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Egocentric videos are characterized by their ability to have the first person view. With the popularity of
Google Glass and GoPro, use of egocentric videos is on the rise. With the substantial increase in the
number of egocentric videos, the value and utility of recognizing actions of the wearer in such videos has
also thus increased. Unstructured movement of the camera due to natural head motion of the wearer
causes sharp changes in the visual field of the egocentric camera causing many standard third person
action recognition techniques to perform poorly on such videos. Objects present in the scene and hand
gestures of the wearer are the most important cues for first person action recognition but are difficult to
segment and recognize in an egocentric video. We propose a novel representation of the first person
actions derived from feature trajectories. The features are simple to compute using standard point
tracking and do not assume segmentation of hand/objects or recognizing object or hand pose unlike in
many previous approaches. We train a bag of words classifier with the proposed features and report a
performance improvement of more than 11% on publicly available datasets. Although not designed for
the particular case, we show that our technique can also recognize wearer's actions when hands or
objects are not visible.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in camera sensors and other related technologies
have led to the rise of wearable cameras which are comfortable to
use. In the past few years, the use of Google glass [1] and GoPro [2]
has become increasingly popular. Such cameras are typically worn
on the head or along with the eyeglasses and have the advantage
of capturing from a similar point of view as that of the person
wearing the camera. We refer to such cameras with first person
view as egocentric cameras.

Excitement of sharing one's actions with friends and the
community have made egocentric cameras like GoPro a de facto
standard in extreme sports. Egocentric cameras can be used to
capture visual logs for law enforcement officers leading to a sig-
nificant decrease in complaints against the officers [3]. Daily logs
from egocentric cameras are also useful in a video sharing appli-
cation or simply as a memory aid for the wearer. For the visually
challenged, researchers are trying to augment egocentric videos
with meta data such as facial identity, place, text, etc. [4]. Even for
people with regular vision, the promise of giving context aware
suggestions is compelling. In spite of their popularity, egocentric
S. Singh),
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videos can be difficult to watch from start to end because of the
constant and extreme shake present due to natural motion of
wearer's head.

Our focus in this paper is on recognizing wearer's actions from
an egocentric video. Owing to their shakiness, egocentric videos
are significantly more challenging to analyze than third person
videos. Action recognition gives structure to such ‘wild’ videos
which can then be used to search, index or browse. Action re-
cognition is also usually a first step in many other egocentric ap-
plications, for example, video summarization, augmented reality,
real time suggestions, etc. We follow the popular notation in the
field to differentiate between ‘activity’ and ‘actions’. Activity is a
high level description of what a person is doing at a particular
point of time. An activity is usually composed of many short ac-
tions, which are perceptually closer to the gestures performed by
the person. For example, while making tea is an activity, picking
the jar, opening the lid and taking sugar are the actions. Other
types of actions popular in computer vision are sitting, standing,
jumping, etc.

Egocentric videos are different from their third person coun-
terparts, not only because of the change in camera perspective but
also because of change in camera motion profile. Many of the ac-
cepted techniques for third person video analysis do not work as is
for egocentric videos, and the community has been trying to adapt
or develop from scratch solutions to these problems in the new
context. Works done in the last few years have ranged from
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Fig. 1. The focus of this paper is on recognizing wearer's actions from egocentric videos. Earlier work in this area has suggested complicated image segmentation followed by
hand or object recognition (left image). We observe that salient objects (hands or handled objects) in such actions are also the objects moving dominantly with respect to the
background and can be captured easily using trajectory aligned features (right image) without any prior image segmentation or hand or object recognition. The example
images shown here are from GTEA database [5].
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tackling simpler problems like object recognition [5–7] and ac-
tivity recognition [8–15], to more complex problems like video
summarization [16–18], and understanding social interactions
[19]. Interesting ideas which exploit special properties of ego-
centric videos have also been proposed for problems like temporal
segmentation [20,21], frame sampling [22,23], hyperlapse [24],
gaze detection [25] and camera wearer identification [26,27].

Wearer's action recognition from egocentric video is harder
compared to regular third person action recognition due to asso-
ciated unstructured and wild motion of the camera caused by
wearer's natural head movement. Different speeds of performing
actions and widely varying operating environment also cause
difficulties. Fig. 2 gives some examples of the actions we are in-
terested in recognizing.

Given the unique perspective of the egocentric camera, which
makes unavailable, the view of the actor or his/her pose, standard
action recognition techniques from third person actions are not
applicable as is. Also quickly changing view field in typical ego-
centric videos makes it hard to develop models from foreground
or background objects. Therefore, the techniques developed for
wearer's action recognition have so far remained independent of
work done in third person actions. The earliest work in wearer's
action recognition used global features (GIST) for the task [11]. Later
works focussed on objects present in the scene for recognition
[12,28]. Position and pose of hand are important cues for action
Fig. 2. Examples of wearer's action categories we propose to recognize in this paper f
(bottom row). First, second and third columns across all rows are ‘pour’, ‘take’ and ‘put’ a
middle rows, and ‘wash’ and ‘wipe’ actions for bottom row. The actions vary widely acro
suggest in this paper is able to successfully recognize wearer's actions across different
recognition involving object handling and have been explored by
the researchers as well [5]. In action categories which do not in-
volve any handled object, researchers have typically exploited the
optical flow observed in the video, which for an egocentric video is
indicative of head motion and is highly correlated with the kind of
action being performed by the wearer [21,20]. Eye-motion and
ego-motion have also been used to recognize indoor desktop ac-
tions [14].

