm is not affected due to the reduction

of the fault-tolerant k-service problem to the chromatic k-service problem. The reason is that

the algorithm creates ℓx copies for a client x when it arrives in the stream. Therefore, the

streaming algorithm for the list outlier k-service problem stays the same.

3.9.3 Ordered-weighted-average (OWA) k-service problem

OWA k-service problem does not satisfy Definition 29 of the constrained k-service problem.

Therefore, the techniques developed for the constrained clustering problems do not directly

work for the OWA k-service problem. However, Byrka et al. [36] gave a reduction from the

OWA k-service problem to the fault-tolerant k-service problem with client multiplicities. The

client multiplicity means that each client x ∈ C has multiple finite copies in the instance. In

OWA k-service problem, we are given a vector (w1, . . . , wk) of non-increasing weights (see

definition 6 in Table 3.1). The reduction to the fault-tolerant k-service problem goes as follows:

each client x ∈ C is replaced with k clients: x1, . . . , xk such that ℓxi
= i and multiplicity

of each xi is some function of w1, . . . , wk. Byrka et al. [36] showed that an α-approximation

for the reduced fault-tolerant k-service instance is also an α-approximation to the OWA k-
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service instance, and vice-versa for any α ≥ 1. However, the partition algorithm for the OWA

k-service problem is simple and does not require a reduction to the fault-tolerant k-service

problem. Given a facility set F and a client x ∈ C, the algorithm computes the assignment cost

for x:
∑

x∈C
∑k

j=1 wj ·
(
dj(x)

)z
such that

(
d1(x), ..., dk(x)

)
is a non-decreasing ordering of(

d(x, f1), ..., d(x, fk)
)
. Formally, we state the result as follows:

Lemma 25. There is a single pass streaming partition algorithm for the ordered-weighted-

average k-service problem with O(k log k · |C|) running time, where C is the client set, and k

is the size of the center set. The algorithm stores only O(k) points in the memory.

The extension to the outlier setting is also simple: the algorithm identifies the m clients as

outliers that have the highest assignment cost. For this, the algorithm requires additional Ω(m)

space and O(m logm) time (assuming the max-heap implementation). Note that in the stream-

ing setting, the algorithm can not assign a client to a facility until it identifies it as a non-outlier.

Therefore, in the streaming setting, the set of m outliers are identified in the first pass, and

non-outliers are assigned to facility locations in the second pass. Formally, we state the result

as follows:

Lemma 26. There is a two-pass streaming partition algorithm for the outlier version of the

ordered-weighted-average k-service problem with running time O(k log k · |C| + m logm).

Moreover, the algorithm stores only O(k +m) points in the memory.

Note that the streaming version of the list k-service algorithm is not affected due to the reduction

of the OWA k-service problem to the fault-tolerant k-service problem. The reason is that the

algorithm creates k copies for a client x when it arrives in the stream. Therefore, the streaming

algorithm for the list outlier k-service problem stays the same. However, it is possible that

after reduction, the multiplicity of a client is exponential in |C|. In that case, in Algorithm 3.1,

we must replace the Dz sampling with weighted Dz sampling, i.e., a point with weight wx is

sampled with the probability:
minf∈F

{
d(f, x)z · wx

}
∑

y∈C minf∈F

{
d(f, y)z · wy

} . A trivial but important observation
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is that this new algorithm is equivalent to the old algorithm with wx copies created for each

client in C. Therefore the same analysis follows for the new list k-service algorithm, and it has

a polynomial running time.

3.9.4 Chromatic and strongly private k-service problems

We combine the discussion of the chromatic and strongly private k-service problems by defining

the hybrid k-service problem that encapsulates both problems.

Definition 39 (Hybrid k-Service Problem). Given a partitioning C1, . . . , Cω of the client set

C, and a set of integers: {α1, . . . , αω, β1, . . . , βω}, find a clustering O = {O1, ..., Ok} with

minimum Φ∗(O) that satisfies the constraint: βj ≤ |Cj ∩ Oi| ≤ αj for every i ∈ [k] and

j ∈ [ω].

The hybrid k-service problem encapsulates the chromatic and strongly-private problems as de-

scribed below:

• For αj = |C|, the hybrid k-service problem is equivalent to the strongly private k-service

problem.

• For βj = 0 and αj = 1, the hybrid k-service problem is equivalent to the chromatic

k-service problem.

Let F = {f1, . . . , fk} be a given set of facility locations. A partition algorithm for the outlier

version of hybrid k-service problem finds an outlier set Z of size at most m and partitioning

O = {O1, . . . , Ok} of C \ Z that minimizes the objective function Φ(F,O) and satisfies the

constraint: βj ≤ |Cj ∩ Oi| ≤ αj for every i ∈ [k] and j ∈ [ω]. Now we reduce the partitioning

problem to a min-cost circulation problem on a flow network G = (V,E). The flow network is

shown in Figure 3.2.
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Figure 3.2: The flow network G = (V,E) that is used in the partition algorithm of the hybrid
k-service problem.

The vertex set V has the following composition:

1. A source vertex s, sink vertex t, and vertex o.

2. A vertex set VC corresponding to the client set C. In other words, for every client x ∈ C

there is a vertex vx in VC .

3. A vertex set VF that corresponds to the facility set F . In other words, for every facility

fi ∈ F there is a vertex vfi ∈ VF .

4. The vertex sets: Vf1 , . . . , Vfk . A vertex set Vfi is defined as {vfi,1, . . . , vfi,ω} such that a

vertex vfi,j corresponds to a facility fi ∈ F and a color class j ∈ [ω].

Furthermore, the edge set E is defined with the lower and upper bound flow constraints as

follows:

1. There is a directed edge (s, o) with a lower bound flow of |C| −m and an upper bound

flow of |C|. This edge ensures that at least |C| −m clients are assigned to F . The cost

of the edge is 0.
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2. For every vertex vx ∈ VC , there is a directed edge (o, vx) with upper bound flow of 1 and

lower bound flow of 0. These edges ensure that a client is assigned at most one facility in

F . The cost of each edge is 0.

3. For every vertex vx ∈ VC and vertex vfi,j ∈ Vfi , there is a directed edge (vx, vfi,j) if and

only if the client x belongs to color class Cj . These edges have the upper bound flow of

1 and the lower bound flow of 0. The cost of each edge is d(x, fi)z.

4. For every i ∈ [k] and j ∈ [ω], there is a directed edge (vfi,j, vfi) with lower bound flow

of βj and upper bound flow of αj . These edges ensures that for every color class j ∈ [ω]

and every facility fi ∈ F , the constraint βj ≤ |Oi ∩ Cj| ≤ αj is satisfied. The cost of

each edge is 0.

5. For every i ∈ [k], there is a directed edge (vfi , t) with lower bound flow 0 and upper

bound flow |C|. The cost of each edge is 0.

It is easy to see that a feasible integral flow through the network G corresponds to an assign-

ment of at least |C| −m clients in C to F that satisfies the constraints of the hybrid k-service

problem. The minimum cost circulation problem on G can be solved in polynomial time us-

ing the algorithms in [76, 132, 23]. Thus we get a polynomial time partition algorithm for the

hybrid k-service problem. Formally, we state the result as follows:

Lemma 27. There is a polynomial time partition algorithm for the outlier versions of chromatic

and strongly private k-service problems.

In the streaming setting, Khanna and Assadi (see Section 4.5 of [87]) showed that there does

not exist any o(n)-space streaming algorithm for the chromatic k-service problem. The authors

proved this result for a bad instance of the chromatic k-service problem with m = n/2 colors

and two clusters. All clients in the instance are co-located, and there are precisely two clients
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with the same color (assuming that n is even). Note that for this instance the chromatic k-

service problem is equivalent to the strongly private k-service problem with βj = 1 and αj =

|C|. Therefore, the impossibility result also holds for the strongly-private k-service problem.

Formally, we state the result as follows:

Lemma 28. There does not exist any o(n)-space streaming algorithm for the outlier or non-

outlier version of chromatic and strongly-private k-service problems.

3.9.5 Uncertain k-service problem

The uncertain k-service problem does not satisfy Definition 29 of the constrained k-service

problem. Therefore, the techniques developed for the constrained clustering problems may

not work for the uncertain k-service problem. However, Ding and Xu [72] showed that the

uncertain k-service problem can be equivalently stated as the constrained k-service problem on

the weighted point set∪x∈CDx with the constraint that all points in Dx to be clustered in the

same cluster. For every point xi ∈ Dx, the weight of the point is tix. Now the partition algorithm

for the problem is simple: given a facility set F and a client x ∈ C, the algorithm assigns x to

a facility f that minimizes the assignment cost d(x, f)z =
∑h

i=1 t
i
x · d(xi, f)

z. In the streaming

setting, we assume that for each client x ∈ C, the points in set Dx arrive as a contiguous stream

of points. Then it is trivial to design a partition algorithm that makes a single pass and has

running time O(h · k · |C|).

Lemma 29. There is a single pass streaming partition algorithm for the uncertain k-service

problem with running time O(h · k · |C|). The algorithm stores only O(k) points in the memory.

In the outlier setting, the algorithm identifies the m clients as outliers that have the highest as-

signment cost. For this, the algorithm requires additional Ω(m) space and O(m logm) running

time (assuming max-heap implementation). Note that in the streaming setting, the algorithm

can not assign a client to a facility until it is declared as a non-outlier. Therefore, in the stream-

ing setting, the set of m outliers are identified in the first pass, and the non-outlier clients are
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assigned to the facility locations in the second pass. Formally, we state the result as follows:

Lemma 30. There is a two-pass streaming partition algorithm for the outlier version of the

uncertain k-service problem with running time O(h · k · |C|+m logm). The algorithm stores

only O(k +m) points in the memory.

3.9.6 ℓ-diversity and fair k-service problems

Bandyapadhyay et al. [21] noted that the ℓ-diversity clustering problem is a special case of

the fair clustering problem. In other words, if the fair clustering problem has disjoint color

classes, and αj = 1/ℓ and βj = 0 for every color class Cj ∈ {C1, . . . , Cω}, then the problem is

equivalent to the ℓ-diversity clustering problem. Therefore, designing a partition algorithm for

the fair k-service problem is sufficient.

For the fair k-service problem (without outliers), Bandyapadhyay et al. [21] designed an FPT

time partition algorithm. It is simple to extend their algorithm to the outlier setting. For the sake

of completeness, we describe the complete algorithm. Let I = (L,C, k, d, z,m,C1, . . . , Cω, α, β)

be any instance of the fair outlier k-service problem. Recall that the sets C1, . . . , Cω are the

color classes, each of which is a subset of the client set C. Moreover, any two color classes can

overlap with each other. In other words, a client in C might belong to a different color class. To

simplify the problem, we partition the client set into Γ disjoint groups: P1, . . . , PΓ such that the

points belonging to the same group Pi belong to the same set of colored classes. In other words,

if clients x and y belong to the same group Pi, then for every color class Ct ∈ {C1, . . . , Cω},

x ∈ Ct if and only if y ∈ Ct. Also, if x and y belong to different groups Pi and Pj , respectively,

then there exists a color class Ct ∈ {C1, . . . , Cω} such that x ∈ Ct and y /∈ Ct, or x /∈ Ct and

y ∈ Ct. Note that if the color classes are pair-wise disjoint, then Γ equals the number of color

classes, i.e., Γ = ω. Now, we design FPT time partition algorithm for the fair outlier k-service

problem with running time (kΓ)kΓ · nO(1), where Γ is the number of distinct collection of color

classes induced by the colors of clients. Formally, we state the result as follows:
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Lemma 31. For the fair outlier k-service problem, there is a (kΓ)kΓ · nO(1) time partition

algorithm, where Γ is the number of distinct collections of color classes induced by the colors

of clients.

Proof. Let F = {f1, . . . , fk} be the given set of facility locations for which we want an optimal

partitioning satisfying the fair outlier constraints. Let Z denote the optimal set of outliers

and OPT denote the optimal k-service cost of assigning C \ Z to F while satisfying the fair

constraints. The assignment problem can be modeled as an integer linear program; however,

solving an integer linear program is NP-hard in general. Therefore, we model the problem as a

mixed integer linear program, which can be solved in FPT time parameterized by the number

of integer variables. The following is a formal statement for the same:

Proposition 2 (Proposition 8.1 of [21]). Given a real-valued matrix A ∈ Rm×d, vector b ∈ Rm,

vector c ∈ Rd, and a positive integer p ≤ d. There is an FPT time algorithm that finds a vector

x = (x1, . . . , xd) ∈ Rd that minimizes c · x, and satisfies that A · x ≤ b and x1, . . . , xp ∈ Z.

The running time of the algorithm is O(p2.5p+o(p)d4B), and the space complexity is polynomial

in B, where B is the bit size of the given instance.

Now, we model the assignment problem as a mixed integer linear program (MILP), as follows:

Minimize
∑
x∈C

∑
f∈F

g(x, f)· d(x, f)z

Constraints:
∑
f∈F

gx,f ≤ 1 for every client x ∈ C

∑
x∈Pi

gx,f = hf,i for every group Pi ∈ {P1, . . . , PΓ} and facility f ∈ F

∑
f∈F,x∈C

gx,f ≥ |C| −m for client set C and facility set F
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∑
x∈Cj

gx,f ≤ αj ·
∑
x∈C

gx,f for every facility f ∈ F and color class Cj ∈ {C1, . . . , Cω}

∑
x∈Cj

gx,f ≥ βj ·
∑
x∈C

gx,f for every facility f ∈ F and color class Cj ∈ {C1, . . . , Cω}

0 ≤ gx,f ≤ 1 for every client x ∈ C and facility f ∈ F

hf,i ∈ Z≥0 for every group Pi ∈ {P1, . . . , PΓ} and facility f ∈ F

In the above MILP, for every client x ∈ C and facility f ∈ F , there is a fractional variable

gx,f ≤ 1 that denotes the fraction of client x assigned to facility f . Moreover, for every group

Pi ∈ {P1, . . . , PΓ} and facility f ∈ F , there is an integer variable hf,i that denotes the total

fraction of clients in Pi that is assigned to facility f . In other words, hf,i =
∑

x∈Pi
gx,f . The

third constraint of the MILP corresponds to the number of outliers being at most m. Lastly, the

fourth and fifth constraints of MILP correspond to the fairness constraints.

We solve the above mixed integer linear program in time O(kΓ)kΓ · nO(1) as per Proposition 2.

However, the obtained optimal solution contains fractional gx,f values. Next, we show that there

always exists a solution with integral gx,f values that can be obtained in polynomial time. We

reduce the problem to the minimum cost circulation problem on directed graphs. We construct

a flow network G = (V,E) with upper and lower bound flow requirements on every edge. The

construction is shown in Figure 3.3.

The vertex set V contains a source vertex s, a sink vertex t, and an outlier regulating vertex

o. We will describe the functioning of o shortly. The rest of the vertex set is partitioned into

two sets: VC and VF,P . The vertex set VC corresponds to the client set C. In other words, for

every client x ∈ C there is a vertex vx ∈ C. The vertex set VF,P corresponds to facility set F

and groups P1, . . . , PΓ. In other words, for every facility f ∈ F and group Pi ∈ {P1, . . . , PΓ},

there is a vertex vf,i in VF,P . Furthermore, the edge set E is composed as follows. There is
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Figure 3.3: The flow network G = (V,E) that is used by the partition algorithm of the fair
outlier k-service problem.

an edge (s, o) with lower and upper bound flow requirement of exactly
∑

x∈C,f∈F gx,f . Note

that
∑

x∈C,f∈F gx,f is an integer since
∑

x∈C,f∈F gx,f =
∑Γ

i=1

∑
f∈F hi,f and hi,f ’s are integers.

Also note that
∑

x∈C,f∈F gx,f ≥ |C| −m as per Constraint 2 of the MILP. Therefore, it ensures

that at least |C| −m clients are assigned to F , and that’s why we call the vertex o the outlier

regulating vertex. Furthermore, the edge set E contains for every vertex vx ∈ C, an edge (o, vx)

with lower bound flow requirement 0 and upper bound flow requirement 1. These edges ensure

that a client is assigned to at most one facility in F . Furthermore, for every vertex vx ∈ VC and

vf,i ∈ VF,P , there is an edge (vx, vf,i) if and only if x ∈ Pi. Each edge has a lower bound flow

requirement of 0 and an upper bound flow requirement of 1. Lastly, for every vertex vf,i ∈ VF,P ,

there is an edge (vf,i, t) with lower and upper bound flow requirement of exactly hf,i. These

edges ensure that exactly hf,i clients of Pi are assigned to any facility f ∈ F . It is easy to see

that the constructed flow network G admit a feasible flow if we send a flow of gx,f through every

edge (vx, vf,i). Moreover, this is the maximum flow that we can send through the network since

the capacity of edge (s, o) is
∑

x∈C,f∈F gx,f . Since the lower and upper bound requirements

on every edge is an integer, a feasible integral flow exists through the network with the same

cost. We find that flow in polynomial time using the algorithms in [132, 76, 23]. Let the new

integral flow through (vx, vf,i) is g′x,f . Then, we show that the values g′x,f ’s also satisfy the MILP
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constraints. The constraints (1)-(3) of the MILP are trivially satisfied from the flow network.

Also note that
∑

x∈Pi
g′x,f = hf,i due to the flow network. Therefore, the fair constraints (4)

and (5) are satisfied since
∑

x∈C gx,f =
∑

x∈C g′x,f and
∑

x∈Cj
gx,f =

∑
x∈Cj

g′x,f for every

facility f ∈ F and every color class Cj ∈ {C1, . . . , Cω}. These two equalities follow from the

following two sequences of equalities:

1. ∑
x∈C

gx,f =
Γ∑

i=1

∑
x∈Pi

gx,f =
Γ∑

i=1

hf,i =
∑
x∈C

g′x,f

2. ∑
x∈Cj

gx,f =
∑

i : Pi⊆Cj

∑
x∈Pi

gx,f =
∑

i : Pi⊆Cj

hf,i =
∑
x∈Cj

g′x,f

This completes the proof of the lemma.

In the streaming setting, we do not know any log-space partition algorithm or hardness result

for the ℓ-diversity and fair k-service problems.

3.10 Conclusion and Open Problems
In this paper, we worked within the unified framework of Ding and Xu [72] to obtain sim-

ple sampling-based algorithms for a range of constrained k-median/means problems in general

metric spaces. Surprisingly, even within this high-level framework, we obtained better (or

matched) approximation guarantees of known results designed specifically for the constrained

problem. On the one hand, this shows the versatility of the unified approach along with the

sampling method. On the other hand, it encourages us to try to design algorithms with bet-

ter approximation guarantees for these constrained problems. Our matching approximation

lower bound for the sampling algorithm suggests that further improvement may not be possi-

ble through sampling-based ideas. On the lower bound side, it may be useful to obtain results
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similar to that for the unconstrained setting where approximation lower bounds of (1 + 2/e)

and (1 + 8/e) are known for k-median and k-means, respectively [53]. Another direction is to

find other constrained problems that can fit into the unified framework and can benefit from the

results of this work.



Chapter 4

FPT Approximation for Constrained

k-Median/Means: Euclidean & Outlier

Setting

In this chapter, we study the k-median and k-means problems in the continuous Euclidean

space. The continuous Euclidean k-median problem is defined as follows: given a set L of

feasible facility locations in p dimensional Euclidean space and a finite client set C ⊂ Rp
, find

a set F ⊂ Rp
of k points (called centers) such that the following cost function is minimised:

kmedian-cost(F,C) ≡
∑
x∈C

min
f∈F
||x− f ||.

.

The continuous Euclidean k-means problem is defined similarly using squared Euclidean dis-

tances (i.e., ∥x− f∥2 instead of ∥x− f∥). For the constrained versions of these problems, there

already exists (1 + ε)-approximation algorithms with running time O
(
np · (k/ε)poly(k/ε)

)
[28,

147
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71]. In this chapter, we extend these algorithms to the outlier and streaming setting. We design

(1+ε)-approximation algorithm for the outlier version of the constrained k-means and k-means

with running time O
(
np · ((k +m)/ε)O(k/εO(1))

)
. Furthermore, we convert the algorithm to

a constant-pass log-space streaming algorithm. The high level ideas of the algorithm are the

same as previous chapter. However, some parts of the proof slightly differ since the sampling

lemmas in Euclidean space are different from the general metric spaces. We also extend the

algorithm to the general distance function ∥.∥z that is not studied in the previous works. Note

that here, the algorithm gives (1 + ε)-approximation guarantee, which is independent of z un-

like the problems in the general metric spaces where the approximation guarantee was 3
z
+ ε,

which is dependent on z.

4.1 Overview
The constrained k-median/means framework for the continuous Euclidean space is similar to

the framework for the discrete metric spaces that we discussed in the previous chapter (see

Section 3.1.2). It is just that the discrete set of facility locations L is replaced with Rp
, which

has an infinite size. For the sake of completeness, we define the framework again. We directly

define the framework for the outlier version of the problem since it trivially encapsulates the

non-outlier version. We combine the discussion of the k-median and k-means problems by

defining the k-service problem that encapsulates both these problems.

Definition 40 (Outlier Euclidean k-Service Problem). Let k, m, and p be any positive integers,

and z be any positive real number. Given a set C of clients in p-dimensional Euclidean space

Rp
, find a subset Z ⊆ C of size at most m clients and a set F ⊆ Rp

of k facilities such that the

k-service cost of C ′ := C\Z is minimized: euclid-cost(F,C ′) ≡
∑

x∈C′

{
minf∈F

{
∥x−f∥z

}}

The outlier version of the constrained k-service problem in the Euclidean space is defined as

follows:
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Definition 41 (Constrained Outlier Euclidean k-Service Problem). Let (C, k, p, z,m) be any

instance of the outlier Euclidean k-service problem and S be any collection of partitionings

such that every partitioning O ∈ S is a partitioning of some subset C ′ ⊆ C of size at least

|C| −m. Find a clustering O = {O1, O2, . . . , Ok} in S, that minimizes the objective function:

Φ∗(O) ≡ min
k-center-set F

Φ(F,O), where Φ(F,O) ≡ minpermutation π

{∑k
i=1

∑
x∈Oi
∥x− fπ(i)∥z

}
and F = {f1, . . . , fk}.

Any constrained version of the outlier k-service problem can be solved using the list k-service

problem and a partition algorithm. The outlier version of the list k-service problem in the

Euclidean space is defined as follows:

Definition 42 (List Outlier Euclidean k-Service Problem). Let I = (C, k, p, z,m) be an arbi-

trary instance of the outlier Euclidean k-service problem, O = {O1, . . . , Ok} be an arbitrary

partitioning of the some subset C ′ ⊆ C of size at least |C| −m, and 0 < ε ≤ 1 be an arbitrary

constant. The goal of the problem is to find a list L of k-center-sets (i.e., each element of the

list is a set of k elements from L) such that with probability at least 1− 1/n, the list L contains

a k-center-set F such that Φ(F,O) ≤ (1 + ε) · Φ∗(O) for n = |C|.

A partition algorithm for an outlier version of a constrained k-service problem is defined as

follows:

Definition 43 (Outlier Partition Algorithm). Let I = (C, k, p, z,m) be an instance of the outlier

Euclidean k-service problem, and let S = {O1,O2, . . . ,Ot} be a collection of clusterings such

that each Oi is a clustering of of some subset of C ′ ⊆ C of size at least |C|−m. Given a center

set F ⊆ L, an outlier partition algorithm outputs a clustering in S that has the least clustering

cost Φ(F,O) with respect to F .

Suppose that we have an algorithm for the list k-service problem and a partition algorithm for a

specific constrained k-service problem in the Euclidean space. We can obtain an approximation
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algorithm for that constrained k-service problem. The following theorem state this result and is

analogous to Theorem 31 for general metric spaces.

Theorem 43. Let I = (C, k, p, z,m, S) be any instance of the constrained outlier Euclidean

k-service problem, and let AS be an outlier partition algorithm for S with running time TA.

Let B be any algorithm for the list outlier Euclidean k-service problem with running time TB.

Then, there is an algorithm that, with probability at least 1 − 1/n, outputs a clustering O ∈ S

that is an (1+ε)-approximate solution for the constrained outlier Euclidean k-service instance

I. Moreover, the running time of the algorithm is O(TB + |L| · TA).

Proof. The proof is analogous to the proof of Theorem 26.

The goal now becomes to design an algorithm for the list outlier Euclidean k-service problem

and outlier partition algorithms for different constrained versions of k-service problems. In

Section 4.4, we design an algorithm for the list outlier k-service problem with FPT running

time parameterized by m and k. Formally, we state the result as follows:

Theorem 44. Let I = (C, k, p, z,m,O, ε) be any instance of the list outlier k-service problem.

There is an algorithm that outputs a listL of size at most O
(
(log n) · ((k +m)z/ε)O(k z/εO(z))

)
.

Moreover, the running time of the algorithm is O
(
np · ((k +m)z/ε)O(k z/εO(z))

)
, which is FPT

in k and m.

Using Theorems 43 and 44, we obtain the following two main results:

Corollary 15 (Main Result: Outlier Euclidean k-Median). For any constrained version of the

outlier Euclidean k-median problem that has a partition algorithm with running time T , there

exists a (1 + ε)-approximation algorithm that succeeds with probability at least 1 − 1/n and

has running time T · ((k +m)/ε)O(k/ε
O(1)) · (log n) +O (np · ((k +m)/ε)O(k/ε

O(1))).

Corollary 16 (Main Result: Outlier Euclidean k-Means). For any constrained version of the

outlier Euclidean k-means problem that has a partition algorithm with running time T , there
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exists a (1 + ε)-approximation algorithm that succeeds with probability at least 1 − 1/n and

has running time T · ((k +m)/ε)O(k/ε
O(1)) · (log n) +O (np · ((k +m)/ε)O(k/ε

O(1))).

We consider the outlier versions of all the constrained k-service problems mentioned in Ta-

ble 3.1. In Section 3.9, we designed the FPT time partition algorithms for the outlier versions

of all these problems in general metric spaces. Therefore, these algorithms naturally hold in

the Euclidean space. Thus, we get FPT time (1 + ε)-approximation algorithms for the outlier

versions of these problems. Formally, we state the results as follows:

Theorem 45. There is an FPT time (1 + ε)-approximation algorithm for the outlier versions

of the following constrained k-service problems:

1. r-gather k-service problem 2. r-capacity k-service problem

3. Balanced k-service problem 4. Chromatic k-service problem

5. Fault-tolerant k-service problem 6. Ordered-Weighted-Average k-service problem

7. Strongly private k-service problem 8. Uncertain k-service problem

The running time of the algorithm is ((k +m)z/ε)O(kz/εO(z)) · nO(1) · p.

Theorem 46. There is an FPT time (1 + ε)-approximation algorithm for the outlier version of

the ℓ-diversity k-service problem with running time ((k +m)z ω/ε)O(k·(ω+z/ε
O(z))) · nO(1) · p.

Theorem 47. There is an FPT time (1 + ε)-approximation algorithm for the outlier version of

the fair k-service problem with running time ((k +m)z Γ/ε)O(k·(Γ+z/ε
O(z))) · nO(1) · p, where

Γ denote the number of distinct collection of color classes induced by the colors of clients.

Moreover, if the color classes are pair-wise disjoint, then Γ = ω, and the running time of the

algorithm is ((k +m)z ω/ε)O(k·(ω+z/ε
O(z))) · nO(1) · p.

This completes the discussion on the constrained outlier Euclidean k-service problem. Next,

we convert our algorithm to a streaming algorithm. We require a streaming version of the list

outlier k-service algorithm and a streaming version of the partition algorithm. In Section 4.5,

we design a constant-pass log-space streaming algorithm for the list outlier Euclidean k-service
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problem. In Section 3.9, we designed the streaming partition algorithms for the outlier versions

of some of the problems given in Table 3.1 in general metric space. Therefore, the algorithm

naturally holds for the Euclidean k-service problem as well.

4.2 Related Work
A unified framework for the constrained Euclidean k-means/k-median problems was intro-

duced by Ding and Xu [72]. Using this framework, they designed (1 + ε)-approximation algo-

rithms for various constrained clustering problems with FPT running time parameterized by k.

