An Efficient Graph Cut Algorithm
for Computer Vision Problems

Chetan Arora, Subhashis Banerjee, Prem Kalra, and S.N. Maheshwari

Department of Computer Science and Engineering,
Indian Institute of Technology, Delhi, India
{chetan, suban,pkalra, snm}@cse.iitd.ac.in

Abstract. Graph cuts has emerged as a preferred method to solve a class of en-
ergy minimization problems in computer vision. It has been shown that graph cut
algorithms designed keeping the structure of vision based flow graphs in mind are
more efficient than known strongly polynomial time max-flow algorithms based
on preflow push or shortest augmenting path paradigms [1]]. We present here a
new algorithm for graph cuts which not only exploits the structural properties
inherent in image based grid graphs but also combines the basic paradigms of
max-flow theory in a novel way. The algorithm has a strongly polynomial time
bound. It has been bench-marked using samples from Middlebury [2] and UWO
[3] database. It runs faster on all 2D samples and is at least two to three times
faster on 70% of 2D and 3D samples in comparison to the algorithm reported
in [1]].

1 Introduction

Many problems in computer vision such as image segmentation [4], stereo [5], texture
synthesis [[6], multi-view reconstruction [7] have been modelled as label assignment
problems involving energy minimization. Label assignment problem is NP hard in gen-
eral [8]]. However, for a number of problems (e.g. texture synthesis, segmentation etc.)
the label set has only two labels. It is well known that in the two label case the energy
minimization problem can be modelled as determining a minimum capacity cut in a
flow graph [9]]. Two label case is also important because many multiple labelling algo-
rithms use binary labelling repeatedly to get to an acceptable solution [8l10]. Graph cuts
are also used to solve MAP (maximum a posteriori) solution for discrete MRFs. Apart
from efficient algorithms for determining graph cuts [1/11/12/13], recent research has
focussed on mapping computer vision problems on appropriately constructed graphs
[6110/14U15] and characterizing energy functions that can be minimized by graph cuts
[8L10].

Finding a minimum cut in a flow graph is equivalent to solving the max-flow in it
and [[11/12J13]] focus on implementing/adapting known polynomial time max-flow algo-
rithms to run on flow graphs obtained from vision problems. Boykov and Kolmogorov
[1] have developed a max-flow algorithm specifically with the objective of practical
efficiency when run on such flow graphs. They included a study of comparative perfor-
mance of their algorithm with the standard shortest augmenting path based algorithm
[L6], and variations of the preflow push algorithm [[17418]]. They [1] showed that while

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part III, LNCS 6313, pp. 543556l 2010.
(© Springer-Verlag Berlin Heidelberg 2010

544 C. Arora et al.

the provable time bound (for integer capacities) of their algorithm (referred to as BK
from now on) was weaker (O(n®C), where n is the number of nodes and C'is the cost of
minimum cut in comparison to O(n?3) for the standard algorithms), their algorithm out-
performed the others in practice. Goldberg [[19] compares experimental performance
of BK with some variations of preflow push that have been proposed since [1]. BK
continues to out-perform the others on most and particularly the two dimensional data
sets.

Contribution: We present in this paper a new flow based graph cut algorithm which
is both strongly polynomial and efficient in practice. We show that in comparison to our
new algorithm the best known algorithm [[1] is slower by a factor of 2 to 3 on most of
the BVZ (2D dataset), bone, bunny, babyface and adhead (3D datasets) samples from
the UWO database [3]. On the Middlebury database [2] used by [20] to test their GPU
implementation, we show that our algorithm is 3 times faster than the time reported for
the GPU runs. At a very macro level our algorithm may be viewed as a hybrid of the
preflow push strategy with the layered graph approach of augmenting path methods.
The algorithm keeps the simplicity and locality of preflow strategies while at same
time borrows ideas from layered graph based augmenting path methods to give general
directions to flow.

Section [2] describes our algorithm. In Section Bl we present results and comparison
with currently known best methods in the field followed by conclusion and discussion
in Section 4l