Object or hand pose is an important cue for wearer's action but
detecting them in an egocentric video is a difficult task and the
dependence of the action recognition on such explicit detection/
recognition affects the overall action recognition accuracy, besides
making the system more complex and inefficient. We show in this
paper that such prior information is not necessary. We observe
that in any egocentric action scenario involving handled objects,
the dominantly moving objects in the scene are typically hands
and handled objects only (Fig. 1). Optical flow observed for the
background is due to motion of the wearer's head. Such motion
causes three dimensional rotation of the camera and can be easily
compensated by cancelling frame to frame homography. This leads
to a simple algorithm for extraction of hands and objects. We
further show that complicated models of hand pose or object re-
cognition are not necessary for the action recognition task, and
instead, simple trajectory based features, combining motion pro-
file and the visual features around these trajectories alone are
rom different datasets: GTEA [5] (top row), Kitchen [11] (middle row) and ADL [12]
ctions respectively. Fourth and fifth columns are ‘stir’ and ‘open’ actions for top and
ss datasets in terms of appearance and speed of action. Features and technique we
presented scenarios, showing robustness of our method.
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sufficient to reach state of the art accuracy. This significantly
simplifies the whole processing pipeline for first person action
recognition. The simplification also allows to easily generalize the
proposed technique to various kinds of actions, not possible with
current state of the art, as we show later in the paper.

The focus of the paper is on first person actions in egocentric
videos. The state of the art so far has overly stressed on object
detection and hand segmentation. Our thesis and an important
contribution is the observation that while objects and hands are
important, explicitly segmenting or recognizing them is not ne-
cessary. This follows from the fact that the region of dominant
motion in an egocentric video (after cancelling camera motion due
to head) implicitly captures these salient objects and can be used
directly for action recognition. We acknowledge that similar ob-
servations have been made in third person action recognition as
well, where the state of the art uses features based on trajectories
instead of complex segmentation/recognition. So far the important
intuition has somehow failed to be applied in the egocentric do-
main. This may be partially attributed to the fact that unless
looked at carefully, first person and third person videos look very
different because of extreme camera shake due to head motion of
the wearer. Therefore, trajectory based features from third person
cannot be applied directly. Here, our second observation comes
handy that camera motion due to head can be approximately but
effectively cancelled by a simple homography. Rest of the con-
tribution thereafter is application of various features that we
found to be useful in our context. We understand that other types
of features which keep the basic observations (1: Features along
dominant motion regions after camera motion cancellation, 2:
Motion cancellation by simple homography) intact can also be
potentially used as well.

We believe that the simplicity is the strength of the our ap-
proach. Dependence on trajectory aligned features only allows our
approach to generalize to datasets which are significantly different
from each other. In contrast, none of the earlier state of the art has
been shown to apply on all the datasets at the same time.

Most of the features used in this paper have been suggested
earlier in principle. The choice of these features for the suggested
approach is deliberate to some extent to show that once the basic
two suggestions of the paper are followed, many commonly used
ideas from third person action recognition start to become useful
for first person as well. The paper, therefore, also serves to es-
tablish a bridge between first person and third person features
which might be developed in future.

Contributions: We propose a novel representation of egocentric
actions based on simple feature trajectories. Importantly, the
proposed features can be computed using tracking alone. The
features implicitly capture the visual and motion cues of hands
and handled objects. This novel observation along with camera
motion cancellation allows us to bypass the complicated steps
(object detection, hand detection or image segmentation). Our
paper is the first to propose the use of trajectory aligned features
for egocentric action recognition. We use a bag of words model to
learn action representation from trajectory based features. Our
experiments on publicly available datasets show that the proposed
technique improves the state of the art by more than 11%. We have
explored the generalization of our features for action recognition
when the wearer's hands or handled objects are not visible. We
release an annotated database of 60 videos for 18 such action
classes performed by different subjects.1 Interestingly, our tech-
nique, not designed for such actions, gives an accuracy of 51.20%
on the dataset. Even with a significantly simplified computing
pipeline, we achieve state of the art results on all the publicly
1 http://cvit.iiit.ac.in/projects/FirstPersonActions/
available egocentric datasets. This implies that the proposed fea-
tures can be used for a variety of datasets with significant differ-
ence in appearance and actions. We note that none of the earlier
proposals have been shown to apply on all the datasets at the
same time.
2. Related work