They obtained the results using an algorithm for the list version of the k-means problem (even

though it was not formally defined in their work). The running time of their algorithm was

O(nd · (log n)k · 2poly(k/ε)) and the list size was (log n)k · 2poly(k/ε). Bhattacharya et al. [28] for-

mally defined the list k-service problem. They obtained a faster algorithm for the list k-service

problem with running time of O(nd · (k/ε)O(log(k/ε))) and list size of (k/ε)O(log(k/ε)). We use a

sampling-based approach similar to the algorithm of Bhattacharya et al. [28]. Our work differs

from the previous works in the following ways:

1. Bhattacharya et al. [28] gave an algorithm for the list-k-means problem with list size

|L| = (k
ε
)O( k

ε
) and running time O(nd|L|). Their algorithm explores a rooted tree of

size (k
ε
)O( k

ε
) and depth k where the degree of every non-leaf vertex is (k

ε
)O( 1

ε
). Every

node in this tree has an associated center and the path from root to a leaf node gives

one of the k-center-sets for the output list. The algorithm has an unavoidable iteration

of depth k since their analysis works only when the centers are picked one-by-one in k

iterations. We circumvent this inherent restriction by using a constant factor approximate

solution F to the unconstrained k-means/median problem for the given dataset C. That

is, service-cost(F,C) ≤ α · OPT, where OPT denotes the optimal k-means/median cost.

Then the sampling algorithm runs in a single iteration where O((k/ε)O(k/ε)) points from

C are Dz-sampled with respect to F . We show that all the good k centers for k clusters
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can simultaneously be found from the sampled points and points in the set F . Thus, we

obtain the listL in a single shot. This technique helps us in designing streaming algorithm

for the problem.

2. For the unconstrained outlier Euclidean k-means problem there exists a (1 + ε) approx-

imation with running time O
(
np · ((k +m)/ε)(k/ε)

O(1)
)

[80]. We design a general al-

gorithm for the cost function ∥.∥z and outlier setting. We design (1 + ε)-approximation

algorithm for the outlier versions of a range of constrained k-service problems in the

Euclidean space with FPT running time, parameterized by k and m.

Note that streaming coreset constructions provide another approach to designing streaming

algorithm for the k-means problem. An (ε, k) coreset of a dataset C ⊂ Rp
is a weighted set

S ⊂ Rp
along with a weight function w : S → R+ such that for any k-center-set F , we

have: |
∑

s∈S minf∈F w(s) · ∥s − f∥2 −
∑

x∈C minf∈F ∥x − f∥2| ≤ ε ·
∑

x∈C minf∈F ∥x −

f∥2. So, it is sufficient to find a k-center-set that gives (1 + ε)-approximation for a coreset S

(instead of the dataset C). There exists one-pass streaming coreset construction [77, 44] that

uses poly
(
k, 1

ε
, log n

)
space and outputs a coreset of size poly

(
k, 1

ε
, log n

)
. Using this, one can

design a single-pass streaming algorithm for the k-means problem by first running the streaming

algorithm to output a coreset and then finding a (1 + ε)-approximate k center set for the small

coreset. If the output is supposed to be a clustering, then we will need to make another pass

over the data. Note that the same idea of working on coreset does not trivially carry over to the

constrained k-service problem since there are additional constraints and general cost function

∥.∥z.

4.3 Notations and Identities
We give some basic definitions and results that is useful in the context of the Euclidean k-

service problem. The unconstrained Euclidean k-service cost of a client set C with respect to a
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center set F is given by the following cost function:

euclid-cost(F,C) ≡
∑
x∈C

min
f∈F
||x− f ||z.

We will use the above cost function repeatedly in our discussion. Hence for simplicity, when

F = {f} is a singleton set, then we use euclid-cost(f, C) instead of euclid-cost({f}, C). We

denote the optimal cost of the unconstrained Euclidean k-service instance by OPT(C, k). That

is, OPT(C, k) ≡ min
k-center-set F ⊆ Rp

{
euclid-cost(F,C)

}
Our algorithm is based on simple sampling idea. The following sampling result of Cohen-

Addad et al. [57] will be used in our analysis. The lemma says that an approximate solution

to the 1-service problem can be computed by uniformly sampling a small set of points from

the dataset C. We denote the optimal 1-service cost of any dataset C ⊂ Rp
by ∆(C) =

minf∈Rp

{
euclid-cost(f, C)

}
.

Lemma 32 (Theorem 1 [57]). Let C be any arbitrary instance of the Euclidean 1-service prob-

lem. Then there exists an algorithm that uniformly samples O(ε−z−3 · polylog(ε−1)) log2(1/δ)

points from C and computes (1 + ε)-approximate solution of C with probability at least 1− δ.

In particular, we use the following corollary of the above lemma in our algorithms and proofs.

Corollary 17 (Corollary of Lemma 32). Let C be any arbitrary instance of the Euclidean 1-

service problem. Then there exists an algorithm that uniformly samples τ = O((ε/16)−z−3 ·

polylog(ε−1)) points from C and computes (1 + ε/16)-approximate solution of C with proba-

bility at least 3/4.

We denote a (1 + ε)-approximate solution obtained by the above lemma, by µ(C), i.e.,

euclid-cost(µ(C), C) ≤ (1 + ε) ·∆(C).

We use the following facts frequently in our proofs. We also used these facts earlier in Chap-

ter 3. For proofs of these facts, please see Section 3.3.
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Fact 1 (Binomial Approximation). For ε · n ≤ 1/2, we have (1 + ε)n ≤ (1 + 2εn)

Fact 2. For any δ, z, a, b > 0, we have (a+ b)z ≤ (1 + δ)z · bz +
(
1 + 1

δ

)z · az.

4.4 Algorithm for List Outlier k-Service Problem
The algorithm List-Outlier-Euclidean-k-Service is given in Figure 4.1. The al-

gorithm takes as input client set C, number of clusters k, dimension of the Euclidean space p,

number of outliers m, and error parameter ε. The algorithm outputs a list L of k-center sets.

Let Z ⊆ C be the unknown set of m outliers, O = {O1, ..., Ok} be the unknown clustering of

the client set C \ Z. Our goal is to find (approximately) good centers for these clusters. Since

O is not given we cannot hope to output a single such k-center-set. We are allowed to output a

list of such center sets.

List-Outlier-Euclidean-k-Service(C, k, p, ε,m)

Inputs: Outlier Euclidean k-Service Instance (C, k, p,m) and accuracy ε
Output: A list L, each element in L being a k-center set
Constants: η = 2τ/γ; τ = O((ε/16)−z−3 · polylog(ε−1)); ζ = (1 + 32z/ε);

β = (1 + 16z/ε)z · (2 + ε/2); γ =
ε

2αβ k
·
(

ε

50 ζ

)z
(1) Run any α-approximation algorithm with α = poly(k +m) for the unconstrained

Euclidean (k +m)-service instance (C, k +m, p) and let F be the obtained
center-set. (k-means++ [16] is one such algorithm.)

(2) L ← ∅
(3) Repeat 2k · (log n) times:
(4) Sample a multi-set M of ηk points from C using Dz-sampling

w.r.t. center set F
(5) M ←M∪ {τ k copies of each element in F}
(6) For all disjoint subsets S1, ..., St of M such that ∀i, |Si| = τ :
(7) L ← L ∪ {(µ(S1), ..., µ(Sk))}

(µ(Sj) is (1+ ε)-approximate solution to 1-service cost of Sj . It is obtained using
Lemma 32)

(8) return(L)

Algorithm 4.1: List Outlier Euclidean k-Service Algorithm
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We will show the list L produced by the List-Outlier-Euclidean-k-Service algo-

rithm, with high probability, will contain a k-center set S such that Φ(S,O) ≤ (1 + ε) ·Φ∗(O).

We formally state our result as the next theorem.

Theorem 48. Let (C, k, p,m) be any instance of the outlier Euclidean k-service problem

and 0 < ε ≤ 1/2. Let Z \ C be any arbitrary set of m outliers and O = {O1, ..., Ok}

denote an arbitrary clustering of C \ Z. Let L denote the list returned by the algorithm

List-Outlier-Euclidean-k-Service(C, k, p, ε,m). Then with probability at least

1− 1/n, L contains a center set S such that

Φ(S,O) ≤ (1 + ε) · Φ∗(O)

where Φ∗(O) =
∑k

i=1 ∆(Oi). Moreover, |L| = (log n) ·
(
((k +m)z/ε)O(kz)/εO(z)

)
and the

running time of the algorithm is O(np|L|).

First we analyse the running time of the algorithm. In line(1) of the algorithm, we run k-

means++ algorithm [16] that gives an O(4z ·log(k+m))-approximation guarantee and a running

time O(np(k + m)), where k + m are the number of centers. Line (4) of the algorithm D
z
-

samples (zk/ε)O(z) points from C with respect to F . It takes O(np(k + m)(zk/ε)O(z)) time.

After line(5) of the algorithm, M contains O(k +m)(zk/ε)O(z) points. Then, in lines (6) and

(7), the algorithm takes all possible τ subsets of M , computes 1-service cost of each subset,

and take all k-combinations of them. It takes O
(
((k +m)z/ε)O(kz)/εO(z)

)
time. Since the

algorithm repeats lines (4)-(7) 2k log n times, size of listL is (log n)·
(
((k +m)z/ε)O(kz)/εO(z)

)
and running time of the algorithm is O

(
np · ((k +m)z/ε)O(kz)/εO(z)

)
)

.

Now, we show that the list L contains a good k-center set for O with probability at least 1−1/n.

Note that the outer iteration (repeat 2k ·(log n) times in line (3)) is to amplify the probability that

the list L containing a good k-center set. We will show that the probability of finding a good

k-center set in one iteration is at least (1/2)k and the theorem follows from simple probability
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calculation. So in the remaining discussion we will only discuss one iteration of the algorithm.

Consider the multi-set M after line (5) of the algorithm. We will show that with probability

at least (1/2)k, there are disjoint (multi) subsets T1, ..., Tk each of size τ such that for every

j = 1, ..., k,

euclid-cost(µ(Tj), Oj) ≤
(
1 +

ε

2

)
·∆(Oj) +

ε

2k
· Φ∗(O). (4.1)

Since we try out all possible subsets in step (7), we will get the desired result. More precisely,

we will argue in the following manner: consider the multi-set F ′ = {τ k copies of each element

in F}. We can interpret F ′ as a union of multi-sets F ′
1, F

′
2, ..., F

′
t , where F ′

j = {τ copies of each

element in F}. Also, since M consists of ηk independently sampled points, we can interpret

M as a union of multi-sets M ′
1,M

′
2, ...,M

′
k where M ′

1 is the first η points sampled, M ′
2 is the

second η points and so on. For all j = 1, ..., k, let Mj = F ′
j ∪ (M ′

j ∩ Oj).1 We will show that

for every j ∈ {1, ..., k}, with probability at least (1/2), Mj contains a subset Tj of size τ that

satisfies eqn. (4.1). Note that Tj’s being disjoint follows from the definition of Mj . It will be

sufficient to prove the following lemma.

Lemma 33. Consider the sets M1, ...,Mk as defined above. For any j ∈ {1, ..., k},

Pr
[
∃Tj ⊆Mj s.t. |Tj| = τ and

(
euclid-cost(µ(Tj), Oj) ≤

(
1 +

ε

2

)
·∆(Oj) +

ε

2k
Φ∗(O)

)]
≥ 1

2
,

where µ(Tj) is the (1 + ε)-approximate solution to the optimal 1-service cost of Tj .

It is easy to see that the above lemma gives the desired result:

Φ({µ(T1), . . . , µ(Tk)},O) =
k∑

j=1

euclid-cost(µ(Tj), Oj) ≤ (1 + ε) · Φ∗(O)

We prove the above lemma in the remaining discussion. We do a case analysis that is based on

whether euclid-cost(F,Oj)
euclid-cost(F,C)

is large or small for a particular j ∈ {1, ..., k}.

1M ′
j ∩Oj in this case, denotes those points in the multi-set M ′

j that belongs to Oj .
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- Case-I
(

euclid-cost(F,Oj) ≤
ε

2αβ k
· euclid-cost(F,C)

)
: Here we will show that there is

a subset Tj ⊆ F ′
j ⊆Mj that satisfies eqn. (4.1).

- Case-II
(

euclid-cost(F,Oj) >
ε

2αβ k
· euclid-cost(F,C)

)
: Here we will show that Mj con-

tains a subset Tj such that euclid-cost(µ(Tj), Oj) ≤
(
1 +

ε

2

)
·∆(Oj) and hence Tj also satisfies

eqn. (4.1).

We discuss these two cases next. The analysis is similar to the analysis of the D2-sampling

based algorithm for k-means by Bhattacharya et al. [28]. Since there are a few crucial differ-

ences, and for the sake of clarity we continue with the detailed proof.

4.4.1 Proof of Case-I: Low-cost clusters

Case-I:
(

euclid-cost(F,Oj) ≤
ε

2αβ k
· euclid-cost(F,C)

)

For any point x ∈ C, let c(x) denote the center in the set F that is closest to x. That is,

c(x) = argminc∈F ||c− x||. Given this definition, note that:

∑
x∈Oj

||x− c(x)||z = euclid-cost(F,Oj) (4.2)

We define the multi-set O′
j = {c(x) : x ∈ Oj}. Let µ and µ′ denote the optimal centers to the 1-

service cost of the point sets Oj and O′
j , respectively. So, we have ∆(Oj) = euclid-cost(µ,Oj)

and ∆(O′
j) = euclid-cost(µ′, O′

j). We will show that ∆(Oj) ≈ ∆(O′
j). First, we note the

following lemma:

Lemma 34. For any constant δ > 0, ∆(O′
j) ≤ (1+1/δ)z ·euclid-cost(F,Oj)+(1+δ)z ·∆(Oj).
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Proof. The proof follows from the following sequence of inequalities.

∆(O′
j) =

∑
x∈O′

j

∥x− µ′∥z

≤
∑
x∈O′

j

∥x− µ∥z, (∵ µ′ is optimal for O′
j )

=
∑
x∈Oj

∥c(x)− µ∥z

≤
∑
x∈Oj

(∥x− c(x)∥+ ∥x− µ∥)z , (using triangle-inequality)

≤
∑
x∈Oj

(
(1 + 1/δ)z∥x− c(x)∥z + (1 + δ)z∥x− µ∥z

)
, (for any δ > 0, using Fact 2)

= (1 + 1/δ)z · euclid-cost(F,Oj) + (1 + δ)z ·∆(Oj),

Next, we show that a good center for the 1-service cost of O′
j is also a good center for Oj .

Lemma 35. Let µ′′ be a point such that euclid-cost(µ′′, O′
j) ≤

(
1 +

ε

8

)
·∆(O′

j). Then,

euclid-cost(µ′′, Oj) ≤
(
1 +

ε

2

)
·∆(Oj) +

ε

2k
· Φ∗(O).

Proof. The proof follows from the following sequence of inequalities.

euclid-cost(µ′′, Oj)

=
∑
x∈Oj

∥x− µ′′∥z

≤
∑
x∈Oj

(∥x− c(x)∥+ ∥c(x)− µ′′∥)z ,

(using triangle inequality)
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≤
∑
x∈Oj

((1 + 1/δ)z · ∥x− c(x)∥z + (1 + δ)z · ∥c(x)− µ′′∥z) ,

(for any δ > 0, using Fact 2)

(and we will later decide the value of δ)

= (1 + 1/δ)z · euclid-cost(F,Oj) + (1 + δ)z · euclid-cost(µ′′, O′
j)

≤ (1 + 1/δ)z · euclid-cost(F,Oj) + (1 + δ)z · (1 + ε/8) ·∆(O′
j)

≤ (1 + 1/δ)z · (1 + (1 + δ)z · (1 + ε/8)) · euclid-cost(F,Oj)

+ (1 + δ)2z · (1 + ε/8) ·∆(Oj), (using Lemma 34)

= (1 + 16z/ε)z · (1 + (1 + ε/16z)z · (1 + ε/8)) · euclid-cost(F,Oj)

+ (1 + ε/16z)2z · (1 + ε/8) ·∆(Oj), (substituting δ = ε/16z)

≤ (1 + 16z/ε)z · (1 + (1 + ε/16) · (1 + ε/8)) · euclid-cost(F,Oj)

+ (1 + ε/8) · (1 + ε/8) ·∆(Oj), (using Fact 1)

≤ (1 + 16z/ε)z · (2 + ε/2) · euclid-cost(F,Oj) + (1 + ε/2) ·∆(Oj)

(for ε ≤ 1)

≤ (1 + 16z/ε)z · (2 + ε/2) · ε

2αβ k
· euclid-cost(F,C) + (1 + ε/2) ·∆(Oj)

(by the defn. of Case-I)

≤ (1 + 16z/ε)z · (2 + ε/2) · ε

2 β k
· OPT(C, k +m) + (1 + ε/2) ·∆(Oj),

(∵ euclid-cost(F,C) ≤ α · OPT(C, k +m))

≤ (1 + 16z/ε)z · (2 + ε/2) · ε

2 β k
· Φ∗(O) + (1 + ε/2) ·∆(Oj)

(∵ unconstrained optimal cost ≤ constrained optimal cost)

=
ε

2k
· Φ∗(O) +

(
1 +

ε

2

)
·∆(Oj), (∵ β = (1 + 16z/ε)z · (2 + ε/2))

This completes the proof of the lemma.
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We know from Corollary 17 that there exists a (multi) subset S of O′
j of size τ such that

µ(S) of these points satisfies the condition of the lemma above with probability at least 3/4.

Since F ′
j contains at least τ copies of every element of F , there is a subset Tj ⊆ F ′

j that

satisfies eqn. (4.1) with probability at least 3/4. So, for any index j ∈ {1, ..., k} such that
euclid-cost(F,Oj)
euclid-cost(F,C)

≤ ε

2αβ k
, Mj has a good subset Tj with probability 3/4.

4.4.2 Proof of Case-II: High-cost clusters

Case-II:
(

euclid-cost(F,Oj) >
ε

2αβ k
· euclid-cost(F,C)

)

If we can show that a D
z
-sampled set with respect to center set F has a subset S that may be

considered uniform sample from Oj , then we can use Lemma 32 to argue that Mj has a subset

Tj such that µ(Tj) is a good center for Oj . Note that since euclid-cost(F,Oj)
euclid-cost(F,C)

>
ε

2αβ k
, we can

argue that if we D
z
-sample O

(
(kz/ε)O(z/ε)

)
elements, then we will get a good representation

from Oj . However, some of the points from Oj may be very close to one of the centers in F

and hence will have a very small chance of being D
z
-sampled. In such a case, no subset S

of a D
z
-sampled set will behave like a uniform sample from Oj . So, we need to argue more

carefully taking into consideration the fact that there may be points in Oj for which the chance

of being D
z
-sampled may be very small. Here is the high-level argument that we will build:

• Consider the set O′
j which is same as Oj except that points in Oj that are very close to F

have been “collapsed" to their closest center in F .

• Argue that a good center for the set O′
j is a good center for Oj .

• Show that a convex combination of copies of centers in F (i.e., F ′
j) and D

z
-sampled

points from Oj gives a good center for the set O′
j .

The closeness of point in Oj to points in F is quantified using radius R that is defined by the
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equation:

R
z defn.

=

(
ε

50 ζ

)z

· euclid-cost(F,Oj)
|Oj|

, where ζ = (1 + 32z/ε). (4.3)

Let Onear
j be the points in Oj that are within a distance of R from a point in set F and Ofar

j =

Oj \ Onear
j . That is, Onear

j = {x ∈ Oj : minc∈F ||x− c|| ≤ R} and Ofar
j = Oj \ Onear

j . Using

these we define the multi-set O′
j as:

O′
j = Ofar

j ∪ {c(x) : x ∈ Onear
j }

Note that |Oj| = |O′
j|. Let µ and µ′ are the optimal centers for the 1-service cost of Oj and O′

j ,

respectively. Let n = |Oj| and n̄ = |Onear
j |. We first show a lower bound on ∆(Oj) in terms of

R.

Lemma 36. ∆(Oj) ≥ n̄ ·
(
12 γ R

ε

)z
, where ζ = (1 + 32z/ε).

Proof. Let c = argminc′∈F ||µ− c′||. We do a case analysis:

1. Case 1: ||µ− c|| ≥ 13 ζ R

ε

Consider any point p ∈ Onear
j . From triangle inequality, we have:

||p− µ|| ≥ ||c(p)− µ|| − ||c(p)− p|| ≥ 13 ζ R

ε
−R ≥ 12 ζ R

ε
.

This gives: ∆(Oj) ≥
∑

p∈Onear
j
||p− µ||z ≥ n̄ ·

(
12 ζ R

ε

)z
.

2. Case 2: ||µ− c|| < 13 ζ R

ε

In this case, we have:

euclid-cost(F,Oj) ≤ euclid-cost(c, Oj)
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=
∑
x∈Oj

∥x− c∥z

≤
∑
x∈Oj

(∥x− µ∥+ ∥µ− c∥)z , (using triangle inequality)

≤ 2
z
·
∑
x∈Oj

(
∥x− µ∥z + ∥µ− c∥z

)
,

(using Fact 2 and δ = 1)

≤ 2
z
·∆(Oj) + n · 2

z
· ∥µ− c∥z

On rearranging the terms, we get:

∆(Oj) ≥
euclid-cost(F,Oj)

2
z − n · ||µ− c||z

≥ euclid-cost(F,Oj)

2
z − n ·

(
13 ζ R

ε

)z

= n ·
(
50 ζ R

2 ε

)z

− n ·
(
13 ζ R

ε

)z
≥ n ·

(
12 ζ R

ε

)z

≥ n̄ ·
(
12 ζ R

ε

)z

This completes the proof of the lemma.

Next, we note the following lemma:

Lemma 37. For any δ > 0, ∆(O′
j) ≤ (1 + 1/δ)z · euclid-cost(F,Onear

j ) + (1 + δ)z ·∆(Oj).
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Proof. The proof follows from the following sequence of inequalities.

∆(O′
j) =

∑
x∈O′

j

∥x− µ′∥z

≤
∑
x∈O′

j

∥x− µ∥z, (∵ µ′ is optimal for O′
j )

=
∑

x∈Onear
j

∥c(x)− µ∥z +
∑

x∈Ofar
j

∥x− µ∥z

≤
∑

x∈Onear
j

(∥x− c(x)∥+ ∥x− µ∥)z +
∑

x∈Ofar
j

∥x− µ∥z, (using triangle-inequality)

≤
∑

x∈Onear
j

(
(1 + 1/δ)z∥x− c(x)∥z + (1 + δ)z∥x− µ∥z

)
+
∑

x∈Ofar
j

∥x− µ∥z, (for any δ > 0 using Fact 2)

≤ (1 + 1/δ)z · euclid-cost(F,Onear
j ) + (1 + δ)z ·∆(Oj),

In the next lemma, we show that a good center for the 1-service cost of O′
j is a good center for

Oj as well.

Lemma 38. Let µ′′ be a point such that euclid-cost(µ′′, O′
j) ≤

(
1 +

ε

16

)
· ∆(O′

j). Then,

euclid-cost(µ′′, Oj) ≤
(
1 +

ε

2

)
·∆(Oj).

Proof. The proof follows from the following sequence of inequalities.

euclid-cost(µ′′, Oj)

=
∑
x∈Oj

∥x− µ′′∥z
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=
∑

x∈Onear
j

∥x− µ′′∥z +
∑

x∈Ofar
j

∥x− µ′′∥z

≤
∑

x∈Onear
j

(∥x− c(x)∥+ ∥c(x)− µ′′∥)z +
∑

x∈Ofar
j

∥x− µ′′∥z,

(using triangle inequality)

≤
∑

x∈Onear
j

((1 + 1/δ)z · ∥x− c(x)∥z + (1 + δ)z · ∥c(x)− µ′′∥z) +
∑

x∈Ofar
j

∥x− µ′′∥z,

(for any δ > 0, using Fact 2)

(we will later decide the value of δ)

= (1 + 1/δ)z · euclid-cost(F,Onear
j ) + (1 + δ)z ·

∑
x∈Onear

j

∥c(x)− µ′′∥z

+
∑

x∈Ofar
j

∥x− µ′′∥z

≤ (1 + 1/δ)z · euclid-cost(F,Onear
j ) + (1 + δ)z ·

∑
x∈O′

j

∥x− µ′′∥z

= (1 + 1/δ)z · euclid-cost(F,Onear
j ) + (1 + δ)z · euclid-cost(µ′′, O′

j)

≤ (1 + 1/δ)z · euclid-cost(F,Onear
j ) + (1 + δ)z · (1 + ε/16) ·∆(O′

j)

≤ (1 + 1/δ)z · (1 + (1 + δ)z · (1 + ε/16)) · euclid-cost(F,Onear
j )

+ (1 + δ)2z · (1 + ε/16) ·∆(Oj), (using Lemma 37)

= (1 + 32z/ε)z · (1 + (1 + ε/32z)z · (1 + ε/16)) · euclid-cost(F,Onear
j )

+ (1 + ε/32z)2z · (1 + ε/16) ·∆(Oj), (on substituting δ = ε/32z)

≤ (1 + 32z/ε)z · (1 + (1 + ε/32) · (1 + ε/16)) · euclid-cost(F,Onear
j )

+ (1 + ε/16) · (1 + ε/16) ·∆(Oj), (using Fact 1)

≤ (1 + 32z/ε)z · (1 + 1 + ε/4) · euclid-cost(F,Onear
j ) + (1 + ε/4) ·∆(Oj),

(for ε ≤ 1)

≤ (1 + 32z/ε)z · (2 + ε/4) · n̄R
z
+ (1 + ε/4) ·∆(Oj)
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≤ (1 + 32z/ε)z · (2 + ε/4) ·
(

ε

12ζ

)z

·∆(Oj) + (1 + ε/4) ·∆(Oj),

(using Lemma 36)

≤ ε

4
·∆(Oj) + (1 + ε/4) ·∆(Oj) (∵ ζ = (1 + 32z/ε) and ε ≤ 1)

= (1 + ε/2) ·∆(Oj)

This completes the proof of the lemma.

Given the above lemma, all we need to argue is that our algorithm indeed considers a center

µ′′ such that euclid-cost(µ′′, O′
j) ≤ (1 + ε/16) ·∆(O′

j). For this we would need about Ω(τ)

uniform samples from O′
j . However, our algorithm can only sample using D

z
-sampling w.r.t.

F . For ease of notation, let c(Onear
j ) denote the multi-set {c(p) : p ∈ Onear

j }. Recall that O′
j

consists of Ofar
j and c(Onear

j ). The first observation we make is that the probability of sampling

an element from Ofar
j is reasonably large (proportional to ε

k
). Using this fact, we show how

to sample from O′
j (almost uniformly). Finally, we show how to convert this almost uniform

sampling to uniform sampling (at the cost of increasing the size of sample).

Lemma 39. Let x be a sample from D
z
-sampling w.r.t. F . Then, for any point p ∈ Ofar

j ,

Pr[x = p] ≥ γ

|Oj |
, where γ denotes ε

2αβ k
·
(

ε

50 ζ

)z
.

Proof. If x ∈ Ofar
j , then euclid-cost(F, {x}) ≥ R

z
=
(

ε

50 ζ

)z
· euclid-cost(F,Oj)

|Oj |
. Therefore,

euclid-cost(F, {x})
euclid-cost(F,C)

≥ Rz

euclid-cost(F,C)
≥ euclid-cost(F,Oj)

euclid-cost(F,C)
·
(

ε

50 ζ

)z

· 1

|Oj|

≥ ε

2αβ k
·
(

ε

50 ζ

)z

· 1

|Oj|
.

This completes the proof of the lemma.
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Note that the algorithm adds the entire set F in M . It means the algorithm samples a point from

c(Onear
j ) with probability exactly 1. Therefore, based on this fact and the above lemma, it can

be said that the algorithm is sampling each point in O′
j with probability at least γ/|Oj|.

Now, consider a new experiment in which Ec denote the event of choosing Oj and En denote the

event of not choosing Oj . The experiment is such that Pr[Ec] = γ and Pr[En] = 1− γ. Let Ex

denote the event of choosing a point x ∈ Oj . The experiment is such that given Ec, an element

x ∈ Oj is chosen with uniform probability 1/|Oj|. In other words, Pr[Ex | Ec] = 1/|Oj|.

Therefore, the probability of choosing a point x ∈ Oj is exactly γ/|Oj|. Suppose we run this

new experiment η = 2τ/γ times and S be the sampled set. Then, expected number of points

in S is 2τ . Then, with probability at least 3/4, S contains at least τ points (using Chernoff-

Hoeffding bound). Since all points in S are uniformly sampled, using Corollary 17, µ(S) gives

(1 + ε/16) approximation for the 1-service cost of O′
j with probability at least (3/4)2 ≥ 1/2

. Note that the set of points added by this new experiment is subset of the points added by

our algorithm since our algorithm adds a point x to M with probability at ≥ γ/|Oj| = Pr[Ex].