2 Voronoi Based Preflow Push (VPP)

We first review some of the basic terminology we use. We assume that the node set of
original grid graph is augmented by two additional vertices s and ¢ called source and
sink respectively. The edge set of such graph (called flow graph hereinafter) consists
of all the neighbourhood edges called n-links, and ¢-links which connect s and ¢ to all
nodes in N (the edges are directed from s to nodes in IV, and from nodes in N to t).
We assume that between two nodes p and ¢ both directed edges (p, ¢) and (g, p) exist.
Each n-link (p, ¢), and ¢-link connecting a node p € N to s and ¢ has capacity greater
than or equal to zero (V4 denotes capacity of edge (p, ¢)). An (S,T') cut in this flow
graph is defined as a partitioning of the nodes into sets S and 7" such that s is in S
and ¢ is in T'. Capacity of an (S, T') cut is the sum of the capacities of edges directed
from S to T'. Flow in a flow graph is a non negative real valued function that associates
a value fp, with an edge (p, q) in the flow graph where f,, < V. Effective flow in
edge (p, q) is, therefore, equal to fy,q - fqp. Residual capacity of an edge (p, q), denoted
by residue(p, q), is a measure of the additional flow that can be sent through it in the
presence of some existing flow. An edge with non-zero residual capacity is called a
residual edge. In-flow/Out-flow at node is the sum of the effective flow in all the edges
directed into/out of node. A flow is a preflow if in-flow is at least as large as out-flow at
all nodes other than the source and the sink. Excess(v) of a node v is equal to in-flow
minus out-flow at node v. Consider a starting configuration in which flow is set equal
to the capacity in ¢-links and equal to zero in n-links. Now if we label the vertices other
than s and ¢ by their excesses, it is easy to see that the original max-flow problem is

An Efficient Graph Cut Algorithm for Computer Vision Problems 545

equivalent to finding max-flow in the flow graph in which all ¢-links have been removed.
Source-Sink max-flow problem is solved in the resultant flow graph by treating nodes
with positive excesses as sources and those with negative excesses as sinks. From now
on we will assume that the max-flow problem is being solved on such a flow graph.
It should be noted that in this version of the problem sources and sinks do not have
unlimited capacity, rather they have the ability to send or absorb only the amount equal
to the excess on them. With every node v of the grid graph we associate label d(v)
called distance label (or simply label) satisfying the following conditions: d(v) = 0 for
all nodes with negative excesses and for every residual edge (v, w), d(v) < d(w) + 1.
A residual edge (v, w) will be an out-edge/in-edge of v/w if d(v) = d(w) + 1.

Broad steps of our algorithm (referred to as VPP hereafter) are given in Algorithm
[Il Our algorithm differs from standard preflow push based algorithms in some crucial
ways.

Algorithm 1. Voronoi Based Preflow Push

: Create shortest distance based Voronoi region graphs around sink clusters;

. for Voronoi region graphs with sources do

3: Push flow from the sources towards the sink cluster in each such Voronoi region followed
by pushing flow within the sink cluster;

rebuild the Voronoi region graphs around remaining sink clusters;

5: end for

DN =

»

1. Unlike preflow push algorithms we maintain exact distance labels from the sinks.
Note that in computer vision problems, sources and sinks are very often clustered
(collection of source(sink) nodes in which there is a path between any two nodes
passing through only nodes in the collection is called a cluster). Also such clus-
ters are often interspersed. In VPP distance labels are shortest distance to a sink
node on a sink cluster boundary. Initially these labels are generated by the standard
global labelling procedure of push relabel algorithms and at later iterations by an
incremental relabelling algorithm developed specifically to control the number of
nodes relabelled at each iteration. Assignment of distance labels stops once all the
sources are labelled. The subgraphs of nodes and their in and out edges reachable
from a sink cluster are called Voronoi region graph.

2. Flow is pushed in a push flow iteration by processing the nodes in topological sort
order (similar to the highest label first heuristic in preflow push algorithms). This
ensures that once flow is pushed out of a node flow will not be pushed in it in the
current push iteration. There is no local relabelling step at all.

3. Once flow reaches the boundary nodes of a sink cluster the second phase of the
push iteration is initiated. This consists of starting from all the boundary nodes of a
sink cluster and pushing flow inwards in the sink cluster by processing the cluster
nodes in a breadth first manner till either all the excess gets absorbed among the
nodes of the cluster or there are no nodes left in the cluster. The first case will result
in a smaller sink cluster(s) and in the second the sink cluster will disappear. In push
relabel based algorithms when a boundary sink node of a cluster gets saturated,
the inside neighbour in the cluster gets exposed. This results in distance labels of

546 C. Arora et al.

a large set of nodes to be recomputed. Pushing flow within a sink cluster before
relabelling contributes to pushing as much flow as possible towards sink clusters
between two relabelling steps.