Also, note that the algorithm adds τ copies of F to M to ensure that sufficient number of points

are sampled from c(Onear
j ). This implies that in steps 6-7 of the algorithm, the algorithm adds

a point µ′′ that is (1 + ε/16)-approximation for the 1-service cost of O′
j . Using Lemma 38, this

means that Mj contains a subset Tj such that euclid-cost(µ(Tj), Oj) ≤
(
1 +

ε

2

)
· ∆(Oj) with

probability at least 1/2. This concludes the proof of Lemma 33, and thus Theorem 48.

4.5 Streaming Algorithms
In this section, we convert the algorithm of the constrained outlier Euclidean k-service problem

to a constant-pass log-space streaming algorithm. We use the same techniques that we used in

Section 3.8. The offline algorithm for the constrained outlier Euclidean k-service problem has

two main components: the list outlier Euclidean k-service algorithm and the outlier partition

algorithm. The list outlier Euclidean k-service procedure is common to all constrained versions
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of the problem. However, the outlier partition algorithm differs for different constrained ver-

sions. We convert the algorithm List-Outlier-Euclidean-k-Service to a streaming

algorithm in the following manner:

Conversion of List-Outlier-Euclidean-k-Service to Streaming algorithm:

1. In the first pass, we run a streaming α-approximation algorithm for the Euclidean

k-service instance (C, k + m, p, z). For this, we use the streaming algorithm of

Braverman et al. [32]. The algorithm runs in polynomial time and gives a constant-

approximation with the space complexity of O((k +m) · log n).

2. In the second pass, we perform the Dz-sampling step using the reservoir sampling

technique [135].

This gives us the following result:

Lemma 40. There is a 2-pass streaming algorithm for the list outlier Euclidean k-service

problem. The algorithm outputs a list of size f(k,m, ε, z) · log n. Moreover, the running

time of the algorithm is O(np · f(k,m, ε)) and space complexity is f(k,m, ε, z) · log n, where

f(k,m, ε, z) = ((k +m)z/ε)O(kz/εO(z)).

Now, we need the partition algorithms for the constrained Euclidean k-service problems in the

streaming setting. For the chromatic k-service problems, there does not exist any deterministic

log-space streaming algorithm [87]. In Section 3.9.4, we showed that this impossibility result

also holds for the strongly-private k-service problem. For the ℓ-diversity and fair k-service

problems, we neither know any log-space streaming algorithm nor any impossibility result.

For the remaining constrained clustering problems mentioned in Table 3.1, we designed the

streaming partition algorithms for their outlier and non-outlier versions in Section 3.9. Since
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those algorithm are for the general metric spaces, they also holds for the Euclidean space. To-

gether with Lemma 40, we obtain the following results for the constrained k-service problems

in continuous Euclidean space:

Theorem 49. There is a 5-pass streaming algorithm for the outlier version of the r-gather,

r-capacity, and balanced Euclidean k-service problems that gives a (1 + ε)-approximation

guarantee. The algorithm has the space complexity of O(f(k,m, ε, z) · log n) and the running

time of O(f(k,m, ε, z) · nO(1)), where f(k,m, ε, z) = ((k +m)z/ε)O(kz/εO(z)).

Corollary 18. There is a 5-pass streaming algorithm for the r-gather, r-capacity, and balanced

Euclidean k-service problems that gives a (1+ε)-approximation guarantee. The algorithm has

the space complexity of O(f(k, ε, z) · log n) and the running time of O(f(k, ε, z) ·nO(1)), where

f(k, ε, z) = (kz/ε)O(kz/εO(z)).

Theorem 50. There is a 3-pass streaming algorithm for the fault-tolerant, ordered-weighted-

average, and uncertain Euclidean k-service problems that gives a (1+ ε)-approximation guar-

antee. The algorithm has the space complexity of O(f(k, ε, z) · log n) and the running time of

O(f(k, ε, z) · n), where f(k, ε, z) = (kz/ε)O(kz/εO(z)).

Theorem 51. There is a 4-pass streaming algorithm for the outlier version of the fault-tolerant,

ordered-weighted-average, and uncertain Euclidean k-service problems that gives a (1 + ε)-

approximation guarantee. The algorithm has the space complexity of O(f(k,m, ε, z) · log n)

and the running time of O(f(k,m, ε, z) · n), where f(k,m, ε, z) = ((k +m)z/ε)O(kz/εO(z)).

4.6 Conclusion
Our results demonstrate the versatility of the sampling based approach for k-means. This has

also been demonstrated in some of the past works. The effectiveness of k-means++ (which is

basically D2-sampling in k rounds) is well known [16]. The D2-sampling technique has been

used to give simple PTAS for versions of the k-means/median problems with various metric-

like distance measures [98] and also various constrained variations of k-means [28]. It has also
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been used to give efficient algorithms for coreset construction [115]. In this work, we see its use

in the streaming and outlier settings. The nice property of the sampling based approach is that

we have a uniform template of the algorithm that is simple and that works in various different

settings. This essentially means that the algorithm remains the same while the analysis changes.

This work raises many interesting questions. Our main result on list-k-service is a sampling

algorithm that helps us find good centers for any subset of k clusters. In the streaming setting

for the constrained k-means, we give a generic algorithm within the unified framework of Ding

and Xu [72]. The advantage of working in this unified framework is that we get streaming

algorithms for various constrained versions of the k-means problem. However, it may be pos-

sible to obtain better streaming algorithms (in terms of space, time, and number of passes) for

the constrained problems when considered separately as is the case for the classical k-means

problem [32]. It may be worthwhile exploring these problems.



Chapter 5

Tight FPT Approximation for Socially

Fair k-Median/Means

In this chapter, we study the socially fair k-median/k-means problem. We are given a set of

points C in a metric space X with a distance function d(., .). There are ℓ groups: C1, . . . , Cℓ ⊆

C. We are also given a set L of feasible centers in X . The goal in the socially fair k-

median problem is to find a set F ⊆ L of k centers that minimizes the maximum average

cost over all the groups. That is, find F that minimizes the objective function fair-cost(F,C) ≡

maxj

{∑
x∈Cj

d(F, x)/|Cj|
}

, where d(F, x) is the distance of x to the closest center in F . The

socially fair k-means problem is defined similarly by using squared distances, i.e., d2(., .) in-

stead of d(., .). The current best approximation guarantee for both the problems is O
(

log ℓ
log log ℓ

)
due to Makarychev and Vakilian [120]. In this work, we study the fixed parameter tractability

of the problems with respect to parameter k. We design (3 + ε) and (9 + ε) approximation

algorithms for the socially fair k-median and k-means problems, respectively, in FPT (fixed

parameter tractable) time f(k, ε) · nO(1), where f(k, ε) = (k/ε)O(k) and n = |C ∪ L|. The

algorithms are randomized and succeed with probability at least 1 − 1/n. Furthermore, we

show that if W[2] ̸= FPT, then better approximation guarantees are not possible in FPT time.

171
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Note that FPT algorithms have polynomial running time if the parameter under consideration

is a constant. This may be relevant even to a practitioner since the parameter k is indeed a small

number in many real clustering scenarios.

5.1 Overview
In recent years, the topic: fairness in machine learning, has gained considerable attention, for

example, see [25] and [48] for the recent developments in this area. The main motivation is that

in many human centric applications, the input data is biased towards a particular demographic

group that may be based on age, gender, ethnicity, occupation, nationality, etc. We do not want

algorithms to discriminate among different groups due to biases in the dataset. In other words,

we aim to design fair algorithms for problems.

In the context of clustering, in particular the k-median/k-means/k-center clustering, various

notions of fair clustering have recently been proposed (see [46, 26, 11, 27, 104, 45, 116]).

Most of these notions are based on balanced or proportionality clustering. In other words, a

clustering is said to be fair if in every cluster, a protected group (e.g. demographic group) occurs

in an almost the same proportion as it does in the overall population. By the virtue of this, no

group is over-represented or under-represented in any cluster. However, recently, Abbasi et

al. [1] demonstrated that “balance” based clustering is not desirable in applications where a

cluster center represents an entire cluster. One such application is the placement of polling

location for voting (see [1] for details). In such applications, the quality of representation of

a group is determined by the proximity of the group members to their cluster centers. Such

cost representation is not captured by “balance” based clustering. Therefore, they introduced a

new notion of the fair clustering where each group has an equitable cost representation in the

clustering. Informally, given a point set C and ℓ groups: C1, . . . , Cℓ ⊆ C, the task is to cluster

C into k clusters such that the maximum of the average costs of the groups is minimized. In

an independent work, Ghadiri et al. [83] used a similar notion that they called the “socially
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fair” clustering problem. Recently, Makarychev and Vakilian [120] generalized the definition

of the socially fair clustering problem using the weighted point set. The following is a formal

definition of the problem as stated in [120].

Definition 44 (Socially Fair Clustering). We are given a set C of points and set L of fea-

sible centers in a metric space (X , d). There are ℓ groups (possibly non-disjoint) of points

C1, ..., Cℓ ⊆ C with weight function wj : Cj → R+ for each j ∈ {1, . . . , ℓ}. Let z be any real

number≥ 1. The unconstrained cost of a group Cj with respect to a center set F ⊆ L is defined

as:

service-cost(F,Cj) ≡
∑
x∈Cj

d(F, x)z · wj(x), where d(F, x) := min
f∈F

{
d(f, x)

}
.

In socially fair clustering, the goal is to pick a center set F ⊆ L of size k so as to minimize the

objective function: maxj∈[ℓ] service-cost(F,Cj), which we call the fair cost:

fair-cost(F,C) ≡ max
j∈[ℓ]

{
service-cost(F,Cj)

}
.

The case of averaging the cost of each group, i.e., wj : Cj → 1/|Cj|, was initially studied

by Ghadiri et al. [83] and Abbasi et al. [1]. Both these works gave a polynomial time O(ℓ)-

approximation algorithm for the socially fair clustering problem for z = 1 and z = 2. Further-

more, Abbasi et al. [1] showed that the natural LP relaxation of the problem has an integrality

gap of Ω(ℓ). To overcome this barrier, Makarychev and Vakilian [120] designed a strengthened

LP and improved the approximation guarantee to O
(
eO(z) · log ℓ

log log ℓ

)
in polynomial time.

Note that in the definition of the socially fair clustering, it is given that groups might not be

disjoint. However, we can make the groups disjoint. If a point p appears in multiple groups say

Cj1 , . . . , Cjt , then we create t copies of point x such that its ith copy only belongs to jthi group.

Moreover, the weight of the ith copy is wji(x). The objective function does not change due to
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this modification. Therefore, from now on, we will assume all the groups to be disjoint.

Now let us discuss some special cases of the problem. For z = 1 and z = 2, the problem is

known as “socially fair k-median” and “socially fair k-means” problem, respectively. On the

other hand, if z is arbitrary and ℓ = 1, the problem is known as the “k-service” problem (or

unconstrained clustering problem). Furthermore, in addition to ℓ = 1, if z = 1 or z = 2, the

problem becomes the classical (unconstrained) k-median/k-means problem, respectively.

5.2 Our Results
In this work, we study the fixed parameter tractability of the problem parameterized by k. It is

known that the classical k-median and k-means problems when parameterized by k, are W[2]-

hard [53]. Hence, it immediately implies W[2]-hardness of the socially fair clustering problem.

Therefore, the problem does not admit an exact FPT algorithm unless W[2] = FPT. In this

work, we design a (3
z
+ ε)-approximation algorithm for the problem, with FPT running time,

parameterized by k. Furthermore, we show that this approximation guarantee is tight up to an

ε additive factor. Also, note that in the running time analysis of the algorithms, we ignore the

dependence on z since it is typically considered as constant. Formally, we state the main result

as follows:

Theorem 52 (Main Theorem). Let z ≥ 1 and 0 ≤ ε ≤ 1 be arbitrary constants. Let I =

(X , P, P1, . . . , Pℓ, w1, . . . , wℓ, F, d, k, z) be arbitrary instance of the socially fair clustering

problem and n = |P ∪ F |. Then, there is a randomized algorithm that outputs a (3
z
+ ε)-

approximate solution to I with probability at least 1− 1/n. The running time of the algorithm

is (kz/ε)O(k) · nO(1), which is FPT in k.

The following are two immediate corollaries of the above theorem.

Corollary 19 (k-median). For the socially fair k-median problem, there is a randomized (3 +

ε)-approximation algorithm with FPT running time of (k/ε)O(k) · nO(1) that succeeds with
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probability at least 1− 1/n.

Corollary 20 (k-means). For the socially fair k-means problem, there is a randomized (9 +

ε)-approximation algorithm with FPT running time of (k/ε)O(k) · nO(1) that succeeds with

probability at least 1− 1/n.

In Section 5.6, we establish FPT hardness of approximation results for the problem that follow

from the known hardness results of the unconstrained clustering problems. The following are

two main results:

Theorem 53 (FPT Hardness for Parameters: ℓ and k). For any constant z ≥ 0, ε > 0, and

functions: g : R+×R+ → R+ and f : R+ → R+, the socially fair clustering problem can not be

approximated to factor

(
1 + (3

z − 1)/e− ε

)
, in time g(k, ℓ)·nf(ℓ)·O(1) assuming FPT ̸= W[2]

and in time g(k, ℓ) · nf(ℓ)·o(k) assuming Gap-ETH.

Theorem 54 (FPT Hardness for Parameter k). For any constant z ≥ 0, ε > 0, and function

g : R+ → R+, the socially fair clustering problem can not be approximated to factor (3
z − ε)

in time g(k) · nO(1) assuming FPT ̸= W[2] and in time g(k) · no(k) assuming ETH.

This completes the summary of our results. Note that Theorems 52 and 54 give tight approxi-

mation bounds (up to an additive ε additive factor) for the socially fair clustering problem when

parameterized by k. Thus, it settles the complexity of the problem when parameterized by k.

Next, we compare our work with the previous related works.

5.3 Related Work
The previous works of Abbasi et al. [1], and Makarychev and Vakilian [120] were based on the

LP relaxation and rounding techniques. Abbasi et al. [1] gave O(ℓ) approximation guarantee,

and Makarychev and Vakilian [120, 47] gave O
(

log ℓ
log log ℓ

)
approximation guarantees for the



176 Tight FPT Approximation for Socially Fair k-Median/Means

socially fair k-median/means problem. On the other hand, Ghadiri et al. [83] designed a socially

fair k-means algorithm with performance guarantees similar to the Lloyd’s heuristics [114]

(popularly known as the k-means algorithm).

Recently, Bandyapadhyay et al. [21] gave an FPT time constant factor approximation algo-

rithm for a variant of “balance” based fair clustering problem. This variant was first studied

by Bera et al. [26]; according to this variant, a clustering is said to be fair if within each

cluster, the fraction of points that belongs to the jth group is at least βj and at most αj , for

some constants 0 ≤ αj, βj ≤ 1. This results in fair representation of every group within each

cluster. It turns out that this variant falls under a broad class of the constrained k-median/k-

means problem [21, 72]. Informally, the constrained k-median/k-means problem is a class

of clustering problems where a set of constraints can be imposed on the clusters in addition

to optimising the k-means/k-median cost. Various other problems like: uniform capacitated

k-median/k-means problem [112], outlier k-median/k-means problem [106], fault-tolerant k-

median/k-means problem [92], etc., fall in this category.

In Chapter 3, we study that if any constrained k-median/k-means problem admits an FPT time

partition algorithm, then it also admits an FPT time constant factor approximation algorithm, in

general metric spaces. The fair clustering problem studied by Bera et al. [26] fits the constrained

clustering framework. We studied this clustering variant in Chapters 2 and 3 (see Definition 8

in Table 2.1 and Definition 9 in Table 3.1). Therefore, it is tempting to check if the socially

fair clustering problem fits the constrained clustering framework. Unfortunately, the objective

function of socially fair clustering differs from the classical k-service and k-supplier objectives.

Therefore, the problem can not be treated as a constrained clustering problem. However, we

note that the cost function for each group Cj is exactly the same as the k-median/k-means

objective. We use this fact to design a polynomial time bi-criteria approximation algorithm

for the problem. Then, we convert the bi-criteria approximation algorithm to a constant factor

approximation algorithm in FPT time. We will formally define the bi-criteria approximation
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algorithm in Section 5.5.1.

Another way of approaching this problem is to obtain a strong coreset for the socially fair

clustering instance. The coreset can be easily obtained by computing the coresets for each group

Cj individually. For the coreset definition and its construction, see the work of Ke Chen [44],

or Cohen-Addad et al. [56]. After obtaining a coreset of the point set C, one can employ the

techniques of Cohen-Addad et al. [53], and Cohen-Addad and Li [52] to obtain a constant

factor approximation for the problem in FPT time. The main idea is to try all possible k

combination of points in the coreset and choose the centers in L that are closest to those points.

This gives
(|S|

k

)
distinct center sets, where |S| is the number of points in the coreset. It can

then be shown that the center set that gives the least clustering cost is a (3
z
+ ε) approximation

for the problem. For details, see Section 2.2 of [52] in the context of k-median and k-means

objectives. However, there are an issue with this technique when we deal with the socially

fair clustering objective. The issue is that the coreset size would have an ℓ term, where ℓ is

the number of groups. Therefore, the running time would have a multiplicative factor of ℓ k

which makes the algorithm not be FPT in k. Also note that ℓ can be as large as Ω(n). In this

work, without using coreset techniques, we design a (3
z
+ ε) approximation algorithm for the

problem. Moreover, the running time of the algorithm is FPT in k. In the following section, we

mention some notations and facts that we use frequently in this chapter.

5.4 Notations and Identities
Let I = (X , C, C1, . . . , Cℓ, w1, . . . , wℓ, L, d, k, z) be an instance of the socially fair clustering

problem. For a weighted set S ⊆ C with weight function w : S → R+ and a center set F ⊆ L,

we denote the unconstrained clustering cost of S with respect to F by service-cost(F, S), i.e,

service-cost(F, S) ≡
∑
x∈S

w(x) · d(F, x)z, where d(F, x) = min
f∈F
{d(x, f)}.
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For simplicity, when S = {x}, we use the notation service-cost(F, x) instead of service-cost(F, {x}).

Similarly, when F = {f}, we use the notation service-cost(f, S) instead of service-cost({f}, S).

In the remaining discussion, we will refer to the unconstrained clustering cost simply as clus-

tering cost.

We denote the fair clustering cost of C with respect to a center set F by

fair-cost(F,C) ≡ max
j∈[ℓ]

{
service-cost(F,Cj)

}
.

Moreover, we denote the optimal fair clustering cost of C by OPT and optimal fair center set

by F ⋆ = {f ⋆
1 , . . . , f

⋆
k}, i.e., fair-cost(F ⋆, C) = OPT. We also use the notation [t] to denote a

set {1, . . . , t} for any integer t ≥ 1. We also use the following inequality in our proofs. The

inequality is a generalization of the triangle inequality and easily follows from the power-mean

inequality.

Fact 4 (Approximate Triangle Inequality). For any z ≥ 1, and any four points q, r, s, t ∈ X :

d(q, t)z ≤ (d(q, r) + d(r, s) + d(s, t))z ≤ 3
z−1 · (d(q, r)z + d(r, s)z + d(s, t)z).

5.5 FPT Approximation
In this section, we design a (3

z
+ ε)-approximation algorithm for the socially fair clustering

problem with FPT time of (zk/ε)O(k) ·nO(1). The algorithm turns out to be surprisingly simple.

Our algorithm consists of the following two parts:

1. A polynomial time
(
1 + ε,O

(
(z/ε2) · ln2 n

))
bi-criteria approximation algorithm for

the socially fair clustering problem. The algorithm outputs a center set F ⊆ L of size

O((kz/ε2) · ln2 n) and gives (1 + ε)-approximation with respect to the optimal solution

with k centers.

2. We then show that there exists a k-sized subset S ⊂ F that gives (3
z
+ ε) approximation.
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Note that since one needs to try all possible k-sized subsets of F , the overall running time

of the algorithm has a multiplicative factor of O
(|F |

k

)
. This results in an FPT algorithm.

We discuss the above two parts in Sections 5.5.1 and 5.5.2.

5.5.1 Bi-criteria approximation

We start with the definition of (α, β) bi-criteria approximation algorithm:

Definition 45 (Bi-criteria Approximation). An algorithm is said to be (α, β) bi-criteria approx-

imation for the problem if it outputs a set F of βk centers with fair clustering cost at most α

times the optimal fair clustering cost with k centers, i.e.,

fair-cost(F,C) ≤ α · min
|F ′|=k and F ′⊆L

{
fair-cost(F ′, C)

}
= α · OPT

Note that for the unconstrained k-median problem, there exists a randomized
(
1+ε,O(ln(1/ε))

)
bi-criteria approximation algorithm due to Neal Young [140]. We extend that algorithm to the

socially fair clustering problem and obtain a randomized
(
1 + ε,O

(
(z/ε2) · ln2 n

))
bi-criteria

approximation algorithm. Formally, we state the result as follows:

Theorem 55 (Fair Bi-Criteria Approximation). Let 0 ≤ ε ≤ 1 be any arbitrary constant. Let

I = (X , C, C1, . . . , Cℓ, w1, . . . , wℓ, L, d, k, z) be any instance of the socially fair clustering

problem. Then, there exists a polynomial time algorithm that with probability at least (1−1/n)

outputs a center set F ⊆ L of size O
(
(kz/ε2) · ln2 n

)
that is a (1 + ε)-approximation to the

optimal fair clustering cost of I with k centers. That is, fair-cost(F,C) ≤ (1 + ε) · OPT.

The theorem follows from the next two lemmas: Lemmas 41 and 42.

Lemma 41. There is a polynomial time randomized algorithm Randomized-Fair

-Subroutine that outputs a center set F ′ such that for every group Cj ∈ {C1, . . . , Cℓ}, the
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expected clustering cost of Cj with respect to F ′ is at most (1 + ε/2) times the optimal fair

clustering cost of instance I. That is, for all j,

E [ service-cost(F ′, Cj) ] ≤
(
1 +

ε

2

)
· OPT

Moreover, the center set F ′ contains at most O(kz ln(n/ε)) centers.

The above lemma follows from a modification of the known bi-criteria approximation algorithm

for the unconstrained clustering problem [140] which in turn follows from an LP-rounding

technique with respect to the most natural linear programming formulation of the problem. We

give the outline of the Linear Programming (LP) relaxation and the rounding procedure while

deferring the analysis to the Appendix. We start with the natural LP-relaxation for the problem:

minimize γ

subject to
∑
f∈L

yf = k (1)

∑
f∈L

xf,x = 1 for every point x ∈ C (2)

∑
x∈Cj

∑
f∈L

xf,x · d(f, x)z · wj(x) ≤ γ for every Cj ∈ {C1, . . . , Cℓ} (3)

xf,x ≤ yf for every f ∈ L and x ∈ C (4)

yf , xf,x ≥ 0 for every f ∈ L and x ∈ C (5)

Here, yf is a variable that denote the fraction of a center f picked in the solution. The variable

xf,x denote the fraction of point x assigned to center f . The variable γ denote the fair clustering

cost of a feasible fractional solution. We solve the above linear program to obtain the fractional
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optimal solution: y∗f , x∗
f,x, and γ∗. Since it is a relaxation to the original problem, γ∗ ≤ OPT.

For simplicity, we use the notations: yf , xf,x, γ for y∗f , x∗
f,x, and γ∗, respectively.

Randomized-Fair-Subroutine (I, yf ’s, xf,x’s, ε)

Inputs: Socially fair clustering instance I, fractional optimal solution: yf ’s and xf,x’s of
the relaxed LP, and accuracy ε ≤ 1.

Output: A center set F ′ ⊆ L of size O(k z ln(n/ε)) such that
E [service-cost(F ′, Cj) ] ≤ (1+ ε/2) ·OPT for every group Cj ∈ {C1, . . . , Cℓ}

(1) F ′ ← ∅ (center set)
(2) Cu ← C (set of unassigned points)
(3) Repeat k (z c+ ln(2n/ε)) times for some constant c :
(4) Sample a center f ∈ L with probability yf/k. Let f ∗ be the sampled center.
(5) F ′ ← F ′ ∪ {f ∗}
(6) For each point x ∈ Cu:
(7) Assign x to f ∗ with probability xf∗,x/yf∗

(8) If x assigned to f ∗, then Cu ← Cu \ {x}
(9) Run O

(
eO(z) · log ℓ

log log ℓ

)
-approximation algorithm for socially fair clustering problem

on C. Let Fu ⊆ L be the obtained center set. Assign the points in Cu to Fu.
(10) F ′ ← F ′ ∪ Fu

(11) return(F ′)

Algorithm 5.1: A rounding procedure used as a subroutine for bi-criteria approximation.

The randomized subroutine is described in Algorithm 5.1. The algorithm takes input the frac-

tional optimal solution to the relaxed LP of the socially fair clustering problem. In Line (1), the

algorithm initializes a center set F ′ as empty. In Line (2), the algorithm initializes a set Cu that

denotes the set of unassigned points. Initially, no point is assigned to any center; therefore Cu

is initialized to C. Then, the algorithm proceeds in two phases:

• Phase 1 constitutes Lines (3)− (8) of the algorithm. In this phase, the algorithm samples

a center from L with probability distribution defined by yf/k. Note that the sum of prob-

abilities over all f ∈ L, is 1 due to constraint (1) of the relaxed LP. Therefore, a center

is always selected, and it added to F ′. Suppose the selected center is f ∗. Then, for each

point x ∈ Cu, the algorithm independently assigns x to f ∗ with probability xf∗,x/yf∗ .
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The algorithm removes the points from Cu that are assigned to f ∗. The algorithm repeats

this procedure k (z c+ ln(2n/ε)) times. Here, c is a constant whose value will be defined

later during the analysis of the algorithm.

• Phase 2 constitutes line (9) of the algorithm. In this phase, the algorithm runs the

O
(
eO(z) · log ℓ

log log ℓ

)
-approximation algorithmA of Makarychev and Vakilian [120] for the

socially fair clustering problem on the entire point set C. Let Fu be the center set output

by algorithm A. The remaining points in Cu are assigned to their closest centers in Fu.

After this phase, all the points are assigned. Lastly, the algorithm returns all the centers

selected in Phase 1 and Phase 2.

Next, we give proof of Lemma 41. It mainly involves analysis of Randomized-Fair

-Subroutine.

Proof. We bound the expected assignment cost of each group Cj with respect to F ′, the center

set returned by Randomized-Fair-Subroutine. Let the centers selected in Phase 1 of

the algorithm be: Ff := {f ∗
1 , . . . , f

∗
t }, for t = k (z c + ln(2n/ε)). In other words, f ∗

i is the

center sampled in the ith iteration of Line (3) of the subroutine. For each point x ∈ Cj and

iteration i ∈ {1, . . . , t}, we define a random variable Ai
x. It takes value 1 if x is unassigned

after i iterations; otherwise it is 0. In other words, Ai
x = 1 if x ∈ Cu after i iterations. Given

Ai
x = 1, the probability that x is assigned to some center in (i+ 1)th iteration is:

Pr[Ai+1
x = 0 | Ai

x = 1] =
∑
f∈L

Pr[x is assigned to f | f ∗
i+1 = f ] · Pr[f ∗

i+1 = f ]

=
∑
f∈L

xf,x

yf
· yf
k

=

∑
f∈L xf,x

k
=

1

k
(5.1)
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The last equality follows from the second constraint of relaxed LP. Also, note that Pr[A1
x =

0] = 1
k

using the above same analysis since the point was unassigned before the first iteration.

Now, we show that the probability that x is unassigned after i iterations is
(
1− 1

k

)i, i.e.,

Pr[Ai
x = 1] =

(
1− 1

k

)i, for every i ∈ {1, . . . , t}. We prove this statement using induction

on i:

Base Case: For i = 1, the probability that x is unassigned after the first iteration is:

Pr[A1
x = 1] = 1− Pr[A1

x = 0] = 1− 1

k

Induction Step: For i > 1, the probability that x is unassigned after i iterations is:

Pr[Ai
x = 1] = Pr[Ai

x = 1 | Ai−1
x = 1] · Pr[Ai−1

x = 1] + Pr[Ai
x = 1 | Ai−1

x = 0] · Pr[Ai−1
x = 0],

(using the law of total probability)

Note that Pr[Ai
x = 1 | Ai−1

x = 0] = 0 since x /∈ Cu after (i − 1)th iteration; therefore it does

not participate in ith iteration. Hence we get,

Pr[Ai
x = 1] = Pr[Ai

x = 1 | Ai−1
x = 1] · Pr[Ai−1

x = 1]

=
(
1− Pr[Ai

x = 0 | Ai−1
x = 1]

)
· Pr[Ai−1

x = 1]

=

(
1− 1

k

)
· Pr[Ai−1

x = 1], (using Equation (5.1))

=

(
1− 1

k

)
·
(
1− 1

k

)i−1

, (using Induction Hypothesis)

=

(
1− 1

k

)i
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This proves that Pr[Ai
x = 1] =

(
1− 1

k

)i, for every i ∈ {1, . . . , t}.