Maintaining exact distance labels and the flow pushing strategy used ensures that flow
that gets pushed into a sink cluster originates only from sources that lie on the Voronoi
region graphs associated with the sink cluster. Also, because flow pushing to all sink clus-
ters takes place simultaneously between two relabelling iterations, changes in Voronoi
boundaries is incremental as long as sink clusters do not disappear. In effect most of the
time flow pushing towards a sink cluster takes place within that part of the grid graph
that became part of the Voronoi region graph during initialization. Normally only af-
ter a cut has been discovered and/or a sink cluster has disappeared will sources change
their association and become part of other Voronoi region graphs. Such changes in as-
sociation contribute significantly to the relabelling cost. Pushing flow within Voronoi
regions, therefore, works to control relabelling costs. Preflow push algorithms with lo-
cal relabelling cannot focus on this issue as implicit Voronoi boundaries can change with
every relabel. At the surface level algorithms like HI_PR [18] which use variations of
highest level first push strategy with occasional global relabelling (the process of creat-
ing exact distance labels) seem to be very similar. However, we show in section 3] that
the number of nodes touched in HI_PR in both pushing flow and relabelling phases is
an order of magnitude larger than our algorithm. This is primarily due to: (i) there are
no wasteful local relabelling steps: flow pushing takes place only within Voronoi region
graphs, (ii) repeated relabelling caused by shrinking cluster boundaries is avoided, and
(ii1) incremental relabelling process, explained in detail in a following section, ensures
efficient calculation of exact distance labels.

Details of steps at line number 1, 3, and 4 of Algorithm[T]are provided in the follow-
ing sections.

2.1 Initialization

We call the process of creating shortest distance based Voronoi region graphs as the
initialization phase. This process is similar to the global relabelling phase of a tradi-
tional preflow push algorithm starting with initializing all sinks at distance label 0. The
Voronoi region graphs with in/out edge lists at every node get created. Excess(v) is ini-
tialized to O for all nodes v other than sources and sinks. For all source and sink nodes
excess(v) is set equal to source capacity if v is a source or equal to negative of sink
capacity if v is a sink. Initialization also inserts all sources in structures called Excess
List (EL). Excess lists are maintained for each distance label. EL(d) contains source
nodes with distance label d. d,,q, is the largest distance label assigned to any node.

2.2 Push Flow

Push flow happens in two phases. First phase (Algorithm) takes excess from sources
to the boundaries of sink cluster following the highest distance label first strategy. At a
node flow is pushed saturating the out edges till the node has no excess left or all out
edges of the node get saturated. The saturated out edges are deleted and a node whose

An Efficient Graph Cut Algorithm for Computer Vision Problems 547

all out-edges are deleted is inserted in a list called Disconnected List(DL). Pushing flow
may also involve inserting the node into which flow is being pushed into an E'L and
deleting the node whose excess becomes zero from an FL. DLs are maintained for
each distance label d. Second phase moves the excess that accumulates at boundary
nodes of a sink cluster inside the sink cluster. Second phase (Algorithm[@) starts from
those sink cluster boundary nodes with positive excess on them and pushes the excess
inside the cluster in a breadth first manner.

Algorithm 2. Voronoi Push Flow Phase 1
1: for d = dmas..1 do
2: forallvin EL(d) do
3 while excess(v) > 0 and v has out-edges do
4: pick an out-edge (vw);
5: Push_Flow_in_Edge (vw);
6.
7

insert w in EL(d(w)) if not already inserted;
if residue(v,w) = 0, delete edge (v,w) from out-edges and in-edges of v and w

respectively;
&: end while
9: delete v from EL(d);
10: if all out-edges of v have been deleted, then insert v in DL(d);
11: end for
12: end for

Procedure 3. Push_Flow_in_Edge (v,w)

o f — min(excess(v), residue(v, w));
excess(v) — excess(v) — f;
excess(w) «— excess(w) + f;
residue(v, w) « residue(v,w) —
residue(w,v) «— residue(w,v) +

SDRwN e

fs
f.

s

2.3 Rebuilding the Acyclic Voronoi Regions

A node v is labelled disconnected during the Push flow stage because all paths from v
to the sink of a Voronoi region graph have been saturated and there is no remaining path
from v to a sink in the Voronoi region graph on which flow can be pushed. Specifically,
these are nodes put in DL(d) in step 10 of Algorithm 2] It is important to note here
that these nodes are not all the nodes for which there do not exist augmenting paths in
the Voronoi region graphs after the Push flow stage. Other nodes in the Voronoi region
graphs for which all paths to a sink pass through nodes put in DL(d) are also effectively
disconnected. Algorithm [3 identifies all such additional nodes (step 5) and adds them
to the DL(d). Other nodes (i.e. nodes not put in DL(d) in step 10 of Algorithm 2]
or step 5 of Algorithm 3 continue to have augmenting paths to sinks in the Voronoi
region graphs and hence have the correct shortest distance label. An augmenting path
from a node v in DL(d) to a sink in the new residual graph will necessarily have to