Now, we evaluate the expected assignment cost for each group Cj ∈ {C1, . . . , Cℓ}. Let αx

denote the assignment cost of each point x ∈ Cj in the fractional optimal solution. That is,

αx =
∑

f∈L xf,x · d(f, x)z · wj(x) . For every point x ∈ Cj and center f ∈ L, let Ef,x denote

the event that x is assigned to f during Phase 1. Let E
i

f,x
denote the event that x is assigned to

f in the ith iteration, during Phase 1. If x remains unassigned after Phase 1, then let βx denote

the cost of x during Phase 2. Then, the expected cost of group Cj with respect to the center set

F ′ is:

E[service-cost(F ′, Cj)]

=
∑
x∈Cj

E[service-cost(F ′, x)] (using linearity of expectation)

=
∑
x∈Cj

(∑
f∈L

Pr[Ef,x] · d(f, x)z · wj(x) + Pr[At
x = 1] · βx

)

=
∑
x∈Cj

(∑
f∈L

t∑
i=1

Pr[E
i

f,x
] · d(f, x)z · wj(x) + Pr[At

x = 1] · βx

)
(5.2)

Next, we show that
∑

f∈L
∑t

i=1 Pr[E
i

f,x
] · d(f, x)z · wj(x) ≤ αx for every point x ∈ Cj .

∑
f∈L
∑t

i=1 Pr[E
i

f,x
] · d(f, x)z · wj(x)

≤
∑
f∈L

t∑
i=1

Pr[E
i

f,x
| Ai−1

x = 1] · Pr[Ai−1
x = 1] · d(f, x)z · wj(x)
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=
∑
f∈L

t∑
i=1

Pr[E
i

f,x
| Ai−1

x = 1] ·
(
1− 1

k

)i−1

· d(f, x)z · wj(x)

=
∑
f∈L

t∑
i=1

xf,x

yf
· yf
k
·
(
1− 1

k

)i−1

· d(f, x)z · wj(x)

=
t∑

i=1

∑
f∈L xf,x · d(f, x)z · wj(x)

k
·
(
1− 1

k

)i−1

=
t∑

i=1

αx

k
·
(
1− 1

k

)i−1

=
αx

k
·
1−

(
1− 1

k

)t
1/k

≤ αx

This proves that
∑

f∈L
∑t

i=1 Pr[E
i

f,x
] · d(f, x)z ·wj(x) ≤ αx. Now, substituting this inequality

in Equation (5.2), we get

E[service-cost(F ′, Cj)]

≤
∑
x∈Cj

αx +
∑
x∈Cj

Pr[At
x = 1] · βx

=
∑
x∈Cj

αx +
∑
x∈Cj

(
1− 1

k

)t

· βx

=
∑
x∈Cj

αx +

(
1− 1

k

)t

·O
(
eO(z) · log ℓ

log log ℓ

)
· OPT,

(∵ O

(
eO(z) · log ℓ

log log ℓ

)
-approximation algorithm used in Phase 2)

=
∑
x∈Cj

αx +

(
1− 1

k

)k (z c+ln(2n/ε))

·O
(
eO(z) · log ℓ

log log ℓ

)
· OPT,

(∵ t = k (z c+ ln(2n/ε)))

≤
∑
x∈Cj

αx +
ε

ecz · 2 · n
·O
(
eO(z) · log ℓ

log log ℓ

)
· OPT,

(
∵

(
1− 1

k

)k

≤ 1/e

)
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≤
∑
x∈Cj

αx +
ε

ecz · 2 · n
· ec′z · log ℓ

log log ℓ
· OPT, (for some constant c′ > 0)

≤
∑
x∈Cj

αx +
ε

ecz · 2
· ec′z · OPT, (∵ ℓ ≤ n)

=
∑
x∈Cj

αx +
ε

2
· OPT, (we choose c such that c = c′)

≤ γ +
ε

2
· OPT, (using constraint (3) of the relaxed LP)

≤
(
1 +

ε

2

)
· OPT

This completes the proof of Lemma 41.

We now apply standard probability amplification method to bound the fair-cost.

Lemma 42. Suppose Randomized-Fair-Subroutine is repeated r = 8 lnn
ε

times, inde-

pendently. Let F ′
1, . . . , F

′
r be the obtained center sets for each call to the algorithm. Then, the

center set F := F ′
1 ∪ . . . ∪ F ′

r is a (1 + ε) approximation to the optimal fair clustering cost of

C, i.e., fair-cost(F,C) ≤ (1 + ε) · OPT, with probability at least 1− 1/n.

Proof. We say that a group Cj violates the fairness bound with respect to some center set F ′
i ,

if service-cost(F ′
i , Cj) > (1 + ε) · OPT. Now, note that for every center set F ′

i ∈ {F ′
1, . . . , F

′
r}

and group Cj ∈ {C1 . . . , Cℓ}, we have that E[service-cost(F ′
i , Cj)] ≤ (1 + ε/2) · OPT, us-

ing Lemma 41. Furthermore, using the Markov’s inequality, we get the following probability

bound:

Pr [ service-cost(F ′
i , Cj) > (1 + ε) · OPT ] <

1 + ε/2

1 + ε
= 1− ε/2

1 + ε
≤ 1− ε

4
, for ε ≤ 1
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In other words, Cj violates the fairness bound with respect to F
′
i with probability at most

1 − ε/4. Then, the probability that Cj violates the fairness bound with respect to every center

set F ′
i ∈ {F ′

1, . . . , F
′
r} is:

Pr [∀i ∈ {1, . . . , r}, service-cost(F ′
i , Cj) > (1 + ε) · OPT ] <

(
1− ε

4

)r
,

(∵ Independent events)

≤ 1

n2
,
(
∵ r =

8 lnn

ε

)

Since F := F ′
1 ∪ . . . ∪ F ′

r, we get

Pr [ service-cost(F,Cj) > (1 + ε) · OPT ]

≤ Pr [∀i ∈ {1, . . . , r}, service-cost(F ′
i , Cj) > (1 + ε) · OPT ]

<
1

n2

In other words, Cj violates the fairness bound with respect to F with probability at most 1/n2.

Then, the probability that at least one of the groups in {C1, . . . , Cℓ} violates the fairness bound

with respect to F is:

Pr [∃Cj ∈ {C1, . . . , Cℓ}, service-cost(F,Cj) > (1 + ε) · OPT ] <
ℓ

n2
, (using union bound)

≤ 1/n (∵ ℓ ≤ n)

Therefore, the probability that none of the groups in {C1, . . . , Cℓ} violate the fairness bound

with respect to F is:
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Pr [∀Cj ∈ {C1, . . . , Cℓ}, service-cost(F,Cj) ≤ (1 + ε) · OPT ] ≥ 1− 1

n

This gives the following probability bound on the fair clustering cost of C:

Pr [fair-cost(F,C) ≤ (1 + ε) · OPT ]

= Pr
[
max
j∈[ℓ]

{
service-cost(F,Cj)

}
≤ (1 + ε) · OPT

]
= Pr

[
∀Cj ∈ {C1, . . . , Cℓ}, service-cost(F,Cj) ≤ (1 + ε) · OPT

]
≥ 1− 1

n

This proves that F is a (1 + ε) approximation to the optimal fair clustering cost of C with

probability at least 1− 1/n. This completes the proof of the lemma.

Note that r = 8 lnn
ε

and |F ′
i | = O(kz ln(n/ε)) for every i ∈ {1, . . . , r}. This gives |F | =

O
(
(kz/ε2) · ln2 n

)
, for ε ≤ 1. This proves Theorem 55.

5.5.2 Conversion: Bi-criteria to FPT approximation

In this subsection, we convert the
(
1 + ε,O

(
(z/ε2) · ln2 n

))
bi-criteria approximation algo-

rithm to (3
z
+ ε)-approximation algorithm in FPT time.

Lemma 43. Let F = {f1, . . . , fβk} ⊆ L be any (α, β)-approximate solution to the socially fair

clustering instance I = (X , C, C1, . . . , Cℓ, w1, . . . , wℓ, L, d, k, z). Then, there exists a k sized

subset F ′ of F that is a (3
z−1 · (α + 2))-approximate solution to I. Moreover, given F , the

center set F ′ can be obtained in time O((eβ) k · nk).
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Proof. Let F ∗ = {f ∗
1 , . . . , f

∗
k} ⊆ L be an optimal center set of I. This set induces a Voronoi

partitioning in each of the groups. We denote this partitioning using the notation

Cj = {C1
j , C

2
j , . . . , C

k
j } for the j th group. That is, Ci

j are the set of those points in group Cj

for which the center f ⋆
i is the closest. For any point x ∈ C ∪ L, let g(x) denote the point

in F that is closest to x. That is, g(x) := argminf∈F
{
d(f, x)

}
. We define a new center set

F ′ := {g(f ∗
1 ), . . . , g(f

∗
k )} ⊆ F . We show that F ′ is a (3

z−1 · (α + 2))-approximate solution to

I. The proof follows from the following sequence of inequalities:

fair-cost(F ′, C)

= max
j∈[ℓ]

[service-cost(F ′, Cj)]

≤ max
j∈[ℓ]

[
k∑

i=1

service-cost(g(f ∗
i ), C

i
j)

]

= max
j∈[ℓ]

 k∑
i=1

∑
x∈Ci

j

wj(x) · d(g(f ∗
i ), x)

z


≤ max

j∈[ℓ]

 k∑
i=1

∑
x∈Ci

j

wj(x) · (d(x, f ⋆
i ) + d(f ⋆

i , g(f
∗
i )))

z

, (using triangle inequality)

≤ max
j∈[ℓ]

 k∑
i=1

∑
x∈Ci

j

wj(x) · (d(x, f ⋆
i ) + d(f ⋆

i , g(x)))
z

, (from definition of g(f ∗
i ))

≤ max
j∈[ℓ]

 k∑
i=1

∑
x∈Ci

j

wj(x) · (d(x, f ⋆
i ) + d(x, f ⋆

i ) + d(x, g(x)))z

, (using triangle inequality)

≤ max
j∈[ℓ]

3z−1
·

k∑
i=1

∑
x∈Ci

j

wj(x) · (d(x, f ⋆
i )

z + d(x, f ⋆
i )

z + d(x, g(x))z)

, (using Fact 4)

≤ max
j∈[ℓ]

3z−1
· 2 ·

k∑
i=1

∑
x∈Ci

j

wj(x) · d(x, f ⋆
i )

z

+max
j∈[ℓ]

3z−1
·

k∑
i=1

∑
x∈Ci

j

wj(x) · d(x, g(x))z




190 Tight FPT Approximation for Socially Fair k-Median/Means

= max
j∈[ℓ]

[
2 · 3

z−1
·

k∑
i=1

service-cost(f ⋆
i , C

i
j)

]
+max

j∈[ℓ]

[
3
z−1
· service-cost(F,Cj)

]

≤ 2 · 3
z−1
· OPT +max

j∈[ℓ]

[
3
z−1
· service-cost(F,Cj)

]

≤ 2 · 3
z−1
· OPT + 3

z−1
· α · OPT, (∵ F is an α-approximate solution)

= 3
z−1
· (α + 2) · OPT.

This proves that F ′ is a (3
z−1 · (α + 2))-approximate solution to I.

Now, we find the center set F ′ using F . Since, we do not know F ∗, we can not directly find

F ′. Therefore, we take all possible k sized subsets of F and compute the fair clustering cost

for each of them. We output that center set that gives the least fair clustering cost. There are at

most
(
βk
k

)
≤ (eβ) k possibilities 1 for F ′. For each such center set, the fair clustering cost can

be computed in O(nk) time using the Voronoi partitioning algorithm. Therefore, the overall

running time is O((eβ)k · nk). This completes the proof of the lemma.

In the above lemma, we substitute the bi-criteria approximation algorithm that we designed

in the previous subsection. It had α = 1 + ε and β = O
(
(z/ε2) · ln2 n

)
. Moreover, we set

ε = ε′/3
z−1

for some constant ε′ ≤ 1. Then, the above lemma gives the following main result

for the fair clustering problem:

Corollary 21 (Main Result (Restatement of Theorem 52)). Let 0 ≤ ε ≤ 1 be any arbitrary

constant. Let I = (X , C, C1, . . . , Cℓ, w1, . . . , wℓ, L, d, k, z) be any arbitrary instance of the

socially fair clustering problem and n = |C ∪ L|. Then, there is an algorithm that outputs a

(3
z
+ ε′)-approximate solution for I with probability at least 1− 1/n. The running time of the

algorithm is (kz/ε′)O(k) · nO(1), which is FPT in k.

1Here, we use a well known inequality that
(
n
k

)
≤ ( e·nk ) k.
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Proof. It is easy to see that the approximation guarantee of the algorithm is (3
z
+ ε′) since α =

1+ε and ε = ε′/3
z−1

. Note that the bi-criteria approximation algorithm has polynomial running

time. Furthermore, converting the bi-criteria approximation algorithm to FPT approximation

algorithm requires O((e(z/ε2)·ln2 n)k ·nk) time since β = O
(
(z/ε2) · ln2 n

)
. Using a standard

inequality that (lnn)k = kO(k) · n (for proof, see Hint 3.18 from the book: Parameterized

Algorithms [63]), we get total running time of (kz/ε′)O(k) · nO(1), which is FPT in k. Hence

proved.

5.6 FPT Lower Bounds
In this section, we establish the FPT hardness of approximation results for the socially fair

clustering problem. For this, we use the hardness results of the unconstrained k-median and

k-means problems. Firstly, note the following result from [121].

Theorem 56 (Corollary 3 of [121]). For any constant ε > 0 and any function g : R+ → R+,

the k-median and k-means problems can not be approximated to factors (1 + 2/e − ε) and

(1 + 8/e− ε), respectively, in time g(k) · no(k), assuming Gap-ETH.

The above hardness result also holds under the assumption that W[2] ̸= FPT; however, with

weaker running time lower bound of g(k) · nO(1). Furthermore, the above result can be easily

extended to general value of z (see Section 9.3 of [121]). It gives the following theorem:

Theorem 57 ([121]). For any constant z ≥ 0, ε > 0, and any function g : R+ → R+, the

unconstrained k-service problem can not be approximated to factor (1 + (3
z − 1)/e − ε), in

time g(k) · no(k), assuming Gap-ETH and in time g(k) · nO(1), assuming W[2] ̸= FPT.

It is easy to see that for ℓ = 1, the socially fair clustering problem is equivalent to the un-

constrained k-service problem. This immediately gives the following hardness result for the

socially fair clustering problem.
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Theorem 53 (FPT Hardness for Parameters: ℓ and k). For any constant z ≥ 0, ε > 0, and

functions: g : R+×R+ → R+ and f : R+ → R+, the socially fair clustering problem can not be

approximated to factor

(
1 + (3

z − 1)/e− ε

)
, in time g(k, ℓ)·nf(ℓ)·O(1) assuming FPT ̸= W[2]

and in time g(k, ℓ) · nf(ℓ)·o(k) assuming Gap-ETH.

Proof. For the sake of contradiction, assume that there exists a constant ε > 0, and functions:

g : R+ × R+ → R+ and f : R+ → R+ such that the socially fair clustering problem can be

approximated to factor (1+(3
z−1)/e−ε) in time g(k, ℓ) ·nf(ℓ)·o(k) or g(k, ℓ) ·nf(ℓ)·O(1). Then,

for ℓ = 1, it implies that the unconstrained k-service problem can be approximated to factor

(1+(3
z−1)/e−ε) in time g(k, 1) ·no(k) or g(k, 1) ·nO(1). This contradicts Theorem 57. Hence

proved.

The above hardness result assumed the parametrization by k and ℓ. Now we show stronger

hardness result for the problem when it is parameterized by k alone. We show this using a

reduction from the k-supplier problem. The k-supplier problem is defined as follows:

Definition 46 (k-Supplier Problem). Let z be any positive real number and k be any positive

integer. Given a set C of points and set L of feasible centers in a metric space (X , d), find

a set F ⊆ L of k centers that minimizes the objective function supplier-cost(F,C) defined as

follows:

supplier-cost(F,C) ≡ max
x∈C

{
d(F, x)z

}
, where d(F, x) = min

f∈F
{d(f, x)}

Hochbaum and Shmoys [94] showed that for z = 1, the k-supplier problem is NP-hard to

approximate to any factor smaller than 3. The proof follows from the reduction from the hitting

set problem (see Theorem 6 of [94]). A similar reduction is possible from the set coverage

problem 2. For the sake of completeness, we describe the reduction here:

2In the literature, a variant of this problem is called max-k-coverage problem.
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The set coverage problem is defined as follows.

Definition 47 (Set Coverage). Given an integer k > 0, a set U , and a collection C = {S1, . . . , Sm}

of subsets of U , i.e., Sj ⊆ U for every j ∈ [m], determine if there exist k sets in C that cover

all elements in U .

Now we describe the reduction. Given a set coverage instance (U,C , k), we construct a k-

supplier instance (C,L, d, k) as follows. For every set Si ∈ C , we define a center fi ∈ L. For

every element e ∈ U , we define a point xe ∈ C. Let us define the distance function d(., .) as

follows. For any two points xe, xe′ ∈ C, or fi, fj ∈ L, the distance d(xe, xe′) = d(fi, fj) = 2.

For any point xe ∈ C and fi ∈ L, if e /∈ Si, the distance d(xe, fi) = 3; otherwise d(xe, fi) = 1.

Furthermore, assume that d(., .) is a symmetric function, i.e., d(x, y) = d(y, x) for every x, y ∈

C ∪ L. Also assume that d(x, x) ≥ 0 for every x ∈ C ∪ L. It is easy to see that d(., .) satisfies

all the properties of a metric space.

Now, suppose that there exist k sets: Si1 , . . . , Sik in C that cover all elements of U , i.e., Si1 ∪

. . . ∪ Sik = U , then the center set F = {fi1 , . . . , fik} gives the k-supplier cost 1. On the other

hand, if there does not exist any k sets in C that could cover all elements of U , then for any

center set F ⊆ L of size k there would exist a point x ∈ C at a distance of 3 from F , i.e.,

d(F, x) = 3. Therefore, the k-supplier cost would be 3
z
. Since the set coverage problem is

W[2]-hard, it implies that the k-supplier problem can not be approximated to any factor better

than 3
z
, in polynomial time, assuming W[2] ̸= FPT. Moreover, the following FPT hardness

result for the set coverage problem follows from [128]: 3

Theorem 58 ([128]). For any function g : R+ → R+, there is no g(k) · no(k) time algorithm

for the set coverage problem assuming ETH, and no g(k) · nO(1) time algorithm assuming

W[2] ̸= FPT.

This implies the following FPT hardness of approximation for the k-supplier problem.
3The result follows from a trivial reduction from k-dominating set problem to the set coverage problem [101]
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Theorem 59. For any constant z ≥ 0, ε > 0, and any function g : R+ → R+, the k-supplier

problem can not be approximated to factor (3
z − ε) in time g(k) · no(k) assuming ETH, and in

time g(k) · nO(1) assuming W[2] ̸= FPT.

Using this, we easily get the following hardness result for the socially fair clustering problem.

Theorem 54 (FPT Hardness for Parameter k). For any constant z ≥ 0, ε > 0, and function

g : R+ → R+, the socially fair clustering problem can not be approximated to factor (3
z − ε)

in time g(k) · nO(1) assuming FPT ̸= W[2] and in time g(k) · no(k) assuming ETH.

Proof. We prove this result by showing that the k-supplier problem is a special case of the

socially fair clustering problem. Let I = (C,C1, . . . , Cℓ, w1, . . . , wℓ, L, d, k, z) be an instance

of the socially fair clustering problem defined in the following manner. The number of groups

is the same as the number of points, i.e., ℓ = |C|. For every point x ∈ C, we define a singleton

group Cx as Cx := {x}. Let the weight function be defined as wx : Cx → 1 for every x ∈ C,

i.e., each point carries a unit weight. Then, for any center set F ⊆ L, the fair clustering cost of

C is:

fair-cost(F,C) = max
x∈C

{
service-cost(F,Cx)

}
= max

x∈C

{
d(F, x)z

}
Recall that maxx∈C

{
d(F, x)z

}
≡ supplier-cost(F,C) is the k-supplier cost of the instance

(C,L, d, k). It means that the fair cost of instance I is the same as the k-supplier cost of the

instance (C,L, d, k). Therefore, the k-supplier problem is a special case of the socially fair

clustering problem. Therefore, the hardness result stated in Theorem 59 also holds for the

socially fair clustering problem. Hence proved.

The following are the two corollaries that immediately follow from the above theorem.

Corollary 22 (k-median). For any ε > 0 and any computable function g(k), the socially fair

k-median problem can not be approximated to factor (3−ε) in time g(k) ·no(k) assuming ETH,

and in time g(k) · nO(1) assuming W[2] ̸= FPT.
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Corollary 23 (k-means). For any ε > 0 and any computable function g(k), the socially fair

k-means problem can not be approximated to factor (9− ε) in time g(k) · no(k) assuming ETH,

and in time g(k) · nO(1) assuming W[2] ̸= FPT.

5.7 Conclusion
We designed a constant factor approximation algorithm for the socially fair k-median/k-means

problem in FPT time. In addition, we gave tight FPT hardness of approximation bound us-

ing the observation that the k-supplier problem is a special case of the socially fair clustering

problem. This settles the complexity of the problem when parameterized by k. The natural

open problem is to obtain better approximation guarantees parameterized by both k and ℓ, or ℓ

alone.
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Chapter 6

Hardness of Approximation: k-Median

In this chapter, we show the hardness of approximation of the k-median problem in the con-

tinuous Euclidean space. The k-median problem in the continuous Euclidean space is defined

in the following manner: given a set C of n points in d-dimensional Euclidean space Rp
,

and an integer k, find a set F ⊂ Rp
of k points (called centers) such that the cost function

cost(F,C) ≡
∑

x∈C minf∈F ∥x−f∥2 is minimized. The Euclidean k-means problem is defined

similarly by replacing the distance with squared Euclidean distance in the cost function. Various

hardness of approximation results are known for the Euclidean k-means problem [19, 109, 51].

However, no hardness of approximation result was known for the Euclidean k-median prob-

lem. In this work, assuming the unique games conjecture (UGC), we provide the hardness of

approximation result for the Euclidean k-median problem in O(log k) dimensional space. This

solves an open question posed explicitly in the work of Awasthi et al. [19].

Furthermore, we study the hardness of approximation for the Euclidean k-means/k-median

problems in the bi-criteria setting where an algorithm is allowed to choose more than k centers.

That is, bi-criteria approximation algorithms are allowed to output βk centers (for constant

β > 1) and the approximation ratio is computed with respect to the optimal k-means/k-median

197
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cost. We show the hardness of bi-criteria approximation result for the Euclidean k-median

problem for any β < 1.015, assuming UGC. We also show a similar hardness of bi-criteria

approximation result for the Euclidean k-means problem with a stronger bound of β < 1.28,

again assuming UGC.

6.1 Overview
We start by formally defining the Euclidean k-median problem.

Definition 48 (Euclidean k-Median Problem). Given a set C of n points in Rp
, and a positive

integer k, find a set of centers F ⊂ Rp
of size k such that the cost function cost(F,C) ≡∑

x∈C minf∈F ∥x− f∥ is minimized.

The Euclidean k-means problem is defined similarly by replacing the distance with squared

Euclidean distance in the cost function (i.e., replacing ∥x − c∥ with ∥x − c∥2). This version

of the problem is known as the continuous version. In the discrete version, the centers are

restricted to be chosen from a specific set L ⊂ Rp
. In the approximation setting, the continuous

version is not harder than its discrete counterpart since it is known(e.g., [77, 122]) that an α-

approximation for the discrete problem gives an α+ε approximation for the continuous version,

for arbitrary small constant ε > 0, in time poly(n,d)·(k/ε)O(1/ε). In this work, we study only

the continuous version of the problem. In this chapter, we use k-means/median to implicitly

mean continuous Euclidean k-means/median unless specified otherwise 1.

For the k-means problem, there exists a constant ε > 0 such that there does not exist an efficient

(1 + ε)-approximation algorithm, assuming P ̸= NP [19, 109, 51]. The best-known hardness

of approximation result for the k-means problem is 1.07 due to Cohen-Addad and Karthik [51].

However, unlike the Euclidean k-means problem, no hardness of approximation result was

known for the Euclidean k-median problem. Resolving the hardness of approximation for the
1in some literature, the Euclidean space implicitly means the dimension is bounded, but in our case the dimen-

sion d can be arbitrarily large
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Euclidean k-median problem was left as an open problem in the work of Awasthi et al. [19].

They asked whether their techniques for proving the inpproximability results for Euclidean k-

means can be used to prove the hardness of approximation result for the Euclidean k-median

problem. From their paper,

“It would also be interesting to study whether our techniques give hardness of

approximation results for the Euclidean k-median problem.”

In this work, assuming UGC, we solve this open problem by obtaining the hardness of approx-

imation result for the Euclidean k-median problem. Following is one of the main results of this

work.

Theorem 60 (Main Theorem). There exists a constant ε > 0 such that the Euclidean k-median

problem in O(log k) dimensional space cannot be approximated to a factor better than (1+ ε),

assuming the Unique Games Conjecture.

Having established the hardness of approximation results for k-means and k-median, the next

natural step in the discussion is to allow more flexibility to the algorithm. One possible relax-

ation is to allow an approximation algorithm to choose more than k centers, say, βk centers (for

some constant β > 1) and produce a solution that is close to the optimal solution with respect

to k centers. This is known as bi-criteria approximation and the following definition formalizes

this notion.

Definition 49 ((α, β)-approximation algorithm). An algorithm A is called an (α, β) approx-

imation algorithm for the Euclidean k-means/k-median problem if given any instance I =

(C, k) with C ⊂ Rp
,A outputs a center set F ⊂ Rp

of size βk that has the cost at most α times

the optimal cost with k centers. That is,

∑
x∈C

min
f∈F
{D(x, f)} ≤ α · min

F ′⊂Rp

|F ′|=k

{∑
x∈C

min
f∈F ′
{D(x, f)}

}
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For the Euclidean k-means problem, D(p, q) ≡ ∥p − q∥2 and for the k-median problem

D(p, q) ≡ ∥p− q∥.

One expects that as β grows, there would exist efficient (α, β)-approximation algorithms with

smaller values of α. This is indeed observed in the work of Makarychev et al. [118]. For ex-

ample, their algorithm gives a (9 + ε) approximation for β = 1; 2.59 approximation for β = 2;

1.4 approximation for β = 3. In other words, the approximation factor of their algorithm de-

creases as the value of β increases. Furthermore, their algorithm gives a (1+ ε)-approximation

guarantee with O(k log(1/ε)) centers. Bandyapadhyay and Varadarajan [20] gave a (1 + ε)

approximation algorithm that outputs (1 + ε)k centers in constant dimension. There are vari-

ous other bi-criteria approximation algorithms that use distance-based sampling techniques and

achieve better approximation guarantees than their non bi-criteria counterparts [12, 3, 136].

Unfortunately in these bi-criteria algorithms, at least one of α, β is large. Ideally, we would like

to obtain a PTAS with a small violation of the number of output centers. More specifically, we

would like to address the following question:

Does the Euclidean k-means or Euclidean k-median problem admit an efficient

(1 + ε, 1 + ε)-approximation algorithm?

Note that such type of bi-criteria approximation algorithms that outputs (1 + ε)k centers have

been extremely useful in obtaining a constant approximation for the capacitated k-median prob-

lem [111, 112] for which no true constant approximation is known yet 2. Therefore, the above

question is worth exploring. Note that here we are specifically aiming for a PTAS since the

k-means and k-median problems already admit a constant factor approximation algorithm. In

this work, we give a negative answer to the above question by showing that there exists a con-

stant ε > 0 such that an efficient (1 + ε, 1 + ε)-approximation algorithm for the k-means and

2In the capacitated k-median/k-means problem there is an additional constraint on each center that it cannot
serve more than a specified number of clients (or points).



Hardness of Approximation: k-Median 201

k-median problems does not exist assuming the Unique Games Conjecture. The following two

theorems state this result more formally.

Theorem 61 (k-median). For any constant 1 < β < 1.015, there exists a constant ε > 0

such that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-median problem

in O(log k) dimensional space assuming the Unique Games Conjecture.

Theorem 62 (k-means). For any constant 1 < β < 1.28, there exists a constant ε > 0 such that

there is no (1 + ε, β)-approximation algorithm for the Euclidean k-means problem in O(log k)

dimensional space assuming the Unique Games Conjecture. Moreover, the same result holds

for any 1 < β < 1.1 under the assumption that P ̸= NP.

For simplicity, we present the proof of our results in O(n) dimensional space. However, the

results easily extend to O(log k) dimensional space using dimensionality reduction techniques

of Makarychev et al. [119].

Important note: We would like to note that assuming P ̸= NP, a similar hardness of approxi-

mation result for the Euclidean k-median problem using different techniques has been obtained

independently by Cohen-Addad et al. [58].

In the next subsection, we discuss the known results on hardness of approximation of the k-

means and k-median problems in more detail.

6.2 Related Work
The k-means problem is known to be NP-hard even for fixed k or d [13, 64, 117, 133]. Sim-

ilar NP hardness result is also known for the k-median problem [123]. Also, the 1-median

problem, popularly known as the Fermat-Weber problem [75], is a difficult problem and de-

signing efficient algorithms for this problem is a separate line of research in itself – see for

e.g. [105, 137, 38, 33, 49]. These hardness barriers motivate approximation algorithms for
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these problems and a lot of progress have been made in this area. For example, there are vari-

ous polynomial time approximation schemes (PTASs) known for k-means and k-median when

k is fixed (or constant) [122, 107, 77, 44, 98]. Similarly, various PTASs are known for fixed

d [54, 82, 50]. A number of constant factor approximation algorithms are also known for

k-means and k-median when k and d are considered as part of the input. For the k-means

problem, constant approximation algorithms have been given [100, 8], the best being a 6.129

approximation algorithm by Grandoni et al. [89]. Also, for the k-median problem there are

constant-approximation algorithms [39, 17, 113, 35, 8]. The best known approximation guar-

antee for k-median is 2.633 due to Ahmadian et al. [8].

The first hardness of approximation result for the Euclidean k-means problem was given by

Awasthi et al. [19]. They obtained their result using a reduction from Vertex Cover on triangle-

free graphs of bounded degree ∆ to the Euclidean k-means instances. Their reduction yields

a (1 + ε
∆
) hardness factor for the k-means problem for a constant ε > 0. Lee et al. [109]

showed the hardness of approximation of Vertex Cover on triangle-free graphs of bounded

degree four. Using ∆ = 4, they obtained a 1.0013 hardness of approximation for the Euclidean

k-means problem. Subsequently, Cohen-Addad and Karthik [51] improved the hardness of

approximation to 1.07 using a modified reduction from the vertex coverage problem instead

of a reduction from the vertex cover problem. Moreover, they also gave several improved

hardness results for the discrete k-means/k-median problems in general and ℓp metric spaces.

In their more recent work, they also improved the hardness of approximation results for the

continuous k-means/k-median problem in general metric spaces [55]. Unlike the Euclidean

k-means problem, no hardness of approximation result was known for the Euclidean k-median

problem. In this work, we give hardness of approximation result for the Euclidean k-median

problem assuming the Unique Game Conjecture. We summarize these results in Table 6.1.

As mentioned earlier, Cohen-Addad et al. [58] have independently obtained hardness of ap-

proximation result for the Euclidean k-median problem using different set of techniques and
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Fixed k Fixed d General

Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound

k-Median OPEN
(1 + ε)

[107]

NP-hard

[123]

(1 + ε)

[54]

(1 + ε)

(this work)

2.633

[8]

k-Means
NP-hard

[13]

(1 + ε)

[107]

NP-hard

[117]

(1 + ε)

[54]

1.07

[51]

6.129

[89]

Table 6.1: The known approximation guarantees for the Euclidean k-Median and k-Means
problems. For fixed k or d, all the mentioned (1 + ε)-approximation algorithms have FPT
running time.

under the assumption that P ̸= NP. They also gave bi-criteria hardness of approximation re-

sults in ℓ∞-metric for the k-means and k-median problems. We would like to point out that in

the bi-criteria setting, our result is the first hardness of approximation result for the Euclidean

k-means/k-median problem to the best of our knowledge.

6.3 Summary of Our Contributions
Awasthi et al. [19] proved the first hardness of approximation result for the Euclidean k-means

problem. Given any instance I = (C, k) for the Euclidean k-means problem, they showed

that there exists an ϵ > 0 such that obtaining (1 + ϵ)-approximation for Euclidean k-means is

NP-hard. In this work we build on their techniques to prove the inapproximability result for the

Euclidean k-median problem. First, we describe the reduction employed by Awasthi et al. for

the Euclidean k-means problem and some related results.

Construction of k-means instance: Let (G, k) be a hard Vertex Cover instance

where the graph G has bounded degree ∆. Let n and m denote respectively the

number of vertices and the number of edges in the graph. A k-means instance

I := (C, k) with C ⊂ Rn is constructed as follows. For every vertex i ∈ V , we

have an n-dimensional vector xi ∈ {0, 1}n, which has a 1 at ith coordinate and 0
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everywhere else. For each edge e = (i, j) ∈ E, a point xe := xi + xj is defined

in {0, 1}n. The set C := {xe | e ∈ E} with m points in Rn and the parameter k

define the k-means instance.

Awasthi et al. [19] proved the following theorem based on the above construction.

Theorem 63 (Theorem 4.1 [19]). There is an efficient reduction from vertex cover on bounded

degree triangle-free graphs to the Euclidean k-means problem that satisfies the following prop-

erties:

1. If vertex cover of the instance is k, then there is a k-means clustering of cost at most

(m− k).

2. If vertex cover of the instance is at least (1 + ε)k, then the cost of optimal k-means

clustering is at least (m− k + δk).

Here, ε is some fixed constant > 0 and δ = Ω(ε).

Awasthi et al. [19] used the following hardness result for the vertex cover problem on bounded

degree triangle-free graphs.

Theorem 64 (Corollary 5.3 [19]). Given any unweighted bounded degree triangle-free graph

G, it is NP-hard to approximate Vertex Cover within any factor smaller than 1.36.

Theorem 63 and Theorem 64 together imply that the Euclidean k-means problem is APX-hard.

A formal statement for the same is given as follows (see Section 4 of [19] for the proof of this

result).

Corollary 24. There exists a constant ε′ > 0 such that it is NP-hard to approximate the Eu-

clidean k-means problem to any factor better than (1 + ε′).
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We would like to obtain a similar gap-preserving reduction for the Euclidean k-median problem.

The first obstacle one encounters in this direction is that unlike the 1-mean problem, there does

not exist a closed form expression for the 1-median problem, and hence we don’t have an exact

expression for the optimal 1-median cost. We overcome this barrier by obtaining good upper

and lower bounds on the optimal 1-median cost and showing that these bounds suffice for our

purpose. More concretely, to upper bound the optimal 1-median cost, we use the centroid as

the 1-median and compute the 1-median cost with respect to the centroid. To obtain a lower

bound on the 1-median cost of a cluster, we use a decomposition technique to break a cluster

into smaller sub-clusters3 for which we can compute exact or good approximate lower bounds

on the 1-median cost. Here we use a simple observation that the optimal 1-median cost of

a cluster is at least the sum of the optimal 1-median costs of the sub-clusters. For any sub-

cluster that corresponds to a star graph, one can compute the exact 1-median cost using our

reduction. In order to bound the 1-median cost for sub-clusters that correspond to non-star

graphs, we use the following observation crucially: the optimal 1-median cost is preserved

under any transformation that preserves the pairwise distances. For non-star graphs, we first

employ such a transformation that preserves the 1-median cost and then compute this cost

exactly in the projected space. Note that this technique does not give exact 1-median cost for

any arbitrary non-star graph, but works only for some special families of non-star graphs. The

main idea of the decomposition technique is to ensure that only these kinds of non-star graphs

are created in the decomposition process. The upper and lower bounds on the 1-median cost, as

constructed in the above manner, are used in the completeness and soundness steps of the proof

of the reduction, respectively.

The analysis for the completeness part of the reduction is relatively straightforward. If the

vertex cover of a graph is k, then the edges of the graph can be divided into k star sub-graphs,

each of which results in a star cluster in the k-median instance. The cost for this clustering with

3Since a set of edges in a graph form a cluster of points in the reduction, we use the terms sub-graphs and
sub-clusters interchangeably.
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k star clusters can be found using the reduction easily.

In the proof for the soundness part of our reduction, we prove the contrapositive statement that

assumes the k-median clustering cost to be bounded and proves that the vertex cover of the

graph is not too large. Our analysis crucially depends on the relation between the vertex cover

of a subgraph and the 1-median cost for that subgraph. More specifically, we need to answer

the following question. Given a graph with r edges having vertex cover z, how does the optimal

1-median cost for that graph behave with respect to z. For example, for star graphs, z = 1 and

the optimal 1-median cost of a star graph on r edges is exactly
√

r(r − 1). For any non-star

graph with r edges, we first show that the optimal 1-median cost of the non-star graph is at

least the optimal 1-median cost of a star graph with r edges. For any non-star graph F with r

edges, we denote by δ(F ) the extra cost of F , defined as the difference of the optimal 1-median

cost of F and the optimal 1-median cost of a star graph with r edges. If we can figure out

non-trivial lower bounds for δ(F ) for different non-star graphs F , then we would be done. But,

figuring out these non-trivial lower bounds that work for any non-star graph is quite a daunting

prospect. The way we overcome this in our work is as follows. We characterize the non-star

graphs as having maximum matching of size two or more than two, and for each, we relate the

extra cost of 1-median clustering of that graph with the vertex cover of that graph. We show

that the extra cost of a non-star sub-graph is proportional to the number of vertex-disjoint edges

in the sub-graph. And since we assume the k-median cost to be bounded, the number of vertex

disjoint edges is also bounded, giving a small vertex cover.

We need one more idea to finish the proof for the soundness part of the reduction. We call a

cluster ‘singleton’ if there is only one point in the cluster. Note that any such cluster would

cost zero in a k-median clustering. If there are a large number of singleton clusters, say t < k,

then they pay zero to the cost of the solution, even though those edges have vertex cover t. We

prove a key lemma showing that for any hard instance of the vertex cover, the vertex cover of

the sub-graph spanned by t singleton edges is at most 2t
3

. We combine these ideas to prove that
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if k-median clustering cost is bounded, the vertex cover of the graph cannot be too large.

We also prove the hardness of bi-criteria approximation results for Euclidean k-means and

k-median problems. The hardness of bi-criteria approximation for Euclidean k-median is ob-

tained by extending the proof for the hardness of approximation for the Euclidean k-median

problem. We use the same reduction from the vertex cover problem and show that the sound-

ness guarantees hold even if one is allowed to use βk centers, for some β > 1. We also show

that similar techniques give the hardness of bi-criteria approximation results for the Euclidean

k-means problem.

6.4 Notations and Useful Inequalities
In this section, we discuss some basic notations and inequalities that we use frequently in our

proofs. Recall that a point in C corresponds to an edge of the graph. Therefore, a sub-graph

S of G corresponds to a subset of the point set C. We denote this subset as C(S) such that

C(S) := {xe | e ∈ E(S)} ⊆ C. We define the 1-median cost of C(S) with respect to a center

f ∈ Rn as cost(f, S) ≡
∑

x∈C(S) ∥x − f∥. Furthermore, we define the optimal 1-median cost

of the point set C(S) as cost∗(S). That is, cost∗(S) ≡ minf∈Rn cost(f, S). We often use these

statements interchangeably, “optimal 1-median cost of a graph S” to mean “optimal 1-median

cost of the cluster C(S)”.

First, we note that the Fermat-Weber problem is not difficult for all 1-median instances. We

can efficiently obtain 1-median for some special instances. For example, for a set of equidistant

points, the 1-median is simply the centroid of the point set. We give a proof of this statement

in the next section. Most importantly, we use the following fact and lemma to compute the

1-median cost.

Fact 5 ([124]). For a set of non-collinear points the optimal 1-median is unique.

Next, we give a simple lemma, that is used to prove various bounds related to the quantity
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√
m(m− 1).

Lemma 44. Let m and t be any positive real numbers greater than one. If m ≥ t, the following

bound holds:

m− (t−
√

t(t− 1)) ≤
√
m(m− 1) ≤ m− 1/2.

Proof. The upper bound follows from the sequence of inequalities:
√

m(m− 1) <√
m2 −m+ 1/4 =

√
(m− 1/2)2 = m − 1/2. The lower bound follows from the following

sequence of inequalities:

√
m(m− 1) = m+m ·

(√
m− 1

m
− 1

)
≥ m+ t ·

(√
t− 1

t
− 1

)
= m− (t−

√
t(t− 1)).

The second inequality holds because a+1
b+1
≥ a

b
for b ≥ a. This completes the proof of the

lemma.

In some vector spaces, it is tricky to compute the optimal 1-median exactly. In such cases, we

transform the space to a different vector space, where computing the 1-median is relatively sim-

pler. More specifically, we employ a rigid transformation since it preserves pairwise distances.

Moreover, a rigid transformation preserves the 1-median cost of the instance. Formally, we

state the result as follows:

Lemma 45. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be any two sets of n points in Rp
. If

the pairwise distances between points within A is the same as pairwise distance between points

within B. That is, for all i, j ∈ {1, . . . , n}, ∥ai − aj∥ = ∥bi − bj∥. Then the optimal 1-median

cost of A is the same as the optimal 1-median cost of B.

Let co(A) and co(B) denote the convex hulls of A and B, respectively. We split the proof of the

Lemma 45 in two parts. In the first part (Lemma 46), we show that there exists a distance pre-

serving transformation R from co(A) to co(B) such that R(ai) = bi for every i ∈ {1, . . . , n}.
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By distance preserving transformation, we mean that for any two points x, y ∈ co(A), the dis-

tance ∥x−y∥ is preserved after applying the transformationR, i.e., ∥x−y∥ = ∥R(x)−R(y)∥.

In the second part (Lemma 47), we show that applying the transformation R preserves the op-

timal 1-median cost of A.

Lemma 46. Given two sets of points A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} in Rp
such

that ∥ai − aj∥ = ∥bi − bj∥ for all i, j ∈ {1, . . . , n}. Then there exists a distance preserving

transformationR : co(A)→ co(B) such thatR(ai) = bi for every i ∈ {1, . . . , n}.

Proof. Let Xi be a vector4 defined as ai − a1 for every ai ∈ A. Similarly, we define a vector

Yi := bi − b1 for every bi ∈ B. We will use these vectors to define the transformation R. For

now, note the following property of inner product of Xi and Xj .

⟨Xi,Xj⟩ = ⟨Yi,Yj⟩ for every i, j ∈ {1, . . . , n} (6.1)

The proof of the above property follows from the following sequence of inequalities:

2 · ⟨Xi,Xj⟩ = ∥Xi∥2 + ∥Xj∥2 − ∥Xi −Xj∥2

= ∥Yi∥2 + ∥Yj∥2 − ∥Xi −Xj∥2,

(∵ ∥Xi∥ = ∥ai − a1∥ = ∥bi − b1∥ = ∥Yi∥2)

for every 1 ≤ i ≤ n

= ∥Yi∥2 + ∥Yj∥2 − ∥Yi − Yj∥2,

(∵ ∥Xi −Xj∥ = ∥ai − aj∥ = ∥bi − bj∥ = ∥Yi − Yj∥2 )

= 2 · ⟨Yi,Yj⟩

In other words, the triangles (a1, ai, aj) and (b1, bi, bj) are congruent for all i, j ∈ {1, . . . , n}.

Therefore, the inner product ⟨Xi,Xj⟩ is the same as ⟨Yi,Yj⟩.
4For better readability, we boldfaced the vector symbols to distinguish them from any scalar quantity.
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Now, we describe the transformation R from co(A) to co(B). By the definition of co(A),

any point x ∈ co(A) can be expressed in the form
n∑

i=1

λi · ai for some 0 ≤ λ′
is ≤ 1 and

n∑
i=1

λi = 1. Equivalently, x can be expressed as a1 +
n∑

i=2

λi ·Xi. For x ∈ co(A), we define the

transformationR asR(x) := λibi. Again,R(x) can be equivalently expressed as b1 +
n∑

i=2

λi ·

Yi. It is easy to see that λi · bi indeed belongs to co(B) since 0 ≤ λi ≤ 1 and
n∑

i=1

λi = 1.

Now, we show that R is a distance preserving transformation. Let x := a1 +
n∑

i=2

λi ·Xi and

y := a1+
n∑

i=2

γi ·Xi be any two points in co(A). The following sequence of inequalities prove

that ∥x− y∥ = ∥R(x)−R(y)∥.

∥x− y∥2 = (x− y)T (x− y)

=

(
n∑

i=2

(λi − γi) ·Xi

)T

·

(
n∑

i=2

(λi − γi) ·Xi

)

=
n∑

i=2

n∑
j=2

(λi − γi) · (λj − γj) · ⟨Xi,Xj⟩

=
n∑

i=2

n∑
j=2

(λi − γi) · (λj − γj) · ⟨Yi,Yj⟩, using Equation 6.1

=

(
n∑

i=2

(λi − γi) · Yi

)T

·

(
n∑

i=2

(λi − γi) · Yi

)

= (R(x)−R(y))T (R(x)−R(y))

= ∥R(x)−R(y)∥2

This proves that R is a distance preserving transformation from co(A) to co(B). Moreover,

note thatR is a bijective function. It is possible that a vector x ∈ co(A) has multiple forms, say∑n
i=1 λi · ai and

∑n
i=1 Λi · ai. Therefore, it appears that x maps to different vectors in co(B).

However, it always maps to the same vector. For the sake of contradiction, assume that x maps
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to two different vectors p :=
∑n

i=1 λi ·bi and q :=
∑n

i=1 Λi ·bi in co(B). Then ∥p−q∥ ≠ 0. It

contradicts the fact thatR is a distance preserving transformation. Similarly, we can show that

any two different vectors x,y ∈ co(A) can not map to the same vector in co(B). This proves

thatR is a bijective function.

Furthermore, note that R(ai) = bi for every i ∈ {1, . . . , n}. To see this, consider λi = 1 and

λj = 0 for all j ∈ {1, . . . , n}\{i}. Then ai =
n∑

j=1

λj ·aj and thereforeR(ai) =
n∑

j=1

λj ·bj = bj .

This completes the proof of the lemma.

Similar to R, we can also define a distance preserving transformation R−1 from co(B) to

co(A). The transformationR−1 is defined such that for any x =
n∑

i=1

λi ·bi ∈ co(B),R−1(x) =

n∑
i=1

λi · ai ∈ co(A). Furthermore, as per this definition of R−1, R−1(bi) = ai for every

i ∈ {1, . . . , n}. Now, we show that applying the transformation R on A preserves the optimal

1-median cost of A.

Lemma 47. If there exists distance preserving transformationsR : co(A)→ co(B) and

R−1 : co(B)→ co(A) such thatR(ai) = bi andR−1(bi) = ai for every i ∈ {1, . . . , n}. Then

the optimal 1-median cost of A is the same as the optimal 1-median cost of B.

Proof. Recall that 1-median cost of an instance A with respect to a center c ∈ Rp
is denoted

by cost(c, A) ≡
∑

ai∈A ∥ai − c∥. Let c∗1 be the optimal 1-median of A. Furthermore, we

can assume that c∗1 ∈ co(A) since the optimal 1-median lies in the convex hull of A (see e.g.

Remark 2.1 in [125]). Similarly, let c∗2 ∈ co(B) be the optimal 1-median of B. Now, we show

that cost(c∗1, A) ≥ cost(c∗2, B) and cost(c∗2, B) ≥ cost(c∗1, A) using the following sequence of

inequalities:

cost(c∗1, A) =
∑
ai∈A

∥ai − c∗1∥
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=
∑
ai∈A

∥R(ai)−R(c∗1)∥, ∵R preserves the pairwise distances

=
∑
bi∈B

∥bi −R(c∗1)∥, ∵ R(ai) = bi

≥
∑
bi∈B

∥bi − c∗2∥, ∵ c∗2 is the optimal 1-median of B

= cost(c∗2, B)

Similarly, we show that cost(c∗2, B) ≥ cost(c∗1, A) as follows:

cost(c∗2, B) =
∑
bi∈B

∥bi − c∗2∥

=
∑
bi∈B

∥R−1(bi)−R−1(c∗2)∥, ∵R−1 preserves the pairwise distances

=
∑
ai∈A

∥ai −R−1(c∗2)∥, ∵ R−1(bi) = ai

≥
∑
ai∈A

∥ai − c∗1∥, ∵ c∗1 is the optimal 1-median of A

= cost(c∗1, A)

This proves that cost(c∗1, A) = cost(c∗2, B). Hence it proves the lemma.

Therefore, Lemmas 46 and 47 together proves Lemma 45.

6.5 Inapproximability of Euclidean k-Median
In this section, we show the inapproximability result of the Euclidean k-median problem. We

obtain this result by showing a gap preserving reduction from Vertex Cover on bounded degree

triangle-free graphs to the Euclidean k-median. For Vertex Cover on bounded degree triangle-

free graphs, the inapproximability result is stated in Corollary 25. The corollary simply follows

from the following two results of Austrin et al. [18] and Awasthi et al. [19].
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Theorem 65 (Austrin et al. [18]). Given any unweighted bounded degree graph G = (V,E)

of maximum degree ∆, Vertex Cover can not be approximated within any factor smaller than

2− ε, for ε = (2 + o∆(1)) · log log∆log∆
assuming the Unique Games Conjecture.

In the above theorem, ε can be set to arbitrarily small value by taking sufficiently large value of

∆.

Theorem 66 (Awasthi et al. [19]). There is a (1+ ε)-approximation-preserving reduction from

Vertex Cover on bounded degree graphs to Vertex Cover on triangle-free graphs of bounded

degree.

Corollary 25. Given any unweighted triangle-free graph G of bounded degree, Vertex Cover

can not be approximated within a factor smaller than 2− ε, for any constant ε > 0, assuming

the Unique Games Conjecture.

In Section 6.3, we described the reduction used by Awasthi et al. [19] to construct instances

for Euclidean k-means from a Vertex Cover instance. We use the same construction for the

Euclidean k-median instances. Let G = (V,E) denote a triangle-free graph of bounded degree

∆. Let I = (C, k) denote the Euclidean k-median instance constructed from G. We establish

the following theorem based on this construction.

Theorem 67. There is an efficient reduction from Vertex Cover on bounded degree triangle-free

graphs with m edges to the Euclidean k-median problem that satisfies the following properties:

1. If the graph has a vertex cover of size k, then the k-median instance has a solution of cost

at most m− k/2.

2. If the graph has no vertex cover of size at most (2− ε) · k, then the cost of any k-median

solution on the instance is at least m− k/2 + δk.

Here, ε is some fixed constant, δ = Ω(ε), and k ≥ the size of maximum matching of the graph.
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The graphs with a vertex cover of size at most k are said to be “Yes” instances and the graphs

with no vertex cover of size at most (2 − ε)k are said to be “No” instances. Now, the above

theorem gives the following inapproximability result for the Euclidean k-median problem.

Corollary 26. There exists a constant ε′ > 0 such that the Euclidean k-median problem can

not be approximated to a factor better than (1 + ε′), assuming the Unique Games Conjecture.

Proof. Since the hard Vertex Cover instances have bounded degree ∆, the maximum matching

of such graphs is at least ⌈ m
2∆
⌉. First, let us prove this statement. Suppose M be a matching,

that is initially empty, i.e., M = ∅. We construct M in an iterative manner. First, we pick an

arbitrary edge from the graph and add it to M . Then, we remove this edge and all the edges

incident on it. We repeat this process for the remaining graph until the graph becomes empty.

In each iteration, we remove at most 2∆ edges. Therefore, the matching size of the graph is at

least ⌈ m
2∆
⌉.

Now, suppose k < m
2∆

. Then, the graph does not have a vertex cover of size k since matching

size is at least ⌈ m
2∆
⌉. Therefore, such graph instances can be classified as “No” instances in

polynomial time. So, they are not the hard Vertex Cover instances. Therefore, we can assume

k ≥ m
2∆

for all the hard Vertex Cover instances. In that case, the second property of Theorem 67,

implies that the cost of k-median instance is (m− k
2
) + δk ≥ (1 + δ

2∆
) · (m− k

2
). Thus, the k-

median problem can not be approximated within any factor smaller than 1+ δ
2∆

= 1+Ω(ε).

6.5.1 Completeness

Let W = {v1, . . . , vk} be a vertex cover of G. Let Si denote the set of edges covered by vi. If

an edge is covered by two vertices vi and vj , then we arbitrarily keep the edge either in Si or Sj .

Let mi denote the number of edges in Si. We define {C(S1), . . . , C(Sk)} as a clustering of the

point set C. Now, we show that the cost of this clustering is at most m − k/2. Note that each

Si forms a star graph centered at vi. Moreover, the point set C(Si) forms a regular simplex of
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side length
√
2. We compute the optimal cost of C(Si) using the following lemma.

Lemma 48. For a regular simplex on r vertices and side length s, the optimal 1-median is the

centroid of the simplex. Moreover, the optimal 1-median cost is s ·
√

r(r − 1)

2
.

Proof. The statement is easy to see for r = 1. For r = 2, there are two points s distance apart.

The optimal 1-median cost is s. So, for the rest of the proof, we assume that r > 2. Suppose

A = {a1, a2, . . . , ar} denote the vertex set of a regular simplex. Let s be the side length of

the simplex. Using Lemma 45, we can represent each point ai in an r-dimensional space as

follows; we use the same notation to denote the points after such transformations.

a1 :=

(
s√
2
, 0, ..., 0

)
, a2 :=

(
0,

s√
2
, ..., 0

)
, . . . , ar :=

(
0, 0, ...,

s√
2

)

Note that the distance between any ai and aj is s, which is the side length of the simplex.

Let c∗ = (c1, . . . , cr) be an optimal 1-median of point set A. Then, the 1-median cost is the

following:

cost(c∗, A) =
r∑

i=1

∥ai − c∗∥ =
r∑

i=1

(
r∑

j=1

c2j − c2i +

(
s√
2
− ci

)2
)1/2

Suppose ci ̸= cj for any i ̸= j. Then, we can swap ci and cj to create a different median,

while keeping the 1-median cost the same. It contradicts the fact that there is only one optimal

1-median, by Fact 5. Therefore, we can assume c∗ = (c, c, . . . , c). Now, the optimal 1-median

cost is:

cost∗(A) = cost(c∗, A) := r ·

√(
c− s√

2

)2

+ (r − 1) · c2

The function cost(c∗, A) is strictly convex and attains minimum at c =
s

m ·
√
2

, which is the

centroid of A. The optimal 1-median clustering cost is cost(c∗, A) = s ·
√

r(r − 1)

2
. This

completes the proof of the lemma.
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The following corollary establishes the cost of a star graph Si.

Corollary 27. Any star graph Si with r edges has the optimal 1-median cost of
√
r(r − 1)

Furthermore, note that a set of r pairwise vertex-disjoint edges forms a regular simplex in C,

of side length 2. The following corollary establishes the cost of such clusters.

Corollary 28. Let F be any non-star graph with r pairwise vertex-disjoint edges, then the

optimal 1-median cost of F is
√
2 ·
√

r(r − 1)

We use Corollary 28 in Section 6.6. For now, we only use Corollary 27 to bound the optimal

k-median cost of C. Let OPT(C, k) denote the optimal k-median cost of C. The following

sequence of inequalities proves the first property of Theorem 67.

OPT(C, k) ≤
k∑

i=1

cost∗(Si)
(Corollary 27)

=
k∑

i=1

√
mi(mi − 1)

(Lemma 44)

≤
k∑

i=1

(
mi −

1

2

)
= m−k

2
.

6.5.2 Soundness

Now, we prove the second property of Theorem 67. For this, we prove the equivalent contra-

positive statement: If the optimal k-median clustering of C has cost at most
(
m− k

2
+ δk

)
, for

some constant δ > 0, then G has a vertex cover of size at most (2 − ε)k, for some constant

ε > 0. Let C denote an optimal k-median clustering of C. We classify its optimal clusters

into two categories: (1) star and (2) non-star. Let F1, F2, . . . , Ft denote the non-star clusters,

and S1, . . . , Sk−t denote the star clusters. For any star cluster, the vertex cover size is exactly

one. Moreover, using Corollary 27, the optimal 1-median cost of any star cluster with r edges

is
√

r(r − 1). On the other hand, it may be tricky to exactly compute the vertex cover or the

optimal cost of any non-star cluster. Suppose the optimal 1-median cost of a non-star cluster F

on r edges is given as
√

r(r − 1) + δ(F ), where δ(F ) denotes the extra-cost due to a non-star
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cluster F . Using this, we define δ(F ) as the following:

δ(F ) ≡ cost∗(F )−
√
|F |(|F | − 1)

The following lemmas bound the vertex cover of F in terms of δ(F ).