548 C. Arora et al.

Algorithm 4. Push Flow Phase 2

1: for all sinks v set B fsLevel(v) = oo;
2: for all v in EL(0) do
if excess(v) > 0 then
BfsLevel(v) =0
insert v in CurrentBfsList
end if
end for
while CurrentBfsList is not empty do
9: for all v in CurrentBfsList do

b

e A

10: while any (v,w) with residue(v,w) > 0 exists and excess(v) > 0 do
11: if w is a sink with B fsLevel(w) > B fsLevel(v) then

12: Push_Flow_in_Edge (vw);

13: if BfsLevel(w) = oo then B fsLevel(w) « B fsLevel(v) + 1;
14: insert w in NextBfsList if not already inserted;

15: end if

16: end while

17: if excess(v) > 0 then insert v in DL(0);

18: delete v from CurrentBfsList;

19: end for

20: swap CurrentBfsList and NextBfsList;
21: end while

pass through a node which continues to retain its shortest distance label after a push
flow stage. Also, such a path, if it exists, from a node v, whose all out edges have
been saturated during push flow, will have to pass through a neighbour w not in its
out-edge list as it existed when flow was pushed last. For such a node w, d(w) was
greater than or equal to d(v) in the Voronoi region graph in which flow was pushed,
and so the new label for v will be larger than its current label. This also implies that
the label of all those nodes u, for which augmenting paths to the sink pass through v in
the new residual graph, either increase their labels as well or the edge (#,v) be dropped
from the Voronoi region graph to retain consistency among distance labels. We give
below a two phase incremental relabelling process the first phase of which (Algorithm
[3) identifies nodes whose shortest distance labels will increase (the disconnected nodes
added to DL(d)s) and those which have residual edges pointing to them from a newly
discovered disconnected node (inserted in a Rebuild List (RL)). In first phase the DL
lists are processed in order of increasing distance labels thereby ensuring that at the
end of processing nodes in DI(d), the DL(d + 1) and RL(d) lists have been correctly
computed. Nodes in RL(d) can provide distance label d + 1 to disconnected nodes.

To ensure that disconnected nodes get the shortest distance label, second phase (Al-
gorithm[6)) starts with the lowest level non empty rebuild list. It can be shown that after
RL(d) has been processed all disconnected nodes which are at shortest distance d + 1
from a sink have been so labelled. Such nodes would necessarily have to have a resid-
ual edge directed from them to a node whose shortest distance label is d. The phase
one and two ensure that such nodes will be in RL(d). It is possible that in the process
of rebuilding, a node shifts from one Voronoi region to another. This will depend upon

An Efficient Graph Cut Algorithm for Computer Vision Problems 549

Algorithm 5. Rebuild Phase 1

1: for d = 0..dmaz do
2: foreach vin DL(d) do
3 for all edges (w,v) do
4: remove edge (w,v) from out-edges and in-edges of w and v respectively;
5: if there are no out-edges in w then insert it in DL(d(w));
6 if w exists in RL(d(w)) then delete it from RL(d(w));
7 end for
8 for all residual edges (v,u), if u has any out-edge, then insert u in RL(d(u)) if not already
inserted;
9: d(v) «— oo
10: delete v from DL(d);
11: end for
12: end for

the Voronoi region to which the node in the rebuild list through which the disconnected
node finds a new path to a sink belonged.

Algorithm 6. Rebuild Phase 2

1: for d = 0..dmaz do

2: for each vin RL(d) do

3 for all edges (w,v) with residual(w,v) > 0 do

4: if d(w) = d + 1 then

5: make (w,v) an out-edge of w and in-edge of v;
6 else

7 if d(w) = oo then

8: dw) —d+1;

9: if dmae < d(w) then dpmaz — d(w);
10: if excess(w) > 0 then insert w in EL(d(w))
11: make (w, v) an out-edge of w and in-edge of v;
12: insert w in RL(d(w));
13: end if
14: end if
15: end for
16: delete v from RL(d);
17: end for

18: end for

Figures [I(a)} [[(b)} and depict the state of the flow graph prior to a push flow
iteration, after the push flow iteration, and after the corresponding rebuild phase. In
these figures sinks clusters are circles labelled A,B,C, and D. Rest of the circles are
source clusters. Figure [L(a) represents a possible scenario prior to a push phase with
four Voronoi regions corresponding to the four sink clusters. Directed lines are parts of
the shortest paths that exist in the Voronoi region graphs. Flow will get pushed in each of
these four Voronoi region graphs starting from the furthest away sources in topological