Lemma 49. Any non-star cluster F with a maximum matching of size two has a vertex cover

of size at most 1.62 +
(√

2 + 1
)
δ(F ).

Lemma 50. Any non-star cluster F with a maximum matching of size at least three has a vertex

cover of size at most 1.8 +
(√

2 + 1
)
δ(F ).

These lemmas are the key to proving the main result. We discussed the main proof ideas of

these lemmas earlier in Section 6.3; however we give the complete proof in Section 6.6. Now,

let us see how these lemmas give a vertex cover of size at most (2− ε)k. Let us classify the star

clusters into the following two sub-categories:

(a) Clusters composed of exactly one edge. Let these clusters be: P1, P2, . . . , Pt1 .

(b) Clusters composed of at least two edges. Let these clusters be: S1, S2, . . . , St2 .

Similarly, we classify the non-star clusters into the following two sub-categories:

(i) Clusters with a maximum matching of size two. Let these clusters be: W1,W2, . . . ,Wt3

(ii) Clusters with a maximum matching of size at least three. Let these clusters be: Y1, Y2, . . . , Yt4

Note that t1 + t2 + t3 + t4 equals k. Now, consider the following strategy of computing the

vertex cover of G. Suppose, we compute the vertex cover for every cluster separately. Let Ci

be any cluster, and |V C(Ci)| denote the vertex cover size of Ci. Then, the vertex cover of G
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can be simply bounded in the following manner:

|V C(G)| ≤
t1∑
i=1

|V C(Pi)|+
t2∑
i=1

|V C(Si)|+
t3∑
i=1

|V C(Wi)|+
t4∑
i=1

|V C(Yi)|

However, we can obtain a vertex cover of smaller size using a slightly different strategy. In

this strategy, we first compute a minimum vertex cover of all the clusters except single edge

clusters P1, P2, . . . , Pt1 . Suppose that vertex cover is V C ′. Then we compute a vertex cover

for P1, P2, . . . , Pt1 . Now, let us see why this strategy gives a vertex cover of smaller size than

before. Note that some vertices in V C ′ may also cover the edges in P1, . . . , Pt1 . Suppose there

are t′1 clusters in P1, . . . , Pt1 that remain uncovered by V C ′. Without loss of generality, assume

these clusters to be P1, . . . , Pt′1
. Now, the vertex cover of G is bounded in the following manner:

|V C(G)| ≤ |V C
(
∪t′1

i=1Pi

)
|+ |V C ′|

= |V C
(
∪t′1

i=1Pi

)
|+ |V C

(
(∪t2j=1Sj) ∪ (∪t3k=1Wk) ∪ (∪t4l=1Yl)

)
|

≤ |V C
(
∪t

′
1
i=1Pi

)
|+

t2∑
i=1

|V C(Si)|+
t3∑
i=1

|V C(Wi)|+
t4∑
i=1

|V C(Yi)|

Now, we will try to bound the size of the vertex cover of P1 ∪ ... ∪ Pt′1
. Note that we can cover

all these single-edge clusters with t′1 vertices by choosing one vertex per cluster. However, it

may be possible to obtain a vertex cover of smaller size if we collectively consider all these

clusters. Suppose EP denote the set of all edges in P1, . . . , Pt′1
and VP denote the vertex set

spanned by them. We define a graph GP = (VP , EP ). Furthermore, suppose that MP is a

maximal matching of GP . Then, it is easy to see that if |MP | ≤ t′1/3 + 4δk for some δ > 0, we

can simply pick both end-points of every edge in MP , and it would give a vertex cover of GP

of size at most 2t′1/3 + 8δk. On the other hand, if |MP | > t′1/3 + 4δk, we show that the graph

G admits a vertex cover of size at most (2k − 2δk). We prove this statement in the following

lemma:

Lemma 51. Let δ > 0 be any constant and GP = (VP , EP ) be the graph spanned by single
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edge clusters P1, ..., Pt′1
. If GP does not have a vertex cover of size ≤ (

2t′1
3
+ 8δk), then G has

a vertex cover of size at most (2k − 2δk).

Proof. Let us define another subgraph GP of G that is obtained after removing the edges of EP

from G. That is, GP = (V,E \EP ). In other words, GP is the graph spanned by the remaining

clusters: S1, . . . , St2 ; W1, . . . ,Wt3; Y1, . . . , Yt4 and Pt′1+1, . . . , Pt1 . An important property of

GP is that any edge of GP does not have its both endpoints in VP . In other words, every edge

of GP is incident on at most one edge of GP . This is because every edge of GP has at least

one endpoint in V C ′, and GP is only defined on the edges that are not incident on V C ′. This

property will help us in obtaining a better vertex cover for G.

Let MP be a maximal matching of GP . It is easy to see that |MP | > (t′1/3+4δk); otherwise we

can cover all edges of GP by picking both endpoints of every edge in MP . It would contradict

that GP does not have a vertex cover of size less than (2t′1/3 + 8δk). Therefore, |MP | >

(t′1/3 + 4δk); using it we show that G has a vertex cover of size at most (2k − 2δk).

We will incrementally construct a vertex cover V CG of the graph G of size at most (2k− 2δk).

First, let us discuss the main idea of this incremental construction. During the construction, we

maintain a maximal matching MG of the graph G. Then, for every edge in MG, we add both its

endpoints to V CG, except at least 2δk edges for which we choose only one endpoint in V CG.

Note that for the hard Vertex Cover instances, we can assume that maximum matching size is

at most k. This is because the graphs with a matching of size > k have a minimum vertex cover

of size > k. Therefore, such instances can be simply classified as “No” instances in polynomial

time. Since the size of a maximal matching is always less than the size of a maximum matching,

we can further assume |MG| ≤ k for the hard Vertex Cover instances. This implies that V CG

has size at most 2(k − 2δk) + 2δk = (2k − 2δk). Now, let us discuss the construction of such

a matching MG and correspondingly the vertex cover V CG that covers all edges of G.

Initially, both MG and V CG are empty sets. That is, MG = ∅ and V CG = ∅. Recall that GP is
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the graph spanned by EP and GP is the graph spanned by E\EP . Let EI denote the set of edges

in GP that are incident on MP . Based on this, we define two new graphs: (1) GR := (V,ER)

where ER = EP ∪ EI , and (2) G′ := (V,E ′) where E ′ = E \ (EP ∪ EI). In other words,

GR is the graph spanned by the edges of GP and the edges of GP that are incident on MP ; and

G′ is the graph spanned by the edges of GP that are not incident on MP . Now, we compute a

maximal matching M ′ of G′, and then execute the following procedure:

(1) MG ←M ′

(2) For every edge e ≡ (u, v) ∈MG:
(3) V CG ← V CG ∪ {u, v}
(4) Update GR by removing all the edges in them that are incident on u and v

Figure 6.1: Adding vertices to VG by picking both end points of every edge in M ′.

Note that the above procedure removes every edge of G′ since M ′ is a maximal matching of G′.

Now, we will find a vertex cover and maximal matching of updated GR. Note that any maximal

matching of GR can be combined with that of M ′ to form a maximal matching of the original

graph G since we already removed the edges which were incident on M ′.

Note that GR is composed of the edge sets EP and a subset of edges from EI . Therefore, GP

is also a subgraph of GR. Recall that MP is a maximal matching of GP . We define a new

edge set UP that denote the set of unmatched edges in GP , i.e., UP = EP \MP . Note that

|UP | ≤ 2t′1/3− 4δk since |MP | > t′1/3 + 4δk. Moreover, every edge in UP is incident on MP ,

since MP is a maximal matching of GP . In the next two procedures, we remove some edges

from UP and MP such that the updated UP only contains those edges that are incident on one

edge of the updated MP . Then, we will use this graph to obtain a vertex cover of G of size at

most 2k − 2δk. Following is the first procedure:
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Procedure 1

(1) while there is an edge e ≡ (u, v) ∈MP that is incident on at least two edges of UP

(2) MG ←MG ∪ {e}
(3) V CG ← V CG ∪ {u, v}
(4) Update GR, MP , and UP by removing all the edges in them that are

incident on u and v

Figure 6.2: Adding vertices to VG by picking both end points of every edge in MP that is
incident on at least two edges of UP .

Note that before the beginning of this procedure there were at most ≤ 2t′1/3− 4δk edges in UP

and at least t′1/3 + 4δk edges in MP . Then, the above procedure removes at least two edges

from UP and one edge from MP in each iteration of the while loop. Therefore, at the end of

the procedure at least 6δk edges remain in MP . Moreover, at the end of the procedure, MP has

the property that no two edges in UP are incident on the same edge of MP . Next, consider the

following procedure:

Procedure 2

(1) while there is an edge e ≡ (u, v) ∈ UP that is incident on two edges e1, e2 ∈MP

(2) Arbitrarily pick one edge from {e1, e2}. W.l.o.g., let e1 ≡ (u, v) be that edge.
(3) MG ←MG ∪ {e1}
(4) V CG ← V CG ∪ {u, v}
(5) Update GR, MP , and UP by remove all the edges in them that are

incident on u and v

Figure 6.3: Adding vertices to VG on the basis of the edges in UP that are incident on two edges
of MP .

Let p ≥ 6δk denote the number of edges in MP , before the beginning of the above procedure.

Now, observe that the above procedure removes one edge from UP and one edge from MP in

each iteration of the while loop. Furthermore, the while loop executes at most p/2 times since

MP had the property that two edges of UP do not incident on the same edge of MP . Therefore,

at the end of the procedure, MP contains at least p/2 ≥ 3δk edges. Moreover, UP has obtained

the property that all its edges are incident on exactly one edge of MP . Now, recall that all edges



222 Hardness of Approximation: k-Median

in EI are also incident on exactly one edge of MP . We proved this property earlier (just at the

beginning of the proof) for every edge of Gp that was incident on Gp. Therefore, at this point,

GR consists of the edge set MP of size at least 3δk, and the edges that are incident on exactly

one edge of MP . Now, we will find a maximal matching and vertex cover of the remaining

graph GR.

We color the edges of MP with red color and the remaining edges of GR with blue color. Now,

let us define the concept of “plank edge”. A plank edge is red edge e ≡ (u, v) ∈ MP that

satisfies the following two conditions. The first condition is that at least one blue edge in GR is

incident on u and at least one incident on v. Let eu and ev denote one of the blue edges incident

on u and v, respectively. The second condition is that eu and ev should be vertex disjoint from

every edge of MG (with respect to the current set MG which keeps getting updated). In other

words, we should be able to add eu and ev to MG. Note that eu and ev do not share any common

vertex; otherwise it would form a triangle. Therefore, we can add both of them to MG. Now,

we complete the construction of the maximal matching MG using the following procedure.

Procedure 3

(1) T ← ∅
(2) MY ← ∅ *(this variable accumulates plank edges below)*
(3) MN ←MP *(variable for non-plank edges)*
(4) while there is a plank edge e ≡ (u, v) ∈MN

(5) MY ←MY ∪ {e}
(6) MN ←MN \ {e}
(7) T ← T ∪ {eu, ev}
(8) MG ←MG ∪ {eu, ev}
(9) MG ←MG ∪MN

Figure 6.4: Adding edges to MG by picking two blue edges each of which is incident on
different vertices of a plank edge. Then, adding the remaining non-plank red edges to MG.

Note that the above procedure adds one edge in MY and two edges in T in every iteration of

the while loop. Therefore, |T | = 2 · |MY |. Also, note that T ⊆ MG. Now, we complete the

construction of the vertex cover V CG. We consider two sub-cases based on the size of MY .
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And, for each of the sub-cases, we construct the vertex cover separately.

1. Sub-case: (|MY | ≥ δk)

For every edge in MP , we simply add both its endpoints to V CG. This completes the

construction of V CG. It covers all edges of GR since all edges are incident on some edge

of MP . Let us compute the size of V CG. Note that for every edge in MY ⊆ MP , there

are two edges in T ⊆MG. Therefore, the size of vertex cover is:

|V CG| = 2|MG| − |T | = 2|MG| − 2|MY | ≤ 2|MG| − 2δk ≤ 2k − 2δk

2. Sub-case: (|MY | < δk)

For this sub-case, we construct the vertex cover in the following manner. For every edge

in T , we add its both endpoints to V CG. And, we remove all the edges in GR covered

by them. The remaining graph contains the set MN , and some blue edges incident on it.

Since MN is defined on non-plank edges, the remaining blue edges can not incident on

both endpoints of any edge of MN . Now, for every edge in MN , we pick its that endpoint

in the vertex cover that it shares with the blue edges incident on it. It completes the

construction of V CG, and it covers all edges of GR. Note that for every edge in MG, we

added its both endpoints to V CG except the edges that came from MN for which, we just

added one endpoint in V CG. Also, note that |MN | = |MP | − |MY | > 3δk − δk = 2δk.

Therefore, the size of the vertex cover is:

|V CG| = 2|MG| − |MN | < 2|MG| − 2δk ≤ 2k − 2δk

Hence, we have a vertex cover of size at most 2k−2δk. This completes the proof of the lemma.
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Based on the above lemma, we assume that all single edge clusters can be covered with (
2t′1
3
+

8δk) ≤ (2t1
3
+ 8δk) vertices; otherwise the graph has a vertex cover of size at most (2k − 2δk)

and the soundness proof would be complete. Now, we bound the vertex cover of the entire

graph in the following manner.

|V C(G)|

≤ |V C
(
∪t

′
1
i=1Pi

)
|+ |V C ′|

= |V C
(
∪t

′
1
i=1Pi

)
|+ |V C

(
(∪t2j=1Sj) ∪ (∪t3k=1Wk) ∪ (∪t4l=1Yl)

)
|

≤
t′1∑
i=1

|V C(Pi)|+
t2∑
i=1

|V C(Si)|+
t3∑
i=1

|V C(Wi)|+
t4∑
i=1

|V C(Yi)|

≤
(
2t1
3

+ 8δk

)
+ t2 +

t3∑
i=1

((√
2 + 1

)
δ(Wi) + 1.62

)
+

t4∑
i=1

((√
2 + 1

)
δ(Yi) + 1.8

)
,

(using Lemmas 49, 50, and 51)

= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)( t3∑

i=1

δ(Wi) +

t4∑
i=1

δ(Yi)

)

Since the optimal cost OPT(C, k) =
k∑

j=1

√
mj(mj − 1)+

t3∑
i=1

δ(Wi)+

t4∑
i=1

δ(Yi) ≤ m−k/2+δk,

we get
t3∑
i=1

δ(Wi) +

t4∑
i=1

δ(Yi) ≤ m− k/2+ δk−
k∑

j=1

√
mj(mj − 1). We substitute this value in

the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4

+
(√

2 + 1
)
·

(
m− k/2−

k∑
j=1

√
mj(mj − 1) + δk

)

Using Lemma 44, we obtain the following inequalities:
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1. For any cluster Pj with |Pj| = 1, we have
√
|Pj| (|Pj| − 1) ≥ |Pj| − 1

2. For any cluster Sj with |Sj| ≥ 2, we have
√
|Sj| (|Sj| − 1) ≥ |Sj| − (2−

√
2)

3. For any cluster Wj with |Wj| ≥ 2, we have
√
|Wj| (|Wj| − 1) ≥ |Wj| − (2−

√
2)

4. For any cluster Yj with |Yj| ≥ 3, we have
√
|Yj| (|Yj| − 1) ≥ |Yj| − (3−

√
6)

We substitute these values in the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)
·

(
m− k/2−

t1∑
j=1

(|Pj| − 1)

−
t2∑
j=1

(
|Sj| − (2−

√
2)
)
−

t3∑
j=1

(
|Wj| − (2−

√
2)
)
−

t4∑
j=1

(
|Yj| − (3−

√
6)
)
+ δk

)

Since the number of edges m =

t1∑
j=1

|Pj|+
t2∑
j=1

|Sj|+
t3∑
j=1

|Wj|+
t4∑
j=1

|Yj|, we get the following

inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)
·

(
− k/2 + t1 +

t2 ·
(
2−
√
2
)
++ t3 ·

(
2−
√
2
)
+ t4 ·

(
3−
√
6
)
+ δk

)

We substitute k = t1 + t2 + t3 + t4, and obtain the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)
·
(
t1
2
+

t2
10

+
t3
10

+
3t4
50

+ δk

)
= (1.88)t1 + (1.25)t2 + (1.87)t3 + (1.95)t4 +

(√
2 + 9

)
δk

< (1.95)k +
(√

2 + 9
)
δk (using t3 + t4 + t1 + t2 = k)

≤ (2− ε)k, for appropriately small constants ε, δ > 0

This proves the soundness condition and it completes the proof of Theorem 67. Note that the
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result holds under the Unique Games Conjecture. To prove the result in a weaker assumtion

of P ̸= NP, it would require to show that |V C(G)| < (1.36)k instead of |V C(G)| < (1.95)k.

That would require tighter analysis of the cost of k-median instances than the one done in this

work.

6.6 Vertex Cover of Non-Star Graphs
In this section, we bound the vertex cover size of any non-star graph F . We aim to obtain this

bound in terms of δ(F ), i.e., the extra cost of the graph F . To do so, we require a bound on the

extra cost. The 1-median cost of an arbitrary non-star graph is tricky to compute. Fortunately,

we do not require the exact optimal cost of a graph; a lower bound on the optimal cost suffices.

Furthermore, for some graph instances we can compute the exact optimal cost. For example, a

star graph with r edges corresponds to a regular simplex of size length s that has the optimal

1-median cost: s ·
√

r(r−1)
2

We proved this earlier in Lemma 48. For the more complex graph

instances, we use the following decomposition lemma to bound their optimal cost.

Lemma 52 (Decomposition lemma). Let G = (V,E) be any graph and let E1, ..., Et be any

partition of the edges and let G1, G2, ..., Gt be the subgraphs induced by these edges respec-

tively. The following inequality bounds the optimal 1-median cost of G in terms of the optimal

1-median costs of subgraphs G1, ..., Gt.

cost∗(G) ≥ cost∗(G1) + . . .+ cost∗(Gt)

Proof. Let f ∗ be an optimal median of C(G). For any edge e ∈ E, let xe denote the cor-

responding point in C(G). The proof follows from the following sequence of inequalities:

cost∗(G) =
∑

e∈E d(xe, f
∗) =

∑t
i=1

∑
e∈Ei

d(xe, f
∗) ≥

∑t
i=1 cost∗(Gi).

If we can compute the optimal 1-median cost for each subgraph, then we can lower bound the

overall cost of the graph using the above decomposition lemma. In general, a graph may be
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decomposed in various ways. However, we prefer that decomposition that gives better bound

on the optimal cost. In the next subsection, we use this decomposition lemma to bound the

extra cost of any non-star graph. We will use that bound in subsequent subsections to prove

Lemmas 49 and 50.

6.6.1 1-median cost of non-star graphs

In this section, we show that any non-star graph on m edges has the optimal 1-median cost at

least m−0.342 which is at least
√
m(m− 1)+0.158. We assume all graphs to be triangle-free

since hard Vertex Cover instances we start with are triangle-free. Therefore, we do not explicitly

mention the “triangle-freeness” of graphs whenever we state a lemma related to graphs.

To obtain a lower bound on the optimal cost, we decompose a graph into so called “Fundamental

non-star graphs”. We will show this decomposition process later. For now, we first bound the

1-median cost of these fundamental graphs. We then bound the cost of any graph using the

decomposition lemma. Here is the formal description of fundamental graphs.

Definition 50 (Fundamental Non-Star Graph). A fundamental non-star graph is a graph that

becomes a star graph when any pair of vertex-disjoint edges are removed from it. The graph

that has only two vertex-disjoint edges is also a fundamental non-star graph.

Figure 6.5: Fundamental non-star graphs: 3-P2, An, and Ln.

The following lemma shows that there are exactly three types of fundamental non-star graphs.

These are shown in Figure 6.5.
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Lemma 53. There are only three types of fundamental non-star graphs: 3-P2, An, and Ln, for

n ≥ 1. These are shown in Figure 6.5.

Proof. It is easy to see that the graphs 3-P2, An, and Ln, shown in Figure 6.5, are fundamental

non-star graphs. We need to argue that these are the only fundamental non-star graphs. For

this we do a case analysis. Let M denote a maximum matching of any graph G = (V,E). We

divide the analysis into three cases based on the size of the maximum matching.

1. Case 1: |M | ≥ 4.

Suppose we remove any pair of vertex-disjoint edges from M . Then, the remaining graph

is still a non-star graph due to a matching of size at least two. Therefore, any such graph

can not be a fundamental non-star graph.

2. Case 2: |M | = 3.

Let U denote the set of unmatched edges in the graph, i.e, U = E \M . Suppose U ̸= ∅,

and l be any edge in U . Observe that l can be incident on at most two edges of M . Since

the size of matching M is three, there is always an edge in M that is vertex-disjoint from

l. Let this edge be me ∈ M . The set of edges {l,me} forms a 2-P2 (i.e., two vertex-

disjoint edges), and we can remove it from G. The remaining graph still has a matching

of size at least two. Therefore, such a graph can not be a fundamental non-star graph.

Now, let us consider the case when U = ∅. In this case, the graph is equivalent to a 3-P2.

3. Case 3: |M | = 2.

Let e1 := (u1, v1), and e2 := (u2, v2) be the matched edges in M . Let U = E \M denote

the set of unmatched edges. If U forms a non-star graph, we can remove a pair of vertex-

disjoint edges from it. The remaining graph is a non-star due to |M | = 2. Therefore,

any graph with |M | = 2 and U as a non-star graph, can not be a fundamental non-star

graph. Therefore, let us consider the case when U forms a star graph. Suppose all edges



Hardness of Approximation: k-Median 229

of U share a common vertex w. There are two possibilities: w is an endpoint of some

matching edge or not. Let us consider these two possibilities one by one.

(a) Subcase: w is an endpoint of some matched edge

Without loss of generality, we can assume w ≡ u1. Now, no two edges of U can

be incident on u2 and v2; otherwise, it would form a triangle (w, u2, v2). Therefore,

at most one edge of U can be incident on either u2 or v2. If such an edge exists,

without loss of generality, we can assume that it is incident on u2. This graph is of

type Ln. On the other hand, if no edge of U is incident on either u2 or v2, the graph

is of type An.

(b) Subcase: w is not an endpoint of any matched edge.

If |U | = 1, the graph is simply A1. Now, let us assume that |U | ≥ 2. Let l1 and l2 be

any two edges in U . The edges l1 and l2, can not be incident on the same matched

edge, say (u1, v1). This is because then it would form a triangle: (w, u1, v1). Also,

note that every edge e ∈ U must be incident on some matching edge; otherwise

M ∪ {e} would form a matching of size > |M |. It would contradict that M is a

maximum matching. Therefore, without loss of generality, we can assume that l1

is incident on u1, and l2 is incident on u2. Now, it forms a path of length four:

(v1, u1, w, u2, v2). We can always remove an alternating pair of edges from the

path, and the resulting graph still contains a pair of vertex-disjoint edges, i.e., a

2-P2. Therefore, any such graph can not be a fundamental non-star graph.

From the above case analysis we conclude that all fundamental non-star graphs are of type 3-P2,

An, or Ln. This completes the proof of the lemma.

Next, we bound the optimal 1-median cost of each fundamental non-star graph. In this discus-

sion, we will use r to denote the number of edges in various cases.
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Lemma 54. Let r := 3 denote the number of edges in 3-P2. The optimal cost of 3-P2 is at least

(r + 0.46).

Proof. It is easy to see that C(3-P2) forms a simplex of side length 2. Therefore, we can use

Corollary 28 to compute its optimal 1-median cost: cost∗(3-P2) =
√
2
√

3(3− 1) = 2
√
3 ≥

r + 0.46 (since r = 3).

Lemma 55. Let r := n + 1 denote the number of edges in An. The optimal cost of An is at

least:

1. r, for n ≥ 1.

2. r + 0.095, for n ≥ 2.

3. r + 0.135, for n ≥ 3.

Proof. Consider the point set C(An). It forms a simplex with (r−1) points at a distance of
√
2

from each other and the remaining point at a distance of 2 from the rest of the points. Based on

Lemma 45, we represent the coordinates of every point in an (r − 1)-dimensional space in the

following way.

a1 = (1, 0, ..., 0), a2 = (0, 1, ..., 0), ..., ar−1 = (0, ..., 0, 1), ar = (u, . . . , u)

Here u = 1
r−1

+
√

3
r−1

+ 1
(r−1)2

. Let (c1, . . . , cr−1) be an optimal 1-median of S = {a1, ..., ar}.

If ci ̸= cj for any i ̸= j, we can swap ci and cj to create a different median with the same 1-

median cost. Since the 1-median is always unique for a set of non-collinear points (by Fact 5),

we assume c∗ = {c, . . . , c} as the optimal median. Then, the optimal 1-median cost is:

cost(c∗, S) = cost(c∗, ar) +
r−1∑
i=1

cost(c∗, ai)



Hardness of Approximation: k-Median 231

= (u− c) ·
√
r − 1 + (r − 1) ·

√
(1− c)2 + (r − 2)c2

The function is strictly convex and attains minimum at c =
√
r + 1√

r · (r − 1)
. We get the following

optimal cost on substituting the values of t and c in the previous equation:

cost(c∗, S) =
√

r(r − 1) +

√
3 +

1

r − 1
−
√

r

r − 1
=
√

r(r − 1) +
2√

3 + 1
r−1

+
√

r
r−1

For r ≥ t, we get:

cost(c∗, S) ≥
√
r(r − 1) +

2√
3 + 1

t−1
+
√

t
t−1

, (∵ r ≥ t)

=
√
r(r − 1) +

√
3 +

1

t− 1
−
√

t

t− 1

≥ r − (t−
√

t(t− 1)) +

√
3 +

1

t− 1
−
√

t

t− 1
, (using Lemma 44)

Substituting t = 2, we get: cost(c∗, S) ≥ r − (2−
√
2) +

√
4−
√
2 ≥ r.

Substituting t = 3, we get: cost(c∗, S) ≥ r − (3−
√
6) +

√
7/2−

√
3/2 > r + 0.095.

Substituting t = 4, we get: cost(c∗, S) ≥ r − (4−
√
12) +

√
10/3−

√
4/3 > r + 0.135.

This completes the proof of the lemma.

Lemma 56. Let r := n+2 denote the number of edges in Ln. Then the optimal cost of Ln is at

least:

1. r − 0.268, for n = 1.

2. r − 0.334, for n = 2.

3. r − 0.342, for n ≥ 3.
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Proof. Let us prove the first statement for r = 3 which corresponds to the graph being L1 (i.e.,

n = 1). In C(L1), there are two points at distance of 2 from each other, and the third point at

a distance of
√
2 from the other two points. It forms a simplex S of dimension two. Based on

Lemma 45, we represent the coordinates of the simplex in the following way:

a1 = (0, 0), a2 = (
√
2, 0), a3 = (0,

√
2).

Note that the pairwise distances are preserved in this representation. Let (c1, c2) be the optimal

1-median of S. If ci ̸= cj for any i ̸= j, we can swap ci and cj to create a different median

with the same 1-median cost. Therefore, we consider c∗ := (c, c) as the optimal 1-median of S.

Then, we get the following optimal 1-median cost of S.

cost(c∗, S) = cost(c∗, a1) + cost(c∗, a2) + cost(c∗, a3) =
√
2 · c+ 2 ·

√(
c−
√
2
)2

+ c2

The function is strictly convex and attains minimum at c =
√

1
2
−
√

1
6
. Substituting the value

of c in cost(c∗, S), we get cost(c∗, S) = 1 +
√
3 > r − 0.268, for r = 3. This completes the

proof of the first statement.

Let us prove the second statement. Here, we have r = 4 (or n = 2). We create three copies of

L2 (i.e., 3-L2), and decompose them into three subgraphs: 2-P4, A2, and S3. The decomposition

is shown in Figure 6.6. Note that P4 is the same as L1. There are also other ways to decompose

the graph. However, some of those decompositions give weak bound on the optimal cost. And,

this decomposition gives sufficiently good bound on the optimal cost of L2.
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Figure 6.6: Decomposition of 3-L2

Let c∗ be the optimal 1-median for L2. Based on the decomposition, we bound the optimal

1-median cost of L2 as follows:

3 · cost∗(L2) ≥ cost∗(A2) + 2 · cost∗(P4) + cost∗(S3) (6.2)

We already have the bounds on the optimal costs of A2, P4, and S3. That is,

• For A2, we have cost∗(A2) ≥ 3 + 0.095. This follows from Statement 2 of Lemma 55.

• For P4, we have cost∗(P4) ≥ |P4| − 0.268 = 2.732. This follows from Statement 1 of

Lemma 56 since P4 is the same as L1, and that the number of edges in P4, denoted by

|P4|, equals 3.