550 C. Arora et al.

VRG-A _ VRG-D VRG-A' (-_h « VRG-D VRG-A Ox VRG-D
. A.\/ 5 / O AR \.‘—’C‘\ f.A \ \‘\f
] B/ T~ ° ‘/'\',I‘. = ? S il °
B / 0 & / Lo o c
VRG-B y 4 VRG-CQ VRG-B VRG-CQ z VRG-C
(a) After initialization/rebuild (b) After Push flow (c) After rebuilding Voronoi
regions

Fig. 1. Flow graph states in VPP

sort order. Figure represents the state after the push flow phase. Thick dashed lines
indicate saturated edges. Dashed circles show the changes in sources and sink clusters.
Note that in region VRG-A the sink cluster has shrunk, in VRG-B the sink cluster has
disappeared and a new source created (circle labelled Y). In VRG-C and VRG-D sink
clusters have not changed but a few source clusters have disappeared and new ones
created. Figure|l(c)[represents the state of the flow graph immediately after the rebuild
phase. The three Voronoi regions correspond to the remaining sink clusters. Voronoi
boundaries have shifted and sources X, Y, and Z are now in different Voronoi regions.

The algorithm finds the value of the max flow and the corresponding minimum en-
ergy graph cut. Flow in the graph may be a preflow when the algorithm terminates. The
standard phase of converting a preflow into a flow would need to be incorporated to
convert the above into a max flow algorithm [18].

Worst case time complexity of the algorithm is easily established. Beyond the ini-
tialization phase an iteration of the algorithm involves pushing flow and rebuilding the
acyclic Voronoi regions. In a push flow phase, flow is pushed in an edge only once and
so the total time taken is bounded by the number of edges in the acyclic Voronoi regions.
In grid graphs with bounded degree, number of edges are O(n). Rebuilding the acyclic
Voronoi regions requires two passes over the grid graph in which edges and nodes of
the graph that are accessed are touched a constant number of times. Rebuild time in
each iteration is, therefore, O(n). Shortest distance labels on nodes in the grid graph
increase monotonically. Between iterations at least one node in the graph will have its
label increased by one. Shortest distance labels can not remain the same between iter-
ations as that would imply no change in the acyclic graph structure between iterations.
This is not possible if there are nodes at the end of an iteration with positive excesses.
Since there are n nodes in the grid graph the maximum number of iterations possible
is O(n?) (under the assumption that only one node gets its labelled increased in any
iteration and that the maximum label any node can have is n). Over all time complexity
of the algorithm is, therefore, O(n3). We would like to mention that the above analysis
simply establishes strong polynomial bound and is not necessarily the sharpest bound
provable. However, we show experimentally in section 3] that the actual number of iter-
ations on vision grid graphs is much less. Tight analysis of the algorithm on vision grid
graphs is an open issue.

An Efficient Graph Cut Algorithm for Computer Vision Problems 551

3 Results and Comparison

We have implemented our algorithm in C++ and compared its performance with BK
[21], and HI_PR [22] on a machine with dual core 2.5 GHz CPU with 2GB RAM.
Performance comparison with P2R [19] and CH-n [23] has been included on the basis
of results on 3D datasets in [[19]. Comparison with CudaCuts is using times reported in
[20] on data sets from Middlebury [2]. 2D samples are BVZ and 3D samples are bunny,
babyface, adhead and bone from UWO database [3]. For tests that we have conducted
we have measured only time taken to run the algorithms after the flow graph has been
constructed. Accuracy of the algorithm is verified by matching the flow computed by it
to the one given with the database.

Figure Dl tabulates the time taken by our algorithm and CudaCuts time as reported in
[20]. Our algorithm is 2 to 3 times faster.

|Sarnple|VPP Time (rns)|CudaCuts Time (ms)| % ;

flower 19.81 37 ?ﬁ

o

person 20.77 61 o
sponge 17.74 44 Data samples

Fig.2. Time comparison between CudaCuts Fig.3. Graph showing ratio of time for BK Vs
and VPP VPP algorithms on BVZ test database

Figure B plots the ratio of time taken by BK and VPP. Note that BK is slower by at
least a factor of 2 on 70% of the samples. Figures4(a)| and [4(b)| compare the total num-
ber of nodes touched during push flow (expansion/augmentation) and relabelling(adopt
orphans) phases in VPP, BK, and HI_PR. In both figures values have been truncated at
the upper end. Note that the number of nodes touched during push flow phase in VPP
are significantly smaller than those touched in BK and HI_PR. Poor performance of
HI_PR is primarily due to use of approximate distance labels and repeated relabelling
steps. In BK nodes touched in push flow is large as there is little control over augment-
ing path lengths and the amount of flow pushed in each path. However, nodes touched
in the relabelling phase in BK is comparable to VPP.

It must be pointed out that total relabelling effort in BK is spread over a very large
number of flow augmentation iterations. This effort is very small per flow augmentation
iteration. This is because source and sink trees maintained by BK undergo very little
change per iteration and effort involved (identification of disconnected nodes called or-
phans and rebuilding of trees by a process called adoption) is limited to searching in a
small local neighbourhood in the grid graph. Also, since augmentation is not required
to be on shortest paths global nature of the relabelling step in shortest path/distance la-
bel based algorithms is avoided. Note, however, that HI_ PR which has local and global
relabelling performs particularly poorly. This is not only due to the wasteful local rela-
belling steps but also because global relabelling cannot be made incremental as there is

552

C. Arora et al.

S2000I0 T y 2w gy rgm 3 v pa,am

SN0 1 — g gmeppm eSOt o A . N A

2500000 ", PRI T [~ VPP sl I Ol SO 11 il T e 15

o PP R e | e I e

1000000 L\‘J [VMU V1] ——VPP-h igﬁggﬁ] /J‘ LN s A A 8, | |——VPPh

I NN SV PV Y M, e AR T A
Provserssisesy ey
@Q@\,@\\Q@@@A Qé#ffﬁ & e@@a é‘“&.&ffﬁ

(a) Nodes touched during push flow (b) Nodes touched during relabel

Fig. 4. Nodes touched

no obvious way to identify nodes whose distance labels will not change between two
global relabelling steps in the presence of local relabelling.

We would like to point out that there is further scope for controlling relabelling in
VPP. The current incremental relabelling strategy will assign non zero labels to sink
cluster nodes at the cluster boundary that were neutralized (ezcess(v) = 0) during a
push phase. The impact of this is to increase the number of nodes requiring relabelling
in the Voronoi region graph though structurally graph may not have changed much.
By carrying out partial labelling first from the shrunk boundary of a sink cluster to the
original boundary we can determine the nodes of the original boundary which can still
pass flow to the sink cluster nucleus. If we do this, we can effectively retain much of the
original boundary of the sink cluster for the purposes of incremental relabelling. We call
this the Hybrid VPP algorithm (VPP-h). Note that (Figures 4(a)]and d(D)) while nodes
touched in the push phase in both VPP and VPP-h are similar number of nodes touched
during relabelling in VPP-h is smaller. This is another instance where focus on the
Voronoi subdivision of the grid graph has resulted in a heuristic to control relabelling
costs.

Figure [5(a)| shows total nodes touched in BK and VPP (sum of numbers in Figures
and [A(D)). It is interesting to see that time comparison in Figure follows the
trend showed by touched nodes graph in Figure This is intuitive and logical since
all the work in max-flow algorithms is concentrated in push and relabel operations.

Figure [6] has cumulative time, flow pushed and the number of nodes touched plotted
as function of iteration number for one sample run of VPP algorithm. Note that all

3500000

3000000

1

2500000

[—

2000000
1500000

I
|
/\J\\m

1000000

I

LA h.

500000

A s\ f"rv/\.m"‘-.)w"-f"’
%%WWM

—— PP
= BK

Time (ms)

—— PP
—=— BK

-é?‘-%\""\s?\aé” “"‘w\"‘\" PP 0 0
@\@@0 ‘;\‘@i;@@ﬁ o @ BQ “ 4&} 4}&} < .55“' @\9@%@;’ & & fﬁ\i $§?§ ‘iﬁ“o&\ &

(a) Total nodes touched

(b) Time taken

Fig. 5. Comparing trends of total nodes touched and time taken in VPP and BK

An Efficient Graph Cut Algorithm for Computer Vision Problems 553

1000000

0
900000 2
800000 =t £ 50 i
700000 i = Zan Fa N
gggggg P i mg touched = a0 ot Pad ” / \ %
—=— nodes touchet 2
400000 ‘/_/_H._,.._H_-_-_-_-_-_-] £ \y/ VN [V BN X ﬂv'\; J
300000 5~ S W wrd 1 \
200000 = ¥
e R o ey
EEEEF3288 i3 3
N s A O N N ST EE B N &