• For S3, we have cost∗(S3) =
√

3(3− 1) =
√
6. This follows from Corollary 27, for

r = 3.

Substituting the above values in Equation (6.2), we get the following inequality:

3 · cost∗(L2) ≥ 3.095 + 2 · (2.732) +
√
6 > 11

Thus, the optimal cost of L2 is at least 11/3 ≥ 3.666 = |L2| − 0.334. This completes the proof

of Statement 2.



234 Hardness of Approximation: k-Median

Now, let us prove the third statement. Here, we have r ≥ 5 (or n ≥ 3). We create two copies

of Ln, and decompose it into three subgraphs: An, Sn, and P4. The decomposition is shown

in Figure 6.7. Again, note that there are many ways to decompose the graph. However, those

decompositions may yield weak bound on the optimal cost. Whereas, this decomposition gives

sufficiently good bound on the optimal 1-median cost of Ln.

Figure 6.7: Decomposition of 2-Ln for n ≥ 3

Let c∗ be the optimal 1-median for Ln. Based on the decomposition, we bound its optimal

1-median cost in the following manner:

2 · cost∗(Ln) ≥ cost∗(An) + cost∗(Sn) + cost∗(P4) (6.3)

We already know the bounds on the optimal costs of An, Sn and P4. That is,

• For An, we have cost∗(An) ≥ (n + 1) + 0.135. This follows from Statement 3 of

Lemma 55 (∵ n ≥ 3).

• For Sn, we have cost∗(Sn) =
√

n(n− 1) ≥ n − (3 −
√
6). The first equality follows

from Corollary 27) whereas the second inequality follows from Lemma 44, for n ≥ 3.

• Since P4 is is the same as L1, we have cost∗(P4) ≥ |P4| − 0.268. This follows from

Statement 1 of Lemma 56.
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Substituting the above values in Equation (6.3) and using the fact that |P4| = 3, we obtain the

following inequality:

2 · cost∗(Ln) ≥ (2n+ 1 + |P4|) + (0.135 +
√
6− 3− 0.268) ≥ 2 · (n+ 2)− 0.684

Thus, the optimal cost of Ln is at least (n + 2) − 0.342 = |Ln| − 0.342. This completes the

proof of the lemma.

Corollary 29. The cost of any fundamental non-star graph with r edges is at least r − 0.342.

Proof. The proof simply follows from Lemmas 54, 55, and 56.

We will now bound the cost of any non-star graph by decomposing it into fundamental non-star

graphs. For this, we define the concept of “safe pair”. A safe pair is a pair of vertex-disjoint

edges in the graph such that when we remove it from the graph, the remaining graph remains

a non-star graph. Let us see why such a pair is important. First, note that the optimal cost of

a 2-P2 is exactly two, using Corollary 28. Suppose we remove a 2-P2 from the graph F . Let

the remaining graph be F ′. Suppose cost∗(F ′) = |F ′| + γ, where γ is some constant. Then

it is easy to see that cost∗(F ) ≥ cost∗(F ′) + cost∗(2-P2) = |F | + γ. Note that γ value is

preserved in this decomposition. Suppose we keep removing a safe pair from F until we obtain

a graph that does not contain any safe pair. Then the remaining graph is simply a fundamental

non-star graph by the definition of fundamental non-star graph. Moreover, we showed earlier

that the optimal cost of any fundamental non-star graph with r edges, is at least r − 0.342.

Note that here γ ≥ −0.342. Therefore, F has the optimal cost at least |F | − 0.342. This is

the main reason for defining a safe pair and a fundamental non-star graphs. The decomposition

procedure described above is given below.
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Decompose(F )

Input: A non-star graph F .
Output: A fundamental non-star graph D ∈ {3-P2, An, Ln}

(1) D ← F
(2) while D /∈ {3-P2, An, Ln}
(3) Let {e, e′} ∈ E(D) be a safe pair
(3) E(D)← E(D) \ {e, e′}
(4) return D

Figure 6.8: Decomposition of any non-star graph F into the fundamental non-star graphs.

The above discussion is formalised as the next lemma.

Lemma 57. The cost of any non-star graph F is at least (|F | − 0.342) ≥
√
|F |(|F | − 1) +

0.158.

Proof. Suppose the procedure Decompose(F ) runs the while loop t times. This means that

F is composed of t safe pairs and a fundamental non-star graph D ∈ {3-P2, An, Ln}. We call

D the residual graph of F . Note that D has exactly |F | − 2t edges. Also, note that 2-P2 is

a fundamental non-star graph since it the same as A1. Based on the decomposition of F into

2-P2’s and D, we bound the optimal cost of F as follows:

cost∗(F ) ≥ t · cost∗(2-P2) + cost∗(D)

= 2 · t+ cost∗(D) (using Corollary 28)

≥ 2 · t+ (|F | − 2t)− 0.342 (using Corollary 29)

= |F | − 0.342

>
√
|F |(|F | − 1) + 1/2− 0.342 (using Lemma 44)

=
√
|F |(|F | − 1) + 0.158

This completes the proof of the lemma.
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Next, we show a stronger bound on the optimal cost than the one stated in the previous lemma.

However, this bound applies for a particular set of graph instances. For positive integers p, q,

let us define a new graph Lp,q. This graph is composed of two star graphs Sp and Sq, such that

there is an edge between the center vertices of Sp and Sq. Here, the center vertex is the vertex

that is the common endpoint of all edges in a star graph and the remaining vertices are called

pendent vertices. Let s1 and s2 denote the center vertices of Sp and Sq respectively. We call the

edge (s1, s2), the bridge edge, and the graph Lp,q, the bridge graph. Also, we call the pendent

vertices of Sp and Sq as the left and right pendent vertices respectively. Please see Figure 6.9

for the pictorial depiction of Lp,q. Note that when p = n and q = 1, the bridge graph is the

same as Ln.

Figure 6.9: A Bridge Graph: Lp,q, for p, q ≥ 1.

Now, we state the lemma that bounds the optimal 1-median cost of any non-star non-bridge

graph.

Lemma 58. Suppose F is a non-star non-bridge graph. Then F has the optimal 1-median cost

at least |F | ≥
√
|F |(|F | − 1) + 0.5.

Proof. Here, we need to define the new concept of “ultra-safe” pair. An ultra-safe pair is a pair

of vertex-disjoint edges such that removing it from the graph does not make the resulting graph

a star or a bridge graph. We decompose F in a similar way as we did before. However, instead

of removing a safe-pair from the graph, we remove an ultra-safe pair in every iteration of the

while loop. We decompose F using the following procedure.
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UltraDecompose(F )

Input: A non-star non-bridge graph F .
Output: A fundamental non-star graph D ∈ {3-P2, An, Ln}

(1) D ← F
(2) while D /∈ {3-P2, An, Ln}
(3) Let {e, e′} ∈ E(D) be an ultra safe pair
(3) E(D)← E(D) \ {e, e′}
(4) return D

Figure 6.10: Decomposition of a non-star non-bridge graph F into fundamental non-star
graphs.

First, note that the procedure UltraDecompose(F ) produces a residual graph of type 3-P2 or

An. It does not produce a residual graph of type Ln since we are always removing an ultra-safe

pair from the graph, and Ln is equivalent to Ln,1. Next, we show that we can always remove

an ultra-safe pair from G until we obtain a graph of type 3-P2 or An. Consider the ith iteration

of the while loop given that it is executed. Let D be the graph at the start of this iteration. It is

clear that D is neither a 3-P2 nor An; otherwise, this while loop would not have been executed.

Also, D can neither be a star nor a bridge graph since an ultra-safe pair was removed in the

previous iteration. This fact also holds for the first iteration since the input graph is neither a

star nor a bridge graph. It implies that D is a non-star graph but not a fundamental non-star

graph. Since the graph is not a fundamental non-star graph, it must contain a safe pair. Let

e1 ≡ (u1, v1) and e2 ≡ (u2, v2) form a safe pair in D. If {e1, e2} is also an ultra-safe pair, we

are done. On the other hand, if {e1, e2} is not an ultra-safe pair, we show that there is another

ultra-safe pair in D. Since {e1, e2} is a safe pair but not an ultra safe-pair, removing it would

make the resulting graph, a bridge graph Lp,q. Therefore, D is composed of a graph of type

Lp,q, and the two additional edges: e1 and e2. Let b ≡ (s1, s2) denote the bridge edge of Lp,q.

We split the analysis into two cases, based on the orientation of e1 and e2 in the graph. For each

case, we show that D contains an ultra-safe pair.

• Case-I: At least one of the two edges, e1, e2 connects a left pendent vertex with a right
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one.

Without loss of generality, let e1 ≡ (u1, v1) be the edge that connects a left pendent

vertex u1 with a right pendent vertex v1. We claim that e1 and the bridge edge b, form an

ultra-safe pair. Indeed, suppose we remove this pair from the graph. The resulting graph

would be a non-star graph since (s1, u1) and (s2, v1) are still present in the graph, and

they form a 2-P2. Therefore, the pair {e1, b} satisfies the condition of being a safe pair.

Furthermore, the resulting graph is a non-bridge graph since there is no common edge

incident on (s1, u1) and (s2, v1). This proves that {e1, b} is an ultra-safe pair.

• Case-II: Neither e1 nor e2 connects any left pendent vertex with a right one.

First, let us consider the possibility that both the edges e1 and e2 are incident on the

bridge edge, i.e., e1 is incident on s1 and e2 is incident on s2. Then the graph D is a

bridge graph of the form Lp+1,q+1 which is not possible as per earlier discussion. Hence,

without loss of generality, we can assume that e1 is not incident on b. Now, we claim that

the pair {e1, b} forms an ultra-safe pair. Note that it forms a 2-P2 since both edges are

vertex-disjoint. Now, suppose we remove this pair from the graph. Then in the resulting

graph Sp and Sq are not connected by any edge since e2 does not connect left and right

pendent vertices. Such a graph can neither be a bridge graph or a star graph, since both

of these graphs are connected graphs.

The above discussion implies that there D always contains an ultra-safe pair unless D is of

type 3-P2 or An. This means that if the procedure UltraDecompose(F ) runs the while

loop ‘t’ times, then F is composed of t ultra-safe pairs and a fundamental non-star graph D ∈

{3-P2, An}. Based on this decomposition, we bound the optimal cost of F in the following

manner:

cost∗(F ) ≥ t · cost∗(2-P2) + cost∗(D)

= 2 · t+ cost∗(D), (using Corollary 28)
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≥ 2 · t+ (|F | − 2t), (using Lemma 54 and 55)

= |F |

>
√
|F |(|F | − 1) + 1/2, (using Lemma 44)

This completes the proof of the lemma.

In the next two subsections, we bound the vertex cover size of any non-star graph F in terms of

the extra cost δ(F ).

6.6.2 Vertex cover for matching size two

In this section, we show that any graph with a maximum matching of size exactly two has a

vertex cover of size at most 2
(√

2 + 1
)
δ(F ) + 1.62. Let C5 denote a cycle on five vertices. In

the following lemma, we show that C5 is the only graph with a maximum matching of size two

and a vertex cover of size three. The rest of the graphs with a maximum matching of size two,

have a vertex cover of size two.

Lemma 59. Let F be any graph other than C5. If F has a maximum matching of size two, it

has a vertex cover of size two. Furthermore, C5 has a vertex cover of size three.

Proof. Let M be a maximum matching of F . Let e1 ≡ (u1, v1) and e2 ≡ (u2, v2) denote the

edges in M . Let VM denote the vertex set spanned by M , i.e., VM := {u1, v1, u2, v2}. Let U

denote the unmatched edges of F . i.e., U := E(F ) \M . Note that all edges in U are incident

on at least one of the matching edges; otherwise it forms a matching of size three and this

contradicts the fact that F has a maximum matching of size two. Let U1 denote the edges in

U that are incident on exactly one of the matching edges and U2 = U \ U1 be the remaining

unmatched edges. In other words, U2 contains the edges that have their both endpoints in VM .

First, we claim that no two edges in U1 can be incident on different endpoints of the same
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matching edge. For the sake of contradiction, suppose (x, u1) and (y, v1) are the edges in U1

such that x, y /∈ VM . If x = y, it forms a triangle (x, u1, v1), which is not allowed. If x ̸= y,

we have a matching of size three – {(x, u1), (y, v1), (u2, v2)}. This contradicts the fact that F

has a maximum matching M of size two. Therefore, U1 cannot contain both (x, u1) and (y, v1).

Similarly, U1 cannot contain both (x, u2) and (y, v2). Now, without loss of generality, we can

assume that all the edges in U1 have their one endpoint in the vertex-set: {u1, u2}. Let us divide

the remaining analysis into following two cases based on the existence of edge (v1, v2) in the

graph.

• Case 1: (v1, v2) /∈ E(F ).

U2 can only contain the following edges: (u1, v2), (u2, v1), and (u1, u2). Note that all

edges in U2 have at least one endpoint in {u1, u2}. Previously, we showed all edges of U1

are incident on {u1, u2}. Based on both of these facts, we can cover all edges in U using

only two vertices: {u1, u2}. Furthermore, these vertices also cover the matching edges in

M . Therefore, all edges of the graph are covered, and we have a vertex cover of size two.

• Case 2: (v1, v2) ∈ E(F ).

Now, note that U2 can not contain the edges: (u1, v2) and (u2, v1), since they form the

triangles: (v1, v2, u1) and (v1, v2, u2). However, U2 can contain the edge: (u1, u2). Let us

consider the following two sub-cases based on the existence of (u1, u2) in the graph.

(a) Sub-case: (u1, u2) ∈ E(F ).

We claim that either all the edges in U1 are incident on u1 or all of them are incident

on u2. For the sake of contradiction, let (x, u1) and (y, u2) be the edges in U1 such

that x, y /∈ VM . If x = y, it forms a triangle (x, u1, u2), which is not allowed. If

x ̸= y, we get a matching of size three – {(x, u1), (y, u2), (v1, v2)}which contradicts

the fact that F has a maximum matching M of size two. Without loss of generality,

we can assume that all edges in U1 are incident on u1. Therefore, we can cover
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all edges of U1 using only u1. Furthermore, u1 covers one of the matching edge

(u1, v1) ∈ M and the edge (u1, u2) ∈ U2. Only two edges remain uncovered in the

graph, which are (u2, v2) ∈ M and (v1, v2) ∈ U2. We cover both these edges by

picking the vertex v2. Thus, we get a vertex cover of size two.

(b) Sub-case: (u1, u2) /∈ E(F ).

Let us consider the case when all the edges in U1 are incident on either u1 or u2.

In this case, either {u1, v2} or {u2, v1} forms a vertex cover of size two. Hence,

we are done. Let us consider the other case. Suppose, there are two edges (x, u1)

and (y, u2) in U1 such that x, y /∈ VM . If x ̸= y, we get a matching of size three –

{(x, u1), (y, u2), (v1, v2)}, which is not possible. On the other hand, if x = y, then

the only possibility is that F is a cycle of length five – C5 : (x, u1, v1, v2, u2). In this

case, the vertex cover of F is of size 3.

We showed that all graphs with maximum matching 2 has a vertex cover of size 2 except for C5

that has a vertex cover of size 3. This completes the proof of the lemma.

Corollary 30. Let F be any graph with a maximum matching of size two. If the graph is not a

C5, it has a vertex cover of size at most
(√

2 + 1
)
δ(F ) + 1.62.

Proof. In Lemma 57, we showed that any graph F has an extra cost at least 0.158. In other

words, δ(F ) ≥ 0.158. It is easy to see that |V C(F )| = 2 ≤
(√

2 + 1
)
δ(F ) + 1.62. Hence

proved.

Next, we consider the particular case of C5. The following lemma bounds the optimal 1-median

cost of C5.

Lemma 60. The optimal 1-median cost of C5 is at least
√
|C5|(|C5| − 1) + 0.622.
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Proof. Let C5 be (u, v, w, x, y). We decompose the graph into two fundamental non-star

graphs: A1 : {(u, v), (w, x)} and A2 : {(v, w), (x, y), (y, u)}. The following sequence of in-

equalities bound the optimal cost of C5.

cost∗(C5) ≥ cost∗(A1) + cost∗(A2)

≥ 2 + (3 + 0.095) (using Statement 1 and 2, of Lemma 55)

=
√
20 +

(
5−
√
20
)
+ 0.095

=
√
|C5|(|C5| − 1) + 0.622 (∵ |C5| = 5)

This completes the proof of the lemma.

Corollary 31. The graph C5 has a vertex cover of size at most
(√

2 + 1
)
δ(C5) + 1.62.

Proof. Since δ(C5) ≥ 0.622, we get |V C(C5)| = 3 ≤
(√

2 + 1
)
δ(C5) + 1.62 which proves

the corollary.

6.6.3 Vertex cover for matching size at least three

In this section, we show that any non-star graph F , with a maximum matching of size at least

three, has a vertex cover of size at most 1.8+
(√

2 + 1
)
δ(F ). First, let us define some notations.

Let M denote a maximum matching of F , and GM denote the subgraph spanned by M . Let

F ′ be the graph obtained by removing M from F , i.e., F ′ = (V,E(F ) \M). Let L denote a

maximum matching of F ′, and GL denote the subgraph spanned by L. We call L the second

maximum matching of F after M . Now, we remove L from the graph. Let F ′′ be the graph

obtained by removing L from F ′, i.e., F ′′ = (V,E(F ) \ (M ∪ L)). Recall that in this entire

discussion, we are using |.| to denote the number of edges in any given graph.

Now, we obtain a relation between the vertex cover size and extra cost of a graph. To establish

this relation, we show that both of them are proportional to the number of vertex disjoint edges
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in the graph. For example, a graph with a maximum matching M has a vertex cover of size

at most 2|M |. Similarly, a set of m vertex-disjoint edges has an extra cost of
(√

2− 1
)
·√

m(m− 1) (using Corollary 28). Also, note that a star graph which has a maximum matching

of size one, has an extra cost of only zero. In the next two lemmas, we formally establish these

relations of the vertex cover size and extra cost in terms of number of vertex-disjoint edges in

the graph. Then we will use the two lemmas to bound the vertex cover size in terms of the extra

cost. First, let us bound the vertex cover size in terms of |L| and |M |.

Lemma 61. Any non-star graph F has a vertex cover of size at most (|M |+ |L| − 1).

Proof. Let GML denote the graph spanned by the edge set M ∪ L. Note that there are no odd

cycles in GML; otherwise there would be two adjacent edges in the cycle that would belong to

the same matching set L or M . Thus, GML is a bipartite graph. There is a well-known result

that says that in a bipartite graph, the size of a maximum matching is equal to the size of a

vertex cover [31]. Therefore, GML has a vertex cover of size exactly |M |. Let S ′ denote a

vertex cover of GML.

Now, we give an incremental construction of a vertex cover of the entire graph G. Let this

vertex cover be denoted by S. Initially, we add all vertices of S ′ to S. Therefore, at this stage,

S covers all edges in L and M which means that for every edge in L, at least one of its endpoints

must belong to S. Now, we include its other endpoint in S as well and we do this for all edges

in L. We observe that S now covers all edges in F ′ since L is a maximum matching of F ′,

and all edges in F ′ are incident on L. Therefore, S covers all edges in G, and has a size of

|M |+ |L|.

Our main goal is to obtain a vertex cover of size |M | + |L| − 1. We again give an incremental

construction and let S denote this incrementally constructed vertex cover. Initially, S is empty.

Let us color the edges of the graph. We color the edges in M with red color, L with green

color, and E(F ′′) with blue color. Note that non-red edges are the edges of the graph F ′. Now,
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for every edge in L except one, we add both its endpoints in S. Let e′ ≡ (u′, v′) ∈ L be the

remaining edge of L. Now, we remove all the edges of F covered by S . Let the resulting graph

be GS . GS contains some red edges, some blue edges, and exactly one green edge e′. Also, note

that all non-red edges in GS form a star graph. This is because, if they form a non-star graph, it

would have a matching of size at least two and this matching together with the removed green

edges form a matching of F ′ of size ≥ |L| + 1. This contradicts with the fact that that F ′ has

a maximum matching of size |L|. Therefore, non-red edges of GS form a star graph. Now,

let us construct a vertex cover of GS . Let R be the set of red edges in GS . Let NR be the

set of non-red edges in GS . Further, assume that NR := {(u, v1), (u, v1), . . . , (u, vt)}, i.e., all

non-red edges are incident on a common vertex u. We consider three different cases depending

on the number of red edges in R. For each of these cases, we construct a vertex cover for GS .

1. Case 1: |R| ≤ |M | − |L|.

Since NR forms a star graph, we cover it using a single vertex u. For every edge in R,

we pick one vertex per edge in the vertex cover. Thus, all edges of GS are covered. So,

the size of the entire vertex cover of F is (|M |− |L|)+1+2 · (|L|− 1) = |M |+ |L|− 1.

2. Case 2: |R| ≥ |M | − |L|+ 2.

In this case, R and the removed green edges form a matching of size |M | + 1 which

contradicts with the fact that G has the maximum matching of size |M |. Therefore, we

can rule out this case.

3. Case 3: |R| = |M | − |L|+ 1

Here, we claim that every non-red edge in NR must be incident on some red edge in R.

For the sake of contradiction, suppose this is not true and there is a non-red ei ∈ NR that

is not incident on any of the red edges in R. It is easy to see that {ei}∪R∪L\{e′} forms

a matching of size |M | + 1. It contradicts that F has a matching of size |M |. Therefore,

each non-red edge in NR must be incident on some red edge in R. Moreover, note that



246 Hardness of Approximation: k-Median

no two edges in NR can be incident on the same red edge (r1, r2) ∈ R. Otherwise, it

would form a triangle – (u, r1, r2), which is not allowed. Now, for every edge in R, we

pick exactly one of its endpoints. This is the endpoint that it shares with some non-red

edge in NR if one exists; otherwise an arbitrary endpoint is picked. Thus, we cover the

edges in GS using only |R| vertices. So, the size of the vertex cover of the entire graph F

in this case is |R|+ 2|L| − 2 = |M |+ |L| − 1.

This completes the proof of the lemma.

Now, we bound the extra cost of a graph in terms of |M | and |L|. There are some special graph

instances for which we do the analysis separately. For the following lemma, we assume that

|L| ≥ 3 and F ′′ is a non-star non-bridge graph.

Lemma 62. Let |L| ≥ 3, and F ′′ be a non-star non-bridge graph. Then the extra cost of F is

at least (
√
2− 1) · ( |M |+ |L| )− 1.06.

Proof. We decompose F into three subgraphs: GM , GL, and F ′′. It gives the following bound

on the optimal cost of F .

cost∗(F ) ≥ cost∗(GM) + cost∗(GL) + cost∗(F ′′) (6.4)

We already know the bounds on the optimal costs of GM , GL and F ′′. That is,

• cost∗(GM)
Corollary 28

≥
√
2 ·
√
|M | (|M | − 1)

(Lemma 44,|M| ≥ 3)

≥
√
2 ·
(
|M | − (3−

√
6)
)
≥
√
2 ·

|M | − 0.78.

• cost∗(GL)
Corollary 28
=
√
2 ·
√
|L| (|L| − 1)

(Lemma 44, |L| ≥ 3)

≥
√
2 ·
(
|L| − (3−

√
6)
)
≥
√
2 · |L| −

0.78.
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• cost∗(F ′′)
Lemma 58

≥ |F ′′|.

Substituting the above values in equation 6.4, we obtain the following inequality:

cost∗(F ) ≥ |M |+ |L|+ |F ′′|+ (
√
2− 1) · (|M |+ |L|)− 1.56

= |F |+ (
√
2− 1) · (|M |+ |L|)− 1.56

>
√
|F |(|F | − 1) + 0.5 + (

√
2− 1) · (|M |+ |L|)− 1.56 (using Lemma 44)

=
√
|F |(|F | − 1) + (

√
2− 1) · (|M |+ |L|)− 1.06

This completes the proof of the lemma.

Note that in Lemma 61, we bound the vertex cover size in terms of |M | and |L|. Then in

Lemma 62, we bound the extra cost in terms of |M | + |L|. Now, we put these two results

together and obtain a relation between the extra cost and vertex cover size.

Corollary 32. Let |L| ≥ 3 and F ′′ is a non-star non-bridge graph. Then F has a vertex cover

of size at most 1.6 +
(√

2 + 1
)
δ(F ).

Proof. The proof follows from the following sequence of inequalities:

1.6+
(√

2 + 1
)
δ(F )

Lemma 62

≥ |M |+ |L|+1.6−
(√

2 + 1
)
(1.06) > |M |+ |L|−1

Lemma 61
= |V C(F )|.

There are some special graph instances for which either Lemma 61 gives a weak bound on the

vertex cover size or Lemma 62 gives a weak bound the extra cost of the graph. This would

give an overall weak relation between the vertex cover size and extra cost of the instances.

Therefore, we analyse such instances separately. We divide the remaining instances into the

following five categories.
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1. |L| = 0: In this case, we show |V C(F )| ≤ (
√
2 + 1)δ(F ) + 0.551.

2. |L| = 1: In this case, we show |V C(F )| ≤ (
√
2 + 1)δ(F ) + 1.8.

3. |L| = 2 and F ′ is a bridge graph: In this case, we show |V C(F )| ≤ (
√
2+1)δ(F )+1.53.

4. |L| = 2 and F ′ is a non-bridge graph: In this case, we show |V C(F )| ≤ (
√
2+1)δ(F )+

1.68.

5. |L| ≥ 3 and F ′′ is a bridge graph: In this case, we show |V C(F )| ≤ (
√
2+1)δ(F )+1.4.

We analyse these instance one by one. Note that the overall technique remains the same. That

is, we first bound the vertex cover size in terms of |M | and |L|. Then, we obtain a lower bound

on the extra cost in terms of |M | and |L|. And, finally we state a corollary (similar to the

corollary above) combining these two results. Also, note that for all the following cases we will

consider |M | ≥ 3 since we have already dealt with the case |M | = 2 in Section 6.6.2.

6.6.3.1 Case: |L| = 0

The following lemma is trivial.

Lemma 63 (Vertex Cover). If |L| = 0, F has a vertex cover of size exactly |M |.

Lemma 64 (Extra Cost). If |L| = 0, the extra cost of F is exactly
(√

2− 1
)
·
√
|M | (|M | − 1).

Proof. The proof simply follows from Corollary 28.

Corollary 33. If |L| = 0, F has a vertex of size at most 0.551 +
(√

2 + 1
)
δ(F ).

Proof. The proof follows from the following series of inequalities:

0.551+
(√

2 + 1
)
δ(F )

Lemma 64
= 0.551+

√
|M | (|M | − 1)

(Lemma 44, |M| ≥ 3)

≥ 0.551+ |M |−(3−
√
6) >

|M | Lemma 63
= |V C(F )|.
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6.6.3.2 Case: |L| = 1

Note that the condition |L| = 1 is equivalent to F ′ being a star graph.

Lemma 65 (Vertex Cover). If |L| = 1, F has a vertex cover of size exactly |M |

Proof. The proof follows from Lemma 61 and substituting |L| = 1.

Lemma 66 (Extra Cost). If |L| = 1, the extra cost of F is at least
(√

2− 1
)
(|M |)− 0.743

Proof. Let e be some edge in E(F ′). The edge e must incident on some edge of M ; otherwise

M would not be a maximum matching. Furthermore, e can only be incident on at most two

edges of M . Let us define the edges l1 and l2 in the graph depending on the orientation of e in

the graph.

• If e is incident on two edges of M , then l1 and l2 are defined as the corresponding incident

edges in M .

• If e is incident on only one edge of M , then l1 ∈M is defined as the incident edge and l2

is defined as any other edge in M .

Let M ′ := (M \{ℓ1, ℓ2})∪{e} and L′ = E(F ′)∪{ℓ1, ℓ2}\{e}. Given this, note that M ′ forms

a matching of size (|M | − 1) and L′ spans a graph of type An for n ≥ 1. Let GM ′ denote the

graph spanned by M ′, and GL′ denote the graph spanned by L′. We decompose F into these

two subgraphs, i.e., GM ′ and GL′ . It gives the following bound on the optimal cost of F .

cost∗(F ) ≥ cost∗ (GM ′) + cost∗ (GL′) (6.5)

We already know the bounds on the optimal costs of GM ′ and GL′ . That is,

• cost∗(GM ′)
Corollary 28

≥
√
2 ·
√
|M ′| (|M ′| − 1)

(Lemma 44, |M′| ≥ 2)

≥
√
2 ·
(
|M ′| − (2−

√
2)
)
.
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• cost∗(GL′)
(Lemma 55 statement 1)

≥ |L′|.