tsUkUbY
teLikLib
tsukub
taUkuby
ve
Ve
vE
ve
Ve
venl
ven

Iteration number

sawtoothd
sawtaoth3
sawtoothé
sawtaothd
sawtooth!2
sawtooth! 5
sawtooth19

Fig. 6. Per iteration analysis for VPP for sam- Fijg, 7. Number of iterations on BVZ samples
ple Sawtooth 9 for VPP

the three curves have the same trend. Most of the time is taken as well as most of
the flow gets pushed in the first iteration. As iteration number increases both the time
taken and amount of flow pushed decrease as do the number of nodes touched. The
implication is that Voronoi regions created become progressively smaller as iteration
number increases. Also, useful work done per iteration is large in that ratio of the nodes
relabelled and nodes involved in pushes in any iteration is high.

The above point gets made even more emphatically in Figure and Figure
which show nodes involved (colored yellow) in a push operation during 1st and 35th
iteration respectively when VPP is run on Venus7. It seems as if most of the nodes in
the Voronoi region graphs around the sinks were involved in pushing flow from sources
to the sinks. Since most of the pushes are saturated, one would expect that flow that
reaches the sinks is large. This is indeed so. We have observed that about 90% of flow
reaches the sinks in the first few iterations.

The worst case running bound of our algorithm is strongly polynomial compared to
O(n®C) in case of BK. This is not simply an asymptotic curiosity. Relatively simple
tweaks in link capacities can change the edges in such a way that BK slows down by as
much as ten times. For the purpose of our experiments we took a sample (Sawtooth 9)
from the dataset and scaled the capacities of n-links. Figure shows the change in
time. The reason for this time degradation is that the number of nodes touched during
push flow starts to increase. Figure[9(b)| shows the corresponding change in the number
of nodes touched in the two algorithms during flow augmentation iterations.

g %

(a) Venus sample image (b) 1stiteration used nodes (c) 35th iteration used nodes

Fig. 8. Used nodes (shown in yellow) in one iteration

554 C. Arora et al.

3500

3000

120000000

100000000 =

2500
7
£ 2000

80000000

i

60000000

=
£ 1500
1000

—— VPP —— VPP
—= BK —=—BK

40000000

500

Nodes touched

20000000

100
Scale factor

1 10 1000 10000

f—/ T

100
Scale factor

o

1 10 1000 10000

(a) Running time comparison

(b) Touched nodes comparison

Fig. 9. VPP and BK Comparison after scaling n-links in Sawtooth 9

&
° i " A I —+BKNPP
: 5 T e f N ey s BKMIPR
g 5 s . / * | |——BKP2R
= A | ——e
0 —
[
@’0\0 (’&D Q’GQ@\@@F@@@ QP&SS’\ \() QQP }\&f:\ - @Q\ @P@ é:\\ Q&
g +SQ’ J}f'\ T S S S +§\ o 0§\
F&F A FF TSP T I
{gl’_%\,? & & _4,/% 2 é@ + o =+ @/@? @ & ‘2‘)6\ Q?ﬂ
& E- VARV N
?\\3’ Q\p*’ & Qé\a/%\@. Q\S,{—g" <+ L F
(P& P Y
<+ + g

Fig.10. Performance comparison of BK with VPP, HI_PR, PAR, P2R and CH-n on 3D, 6-
connected datasets

Figure [/ shows the number of iterations taken by the VPP algorithm on BVZ sam-
ples. One interesting observation is that the upper bound on the number of iterations
(O(n)) that one can formally prove overestimates the actual observed number signifi-
cantly.

We have also compared performance of VPP and BK by running the two algorithms
on 6 connected 3 dimensional data sets consisting of bone, babyface, bunny and adhead
samples [3]. Figure[10l plots the ratio of time taken by BK and VPP, HI_PR, P2R, and
CH-n. Ratio of time taken by BK and HI_PR, P2R, and CH-n are as reported in Table
5 in [19]. Note that VPP’s performance is comparable to BK’s on those samples for
which Goldberg’s set of algorithms (HI_PR, P2R, CH-n) are slower than BK [19]. On
those samples (bone) for which CH-n, P2R are slightly faster than BK, VPP is 3 to 5
times faster.

4 Conclusions

The VPP algorithm presented above uses multiple paths with a single labelling, collects
all flow first at a node before pushing, and partitions the grid flow graph in Voronoi

An Efficient Graph Cut Algorithm for Computer Vision Problems 555

regions at each iteration. Flow maintained after each iteration is a preflow but unlike
the traditional preflow push algorithms there are two distinct phases in an iteration.
The relabelling phase rebuilds the Voronoi region graphs, and push flow phase uses
highest label first push and then breadth first inside sink cluster to push flow in the
preflow framework in each Voronoi region. As sinks get saturated their Voronoi regions
is redistributed among Voronoi regions which are still active. The algorithm improves
upon the earlier reported algorithms both in terms of performance over standard data
sets as well as demonstrably strongly polynomial worst case bound. This is important as
we show cases where performance of algorithms without this property degrades quickly.
We would like to re-iterate that our set of algorithms attempts to control the way a sink
cluster can hold on to its ”Voronoi region”. There could be number of other strategies,
around this central theme of ”’Voronoi based preflow push” to improve the performance
of graph cut algorithms for vision flow problems.

It should be noted that flow pushing is a symmetric activity, i.e. the end graph cut
and max-flow obtained is independent of whether the flow is being pushed from so
called sources to sinks or from sinks to sources. All that would happen is that the ini-
tial Voronoi regions created would change both in numbers as well as in shape. Actual
time taken would also change. While we provide no formal proof, time taken would be
proportional to the number of initial Voronoi regions and this can be used to improve
performance. We have shown that relabelling costs are controllable by exploiting prop-
erties of the vision problems. Hybrid VPP is an example. In higher dimensions the grid
structure becomes even more important as the number of edges in the grid graph start
dominating. One way to use the higher dimensional grids effectively will be to model
the neighbourhood locality structure more precisely. That is, distinguish between edges
which are incident on nodes which are grid neighbours and those which are further
apart. Preliminary experiments have suggested that in higher dimensions such locality
impacts performance of algorithms compared here. How does it do so in higher dimen-
sions is a theme we are exploring.

The authors would like to thank Niloy Mitra and the referees for their comments,
inputs and careful reading of the manuscript.

References

1. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1124-1137
(2004)

2. http://vision.middlebury.edu/stereo/code/

. http://vision.csd.uwo.ca/maxflow-data/

4. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput.
Vision 70, 109-131 (2006)

5. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph
cuts. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 508—
515 (2001)

6. Kwatra, V., Schodl, A., Essa, L., Turk, G., Bobick, A.: Graphcut textures: Image and video
synthesis using graph cuts. ACM Transactions on Graphics, SIGGRAPH 22, 277-286 (2003)

7. Lempitsky, V., Boykov, Y., Ivanov, D.: Oriented visibility for multiview reconstruction. In:
European Conference on Computer Vision, vol. 3, pp. 226-238 (2006)

w

http://vision.middlebury.edu/stereo/code/
http://vision.csd.uwo.ca/maxflow-data/

556

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.

C. Arora et al.

. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE

Transactions on Pattern Analysis and Machine Intelligence 26, 147-159 (2004)

. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for bi-

nary images. J. R. Statist. Soc. 51, 271-279 (1989)

Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency for op-
timizing single and dynamic mirfs: Setting the state of the art with primal-dual strategies.
Comput. Vis. Image Underst. 112, 14-29 (2008)

Delong, A., Boykov, Y.: A scalable graph-cut algorithm for n-d grids. In: IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1-8 (2008)

Juan, O., Boykov, Y.: Active graph cuts. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (2006)

Juan, O., Boykov, Y.: Capacity scaling for graph cuts in vision. In: Proceedings of the Inter-
national Conference on Computer Vision, pp. 1-8 (2007)

Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222-1239 (2001)
Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 25, 1333-1336 (2003)

Dinic, E.A.: Algorithm for solution of a problem of maximum flow in networks with power
estimation. Soviet Math. Dokl. 11, 1277-1280 (1970)

Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. Journal of the
Association for Computing Machinery 35, 921-940 (1988)

Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the maximum
flow problem. Algorithmica 19, 390-410 (1997)

Goldberg, A.V.: Two-level push-relabel algorithm for the maximum flow problem. In: Gold-
berg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 212-225. Springer, Heidelberg
(2009)

Vineet, V., Narayanan, P.J.: Cuda cuts: Fast graph cuts on the gpu. In: Computer Vision and
Pattern Recognition Workshop, pp. 1-8 (2008)
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
http://www.1gsystems.com/hipr/index.html

Chandran, B.G., Hochbaum, D.S.: A computational study of the pseudoflow and push-relabel
algorithms for the maximum flow problem. Oper. Res. 57, 358-376 (2009)

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
http://www.igsystems.com/hipr/index.html

	Lecture Notes in Computer Science
	Introduction
	Voronoi Based Preflow Push (VPP)
	Initialization
	Push Flow
	Rebuilding the Acyclic Voronoi Regions

	Results and Comparison
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