We substitute the above values in Equation (6.5). This gives the following inequality:

cost∗(F ) ≥ |M ′|+ |L′|+
(√

2− 1
)
|M ′|+ 2− 2

√
2

= |M |+ |F ′|+
(√

2− 1
)
|M |+ 3− 3

√
2

(substituting |M ′| = |M | − 1 and |L′| = |F ′|+ 1)

= |F |+
(√

2− 1
)
|M |+ 3− 3

√
2 (∵ |F | = |M |+ |F ′|)

>
√
|F |(|F | − 1) + 0.5 +

(√
2− 1

)
|M |+ 3− 3

√
2 (using Lemma 44)

>
√
|F |(|F | − 1) +

(√
2− 1

)
|M | − 0.743

This completes the proof of the lemma.

Corollary 34. If |L| = 1, then F has a vertex cover of size at most 1.8 +
(√

2 + 1
)
δ(F ).

Proof. The proof follows from the following sequence of inequalities:

1.8 +
(√

2 + 1
)
δ(F )

Lemma 66

≥ |M |+ 1.8−
(√

2 + 1
)
(0.743) > |M | Lemma 65

= |V C(F )|.

6.6.3.3 Case: |L| = 2 and F′ is Bridge Graph

Since F ′ is a bridge graph, |L| = 2. For this case, Lemma 61 gives a vertex cover of size at

most |M |+ 1. However, we show a stronger bound than this in the following lemma.

Lemma 67 (Vetex Cover). If F ′ is a bridge graph Lp,q for some p, q ≥ 1, then F has a vertex

cover of size |M |.

Proof. Let b ≡ (u, v) be the bridge edge of Lp,q. Suppose b be incident on an edge e ∈ M .
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Without loss of generality, we can assume that u is the common endpoint of e and b. Let us

pick the vertex u in the vertex cover and remove the edges covered by it. Let G′ denote the

resulting graph. Further, let M ′ denote a maximum matching of G′. Now, we claim that |M ′|

= |M | − 1. For the sake of contradiction, assume that |M ′| ≥ |M |. Then the edge b and

matching set M ′ would together form a matching of size |M |+1 and this would contradict that

F has a maximum matching M of size |M |. Now, suppose we choose M ′ ≡ M \ {e} as the

maximum matching of G′ and let L′ be the second maximum matching after M ′. If we remove

the edges of M ′ from G′, the remaining graph would be a star graph. Therefore, the size of

second maximum matching L′ is exactly one. Now, using Lemma 61, we can cover G′ using

|M ′| + |L′| − 1 vertices. Thus the vertex cover (including the vertex u) of the entire graph F

has a size at most |M ′|+ |L′| = |M |. This proves the lemma.

Lemma 68 (Extra Cost). If F ′ is a bridge graph Lp,q for some p, q ≥ 1, then the extra cost of

F is at least
(√

2− 1
)
· |M | − 0.28.

Proof. We decompose F into two subgraphs: GM and F ′. It gives the following bound on the

optimal cost of F .

cost∗(F ) ≥ cost∗(GM) + cost∗(F ′) (6.6)

We already know the bounds on the optimal costs of GM and F ′. That is,

• cost∗(GM)
Corollary 28

≥
√
2 ·
√
|M | (|M | − 1)

(Lemma 44, |M| ≥ 3)

≥
√
2 ·
(
|M | − (3−

√
6)
)
≥
√
2 ·

|M | − 0.78.

• cost∗(F ′)
Lemma 57

≥ |F ′| − 0.342.
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We substitute the above values in Equation (6.6). It gives the following inequality:

cost∗(F ) ≥ |F ′|+ |M |+
(√

2− 1
)
|M | − 1.122

= |F |+
(√

2− 1
)
|M | − 1.122

>
√
|F |(|F | − 1) + 0.5 +

(√
2− 1

)
|M | − 1.122 (using Lemma 44)

>
√
|F |(|F | − 1) +

(√
2− 1

)
|M | − 0.63

This completes the proof.

Corollary 35. If F ′ is a bridge graph Lp,q for some p, q ≥ 1, then F has a vertex cover of size

at most 1.53 +
(√

2 + 1
)
δ(F ).

Proof. The proof follows from the following sequence of inequalities:

1.53 +
(√

2 + 1
)
δ(F )

Lemma 68

≥ |M |+ 1.53−
(√

2 + 1
)
(0.63) > |M | Lemma 67

= |V C(F )|.

6.6.3.4 Case: |L| = 2 and F′ is Non-Bridge Graph

Lemma 69 (Vertex Cover). If |L| = 2 and F ′ is a non-bridge graph, then F has a vertex cover

of size at most |M |+ 1.

Proof. The proof simply follows from Lemma 61 for |L| = 2.

Lemma 70 (Extra Cost). If |L| = 2 and F ′ is a non-bridge graph, the extra cost of F is at least(√
2− 1

)
· |M |+ 0.5

Proof. We decompose F into two subgraphs: GM and F ′. It gives the following bound on the

optimal cost of F .

cost∗(F ) ≥ cost∗(GM) + cost∗(F ′) (6.7)
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We already know the bounds on the optimal costs of GM and F ′. That is,

• cost∗(GM)
Corollary 28

≥
√
2 ·
√
|M | (|M | − 1)

(Lemma 44, |M| ≥ 3)

≥
√
2 ·
(
|M | − (3−

√
6)
)
≥
√
2 ·

|M | − 0.78.

• cost∗(F ′)
Lemma 58

≥ |F ′|.

We substitute the above values in Equation (6.7). It gives the following inequality:

cost∗(F ) ≥ |F ′|+ |M |+
(√

2− 1
)
|M | − 0.78

= |F |+
(√

2− 1
)
|M | − 0.78 (∵ |F | = |F ′|+ |M |)

>
√
|F |(|F | − 1) + 0.5 +

(√
2− 1

)
|M | − 0.78 (using Lemma 44)

=
√
|F |(|F | − 1) +

(√
2− 1

)
|M | − 0.28

This completes the proof.

Corollary 36. If F ′ is a non-star non-bridge graph, then F has a vertex cover of size at most

1.68 +
(√

2 + 1
)
δ(F ).

Proof. The proof follows from the following sequence of inequalities:

1.68 +
(√

2 + 1
)
δ(F )

Lemma 70

≥ |M |+ 1.68−
(√

2 + 1
)
(0.28) > |M |+ 1

Lemma 69
= |V C(F )|.

6.6.3.5 Case: |L| ≥ 3 and F′′ is Bridge Graph

Since |L| ≥ 3, Lemma 61 gives a vertex cover of size at most |M | + |L| − 1, which is at least

|M | + 2. However, we can obtain a stronger bound than this if F ′′ is a bridge graph as shown

in the following lemma.

Lemma 71. If |L| ≥ 3 and F ′′ is a bridge graph Lp,q for some p, q ≥ 1, then F has a vertex

cover of size at most |M |+ 1.
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Proof. We will incrementally construct a vertex cover S of size |M | + 1. Initially, S is empty,

i.e., S = ∅. Let b ≡ (u, v) be the bridge edge of Lp,q. We will add both vertices u and v to the set

S, so that it covers all edges in F ′′. Now, we remove all the edges in the graph that are covered

by u and v. Let M ′ and L′ be the remaining sets corresponding to M and L, respectively. Let

G′ be the graph spanned by the edge set M ′∪L′. Now, observe that G′ does not contain any odd

cycles; otherwise there would be two adjacent edges in the cycle that would belong to the same

set M ′ or L′. Moreover, G′ has a maximum matching of size at most |M | − 1. This is because,

the edge b is vertex-disjoint from every edge of G′ and if G′ has a matching of size at least |M |,

then this matching together with b form a matching of size |M | + 1. This contradicts the fact

that F has the maximum matching of size |M |. Since G′ is bipartite and has a matching of size

at most |M | − 1, it admits a vertex cover of size |M | − 1 (using the Kőnig’s Theorem [31]).

Thus, the vertex cover (including the vertices u and v) of the entire graph has a size at most

|M |+ 1. This completes the proof of the lemma.

Lemma 72. If |L| ≥ 3 and F ′′ is a bridge graph Lp,q for some p, q ≥ 1, then the extra cost of

F is at least (
√
2− 1) · (|M |+ |L|)− 1.41.

Proof. We decompose F into three subgraphs: GM , GL, and F ′′. Then, it gives the following

bound on the optimal cost of F .

cost∗(F ) ≥ cost∗(GM) + cost∗(GL) + cost∗(F ′′) (6.8)

We already know the bounds on the optimal costs of GM , GL and F ′′. That is,

• cost∗(GM)
Corollary 28

≥
√
2 ·
√
|M | (|M | − 1)

(Lemma 44, |M| ≥ 3)

≥
√
2 ·
(
|M | − (3−

√
6)
)
≥
√
2 ·

|M | − 0.78.

• cost∗(GL)
(using Corollary 28)

=
√
2 ·
√
|L| (|L| − 1)

(Lemma 44, |L| ≥ 3)

≥
√
2 ·
(
|L| − (3−

√
6)
)
≥
√
2 ·

|L| − 0.78.
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• cost∗(F ′′)
Lemma 57

≥ |F ′′| − 0.342.

We substitute the above values in Equation (6.8). It gives the following inequality:

cost∗(F ) ≥ |M |+ |L|+ |F ′′|+ (
√
2− 1) · (|M |+ |L|)− 1.902

= |F |+ (
√
2− 1) · (|M |+ |L|)− 1.902

>
√
|F |(|F | − 1) + 0.5 + (

√
2− 1) · (|M |+ |L|)− 1.902 (using Lemma 44)

>
√
|F |(|F | − 1) + (

√
2− 1) · (|M |+ |L|)− 1.402

This completes the proof.

Corollary 37. If |L| ≥ 3 and F ′′ is a bridge graph Lp,q for some p, q ≥ 1, then F has a vertex

cover of size at most 1.4 +
(√

2 + 1
)
δ(F ).

Proof. The proof follows from the following sequence of inequalities:

1.4+
(√

2 + 1
)
δ(F )

Lemma 72

≥ |M |+ |L|+1.4−
(√

2 + 1
)
(1.402)

(|L| ≥ 3)

> |M |+1
Lemma 71
= |V C(F )|.

This completes the analysis for all graph instances.

6.7 Bi-criteria Hardness of Approximation
In the previous section, we showed that the k-median problem cannot be approximated to any

factor smaller than (1 + ε), where ε is some positive constant. The next step in the beyond

worst-case discussion is to study the bi-criteria approximation algorithms. That is, we allow

the algorithm to choose more than k centers and analyse whether it produces a solution that is

close to the optimal solution with respect to k centers? Since the algorithm is allowed to output

more than k centers we can hope to get a better approximate solution. An interesting question

in this regard would be: Does there exist a PTAS (polynomial time approximation scheme) for
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the k-median/k-means problem when the algorithm is allowed to choose βk centers for some

constant β > 1? In other words, is there an (1 + ε, β)-approximation algorithm? Note that

here we compare the cost of βk centers with the optimal cost with respect to k centers. See

Section 6.1 for the definition of (α, β) bi-criteria approximation algorithms.

In this section, we show that even with βk centers, the k-means/k-median problems cannot be

approximated within any factor smaller than (1 + ε′), for some constant ε′ > 0.The following

theorem state this result formally.

Theorem 68 (Bi-criteria Hardness: k-Median). For any constant 1 < β < 1.015, there exists

a constant ε > 0 such that there is no (1 + ε, β)-approximation algorithm for the Euclidean

k-median problem assuming the Unique Games Conjecture.

Theorem 69 (Bi-criteria Hardness: k-Means). For any constant 1 < β < 1.28, there exists

a constant ε > 0 such that there is no (1 + ε, β)-approximation algorithm for the Euclidean

k-means problem assuming the Unique Games Conjecture. Moreover, the same result holds for

any 1 < β < 1.1 under the assumption that P ̸= NP.

First, let us prove the bi-criteria inapproximability result for the k-median problem.

6.7.1 Bi-criteria inapproximability: k-Median

In this subsection, we give a proof of Theorem 68. Let us define a few notations. Suppose

I = (C, k) be some k-median instance. Then, OPT(C, k) denote the optimal k-median cost of

C. Similarly, OPT(C, βk) denote the optimal βk-median cost of C (or the optimal cost of C

with βk centers). We use the same reduction as we used in the previous section for showing the

hardness of approximation of the k-median problem. Based on the reduction, we establish the

following theorem.

Theorem 70. There is an efficient reduction from Vertex Cover on bounded degree triangle-

free graphs G (with m edges) to Euclidean k-median instances I = (C, k) that satisfies the
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following properties:

1. If G has a vertex cover of size k, then OPT(C, k) ≤ m− k/2

2. For any constant 1 < β < 1.015, there exists constants ε, δ > 0 such that if G has no

vertex cover of size ≤ (2− ε) · k, then OPT(C, βk) ≥ m− k/2 + δk.

Proof. Since the reduction is the same as we discussed in Section 6.3 and 6.5, we keep all

notations the same as before. Also, note that Property 1 in this theorem is the same as Property

1 of Theorem 67. Therefore, the proof is also the same as we did in Section 6.5.1. Now, we

directly move to the proof of Property 2.

The proof is almost the same as we gave in Section 6.5.2. However, it has some minor dif-

ferences since we consider the optimal cost with respect to βk centers instead of k centers.

Now, we prove the following contrapositive statement: “For any constants 1 < β < 1.015 and

ε > 0, there exists constants ε, δ > 0 such that if OPT(C, βk) < (m − k/2 + δk) then G

has a vertex cover of size at most (2 − ε)k”. Let C denote an optimal clustering of C with βk

centers. We classify its optimal clusters into two categories: (1) star and (2) non-star. Further,

we sub-classify the star clusters into the following two sub-categories:

(a) Clusters composed of exactly one edge. Let these clusters be: P1, P2, . . . , Pt1 .

(b) Clusters composed of at least two edges. Let these clusters be: S1, S2, . . . , St2 .

Similarly, we sub-classify the non-star clusters into the following two sub-categories:

(i) Clusters with a maximum matching of size two. Let these clusters be: W1,W2, . . . ,Wt3

(ii) Clusters with a maximum matching of size at least three. Let these clusters be: Y1, Y2, . . . , Yt4
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Note that t1+ t2+ t3+ t4 equals βk. Suppose, we first compute a vertex cover of all the clusters

except the single edge clusters: P1, . . . , Pt1 . Let that vertex cover be V C ′. Now, some vertices

in V C ′ might also cover the edges in P1, . . . , Pt1 . Suppose there are t′1 single edge clusters

that remain uncovered by V C ′. Without loss of generality, we assume that these clusters are

P1, . . . , Pt′1
. By Lemma 51, we can cover these clusters with (

2t′1
3

+ 8δk) ≤ (2t1
3

+ 8δk)

vertices; otherwise the graph would have a vertex cover of size at most (2k− δk), and the proof

of Property 2 would be complete. Now, we bound the vertex cover of the entire graph in the

following manner.

|V C(G)| ≤
t1∑
i=1

|V C(Pi)|+
t2∑
i=1

|V C(Si)|+
t3∑
i=1

|V C(Wi)|+
t4∑
i=1

|V C(Yi)|

≤
(
2t1
3

+ 8δk

)
+ t2 +

t3∑
i=1

((√
2 + 1

)
δ(Wi) + 1.62

)
+

t4∑
i=1

((√
2 + 1

)
δ(Yi) + 1.8

)
,

(using Lemmas 49, 50, and 51)

= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)( t3∑

i=1

δ(Wi) +

t4∑
i=1

δ(Yi)

)

Since the optimal cost OPT (C, βk) =

βk∑
j=1

√
mj(mj − 1)+

t3∑
i=1

δ(Wi)+

t4∑
i=1

δ(Yi) ≤ m−k/2+

δk, we get
t3∑
i=1

δ(Wi)+

t4∑
i=1

δ(Yi) ≤ m−k/2+δk−
βk∑
j=1

√
mj(mj − 1). We substitute this value

in the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4+(√
2 + 1

)
·

(
m− k/2−

βk∑
j=1

√
mj(mj − 1) + δk

)

Using Lemma 44, we obtain the following inequalities:
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1. For Pj ,
√
m(Pj) (m(Pj)− 1) ≥ m(Pj)− 1 since m(Pj) = 1

2. For Sj ,
√

m(Sj) (m(Sj)− 1) ≥ m(Sj)− (2−
√
2) since m(Sj) ≥ 2

3. For Wj ,
√
m(Wj) (m(Wj)− 1) ≥ m(Wj)− (2−

√
2) since m(Wj) ≥ 2

4. For Yj ,
√

m(Yj) (m(Yj)− 1) ≥ m(Yj)− (3−
√
6) since m(Yj) ≥ 3

We substitute these values in the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)
·

(
m− k/2−

t1∑
j=1

(m(Pj)− 1)−
t2∑
j=1

(
m(Sj)− (2−

√
2)
)
−

t3∑
j=1

(
m(Wj)− (2−

√
2)
)
−

t4∑
j=1

(
m(Yj)− (3−

√
6)
)
+ δk

)

Since m =

t1∑
j=1

m(Pj)+

t2∑
j=1

m(Sj)+

t3∑
j=1

m(Wj)+

t4∑
j=1

m(Yj), we get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)
·

(
− k/2 + t1 +

+ t2 ·
(
2−
√
2
)
+ t3 ·

(
2−
√
2
)
+ t4 ·

(
3−
√
6
)
+ δk

)

= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)
·

(
(β − 1)k

2
− βk

2
+ t1 +

+ t2 ·
(
2−
√
2
)
+ t3 ·

(
2−
√
2
)
+ t4 ·

(
3−
√
6
)
+ δk

)
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Now, we substitute βk = t1 + t2 + t3 + t4, and obtain the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4

+
(√

2 + 1
)
·
(
(β − 1)k

2
+

t1
2
+

t2
10

+
t3
10

+
3t4
50

+ δk

)
= (1.88)t1 + (1.25)t2 + (1.87)t3 + (1.95)t4 +

(√
2 + 1

)
· (β − 1)k

2
+
(√

2 + 9
)
δk

< (1.95)βk +
(√

2 + 1
)
· (β − 1)k

2
+
(√

2 + 9
)
δk (using t3 + t4 + t1 + t2 = βk)

< (3.16)βk − (1.21)k +
(√

2 + 9
)
δk

≤ (2− ε)k, for β < 1.015 and appropriately small constants ε, δ > 0

This proves Property 2 and it completes the proof of Theorem 70.

The following corollary states the main bi-criteria inapproximability result for the k-median

problem.

Corollary 38. There exists a constant ε′ > 0 such that for any constant 1 < β < 1.015, there is

no (1+ ε′, β)-approximation algorithm for the k-median problem assuming the Unique Games

Conjecture.

Proof. In the proof of Corollary 26, we showed that k ≥ m
2∆

for all the hard Vertex Cover

instances. Therefore, the second property of Theorem 70, implies that OPT(C, βk) ≥ (m −
k
2
) + δk ≥ (1 + δ

2∆
) · (m − k

2
). Thus, the k-median problem can not be approximated within

any factor smaller than 1 + δ
2∆

= 1 + Ω(ε), with βk centers for any β < 1.015.

Now, we prove the bi-criteria inapproximability result corresponding to the k-means objective.
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6.7.2 Bi-criteria inapproximability: k-Means

Here, we again use the same reduction that we used earlier for the k-median problem in Sec-

tions 6.3, 6.5, and 6.7.1. Using this, we establish the following theorem.

Theorem 71. There is an efficient reduction from Vertex Cover on bounded degree triangle-

free graphs G (with m edges) to Euclidean k-means instances I = (C, k) that satisfies the

following properties:

1. If G has a vertex cover of size k, then OPT(C, k) ≤ m− k

2. For any 1 < λ ≤ 2 and β <
2

7
·
(
λ+

5

2

)
, there exists constants ε, δ > 0 such that if G

has no vertex cover of size ≤ (λ− ε) · k, then OPT(C, βk) ≥ m− k + δk.

This theorem is simply an extension of the result of Awasthi et al. [19] to the bi-criteria setting.

Now, let us prove this theorem.

6.7.2.1 Completeness

Note that the proof of completeness is already given in [19]. Therefore, we just describe the

main components of the proof for the sake of clarity. To understand the proof, let us define

some notations used in [19]. Suppose F is a subgraph of G. For a vertex v ∈ V (F ), let dF (v)

denote the number of edges in F that are incident on v. Note that, the optimal center for 1-

means problem is simply the centroid of the point set. Therefore, we can compute the optimal

1-means cost of F . The following lemma states the optimal 1-means cost of F .

Lemma 73 (Claim 4.3 [19]). Let F be a subgraph of G with r edges. Then, the optimal 1-means

cost of F is
∑

v dF (v)
(
1− dF (v)

r

)

The following corollary bounds the optimal 1-means cost of a star cluster. This corollary is

implicitly stated in the proof of Claim 4.4 of [19].



262 Hardness of Approximation: k-Median

Corollary 39. The optimal 1-means cost of a star cluster with r edges is r − 1.

Using the above corollary, we give the proof of completeness. Let V = {v1, . . . , vk} be a vertex

cover of G. Let Si denote the set of edges covered by vi. If an edge is covered by two vertices

i and j, then we arbitrarily keep the edge either in Si or Sj . Let mi denote the number of

edges in Si. We define {C(S1), . . . , C(Sk)} as a clustering of the point set C. Now, we show

that the cost of this clustering is at most m − k. Note that each Si forms a star graph with its

edges sharing the common vertex vi. The following sequence of inequalities bound the optimal

k-means cost of C.

OPT(C, k) ≤
k∑

i=1

cost∗(Si)
(Corollary 39)

=
k∑

i=1

(m(Si)− 1) = m− k.

6.7.2.2 Soundness

For the proof of soundness, we prove the following contrapositive statement: “For any constant

1 < λ ≤ 2 and β < 2
7
·
(
λ+ 5

2

)
, there exists constants ε, δ > 0 such that if OPT (βk) ≤

(m−k+ δk) then G has a vertex cover of size at most (λ−ε)k, for ε = Ω(δ).” Let C denote an

optimal clustering of C with βk centers. We classify its optimal clusters into two categories: (1)

star and (2) non-star. Suppose there are t1 star clusters: S1, . . . , St1 , and t2 non-star clusters:

F1, F2, . . . , Ft2 . Note that t1+ t2 equals βk. The following lemma bounds the optimal 1-means

cost of a non-star cluster.

Lemma 74 (Lemma 4.8 [19]). The optimal 1-means cost of any non-star cluster F with m

edges is at least m− 1 + δ(F ), where δ(F ) ≥ 2
3
. Furthermore, there is an edge (u, v) ∈ E(F )

such that dF (u) + dF (v) ≥ m+ 1− δ(F ).

In the actual statement of the lemma in [19], the authors mentioned a weak bound of δ(F ) >

1/2. However, in the proof of their lemma they have shown δ(F ) > 2/3 > 1/2. This difference

does not matter when we consider inapproximability of the k-means problem. However, this
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difference improves the β value in bi-criteria inapproximability of the k-means problem.

Corollary 40 ([19]). Any non-star cluster F has a vertex cover of size at most 1 + 5

2
· δ(F ).

Proof. Suppose (u, v) be an edge in F that satisfies the property: dF (u)+dF (v) ≥ m+1−δ(F ),

by Lemma 74. This means that u and v covers at least m(F ) − δ(F ) edges of F . We pick u

and v in the vertex cover, and for the remaining δ(F ) edges we pick one vertex per edge.

Therefore, F has a vertex cover of size at most 2 + δ(F ). Since δ(F ) ≥ 2

3
, by Lemma 74, we

get 2 + δ(F ) ≤ 1 + 5
2
· δ(F ). Hence, F has a vertex cover of size at most 1 + 5

2
· δ(F ). This

proves the corollary.

Now, the following sequence of inequalities bound the vertex cover size of the enire graph G.

|V C(G)| ≤
t1∑
i=1

|V C(Si)|+
t2∑
i=1

|V C(Fi)|

≤ t1 +

t2∑
i=1

(
1 +

5

2
· δ(Fi)

)
(using Corollary 40)

= t1 + t2 +
5

2
·

t2∑
i=1

δ(Fi)

Since the optimal k-means cost OPT(C, βk) =
t1∑
i=1

(m(Si)− 1) +

t2∑
i=1

(m(Fi)− 1 + δ(Fi)) ≤

m − k + δk, and t1 + t2 = βk. Therefore,
t2∑
i=1

δ(Fi) ≤ (β − 1)k + δk. On substituting this

value in the previous equation, we get the following inequality:

|V C(G)| ≤ t1 + t2 +
5

2
· (β − 1)k +

5

2
· δk

= βk +
5

2
· (β − 1)k +

5

2
· δk, (∵ t1 + t2 = βk)

≤ (λ− ε)k, for β <
2

7
·
(
λ+

5

2

)
and appropriately small constants ε, δ > 0
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This proves the soundness condition and it completes the proof of Theorem 71. Based on

this theorem, the following corollary states the main bi-criteria inapproximability result for the

k-means problem.

Corollary 41. For any constant 1 < β < 1.28, there exists a constant ε′ > 0 such that there is

no (1 + ε′, β)-approximation algorithm for the k-means problem assuming the Unique Games

Conjecture. Moreover, the same result holds for any 1 < β < 1.1 under the assumption that

P ̸= NP.

Proof. Suppose Vertex Cover can not be approximated to any factor smaller than λ − ε, for

some constant ε, λ > 0. In the proof of Corollary 26, we showed that k ≥ m
2∆

for all the

hard Vertex Cover instances. In that case, the second property of Theorem 71 implies that

OPT(C, βk) ≥ (m − k) + δk ≥ (1 + δ
2∆

) · (m − k). Thus, the k-means problem can not be

approximated within any factor smaller than 1 + δ
2∆

= 1 + Ω(ε), with βk centers. Now, let us

compute the value of β based on the value of λ. We know that β <
2

7
·
(
λ+

5

2

)
. Consider the

following two cases:

• By Corollary 25, Vertex Cover is hard to approximate within any factor smaller than 2−ε

on bounded degree triangle-free graphs assuming the Unique Games Conjecture. Hence

λ = 2 and thus β < 1.28 assuming the Unique Game Conjecture.

• By Theorem 64, Vertex Cover is hard to approximate within any factor smaller than 1.36

on bounded degree triangle-free graphs assuming P ̸= NP. Hence λ = 1.36 and thus

β < 1.1 assuming P ̸= NP.

This completes the proof of the corollary.



Chapter 7

Conclusion and Future Work

In this study, we designed FPT time constant-approximation algorithms for a range of con-

strained clustering problems, namely r-gather, r-capacity, balanced, ℓ-diversity, chromatic,

strongly-private, fault-tolerant, and fair clustering problems. We designed these algorithms for

the k-supplier, k-center, k-median, and k-means clustering objectives in general metric spaces.

Moreover, we extended these algorithms to the outlier versions of the problems.

We used a simple technique to design the algorithms: obtaining a polynomial time bi-criteria

approximation algorithm and converting it to an FPT time algorithm. However, we observed

that this technique only gives a solution to the soft-assignment version of the problems. For

the hard-assignment version, we used distance-based sampling techniques to design the algo-

rithms. Unfortunately, the distance-based sampling technique only works with the k-median

and k-means objectives. For the constrained k-supplier and k-center problems, we leave it as

an open problem to design an FPT time approximation algorithm for the hard-assignment ver-

sion of the problem. Moreover, we converted the algorithms that use distance-based sampling

techniques to streaming algorithms. Therefore, we obtained constant-pass log-space streaming

algorithms for the constrained k-median and k-means problems. We leave it as an open prob-

265
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lem to design constant-pass log-space streaming algorithms for the constrained k-supplier and

k-center problems.

We also studied the socially fair clustering problem, which generalizes the k-supplier and k-

service problems. We designed an FPT time constant factor approximation algorithm for the

problem. Moreover, we showed that the obtained approximation guarantees are tight, assuming

FPT ̸= W[2]. For this problem, the hard-assignment and soft-assignment versions are equiv-

alent. Therefore, we used a simple technique to design the algorithm: obtaining a polynomial

time bi-criteria approximation algorithm and converting it to an FPT time algorithm.

We also studied the constrained k-median and k-means problems in continuous Euclidean

space. There already exists FPT time (1 + ε)-approximation algorithms for the constrained

k-median and k-means problems in continuous Euclidean space. We extend the algorithms to

the general distance function ∥.∥z, outlier setting, and streaming setting. Lastly, we provided

the hardness of approximation result for the Euclidean k-median problem in O(log k) dimen-

sional space. This solved an open question posed explicitly in the work of Awasthi et al. [19].

Furthermore, we gave hardness of approximation results for the bi-criteria versions of the Eu-

clidean k-median and k-means problems. In our future work, we aim to study the Euclidean

versions of the k-supplier and k-center problems.
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