Action recognition has been a popular problem in computer
vision. However, this is typically done from a third person view, for
example, from a static or a handheld camera. A standard line of
work is to encode the actions using keypoints and descriptors. This
is done by extending spatial domain descriptors to space–time
descriptors. These descriptors are then matched using Euclidean
distance or other similar measures. Some techniques also rely on
supervised learning with these descriptor vectors. Some notable
contributions in this area include STIP [29], 3D-SIFT [30], HOG3D [31],
extended SURF [32], and Local Trinary Patterns [33]. Methods that
follow the pipeline of keypoint detection followed by an action
descriptor usually work on a cuboidal video volume. They tend to
merge the optical flow and the appearance information from the
foreground and objects present in the scene. There have been
proposals to demerge these two. Such attempts track feature
points in a video and use these trajectories as cues for the action
recognition. Some recent methods [34–37] show promising results
for action recognition by leveraging the motion information of
trajectories.

Camera motion is very common in real-world videos and poses
a significant challenge to any action recognition technique. Wang
et al. [38] propose a descriptor based on motion boundaries to
reduce the interference from camera motion. They compute mo-
tion boundaries by a derivative operation on the optical flow field.
Thus, motion due to locally translational camera movement is
canceled out and relative motion is captured. There have been
various improvisations on the technique [39–41] decomposing
visual motion into dominant and residual motions both for ex-
tracting trajectories and computing descriptors.

Egocentric cameras have certain distinct advantages as well as
constraints for action recognition. While having much lesser oc-
clusion for objects is extremely useful, natural head motion of the
wearer brings in large camera motion. Spriggs et al. [11] proposed
to recognize first person actions using a mixture of GIST [42] fea-
tures and IMU data. Their results confirm the importance of head
motion in first person action recognition. Pirsiavash and Ramanan
[12] attempt to recognize the activity of daily living (ADL). Their
thesis is that first person action recognition is “all about the ob-
jects,” and in particular, “all about the objects being interacted
with.” To recognize the objects from a first person view, they de-
velop representations including (1) temporal pyramids, which
generalize the well-known spatial pyramids to approximate tem-
poral correspondence when scoring a model; and (2) composite
object models that exploit the fact that objects look different when
being interacted with. McCandless and Graumann [28] extend the
work by using spatio-temporal pyramid histograms of objects
appearing in the action. They devise a boosting approach that
automatically selects a small set of useful spatio-temporal pyramid
histograms among a randomized pool of candidates. In order to
efficiently focus on the candidates, they propose an “object-cen-
tric” scheme that prefers candidates involving objects prominently
involved in the actions. Fathi et al. [5] recognize the importance of
hands in first person action recognition. They propose a re-
presentation for egocentric actions based on hand–object inter-
actions and include cues such as optical flow, pose, size and lo-
cation of hands in their feature vector. There is an assumption on
the availability of hand, object and background labels in the video.

http://www.cvit.iiit.ac.in/projects/FirstPersonActions/
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Objects are not always the most important cue in first person
action recognition. In a sports video, when there are no prominent
handled object, Kitani et al. [21] use motion based histograms
recovered from the optical flow of the scene (background) to re-
cognize the actions of the wearer. Ogaki et al. [14] use eye-motion
and ego-motion to recognize indoor desktop actions. Recently,
Ryoo et al. have suggested pooled motion features tracking how
descriptor values are changing over time and summarizing them
to represent an action in the video [43]. In a parallel independent
work, Li et al. have also proposed a feature descriptor based upon
dense trajectories [44]. However they also use complex patterns
like gaze and hand pose, which we show are not necessary to
reach state of the art accuracy. Convolutional neural networks
(CNNs) have emerged as a useful tool for many computer vision
tasks. Castro et al. [45] have tried to predict the daily life activities
from egocentric images using deep neural networks. Recently,
Singh et al. [46] have proposed to use the descriptors learned from
multiple stream neural networks for first person action
recognition.
3. Descriptor for first person actions

Motion of handled objects and hands is an important cue in
first person action recognition. However, unlike previous ap-
proaches, we believe that segmentation and object recognition are
not necessary for first person action recognition. We propose a
novel idea to use simple point tracking based on the observation
that in an egocentric video, the trajectory aligned features im-
plicitly capture the visual and motion cues of hands and handled
objects (Fig. 3). Existing trajectory based features cannot be used
directly in an egocentric setting due to severe camera shake. To
overcome this, we propose using simple camera motion cancel-
lation as a preprocessing step. Our experiments corroborate the
efficacy of this technique. Dependence on trajectory aligned fea-
tures only allows our approach to generalize to datasets which are
significantly different from each other and achieve state of the art
results on all the datasets at the same time.

We propose an action descriptor based on the feature tracks
obtained from egocentric video. The descriptor is an ensemble of
different feature vectors obtained from feature tracks as well as
from visual cues. We construct a bag of words representation se-
parately for each such feature vector. To motivate the importance
of each feature vector independently, we explain them sequen-
tially below along with improvement in the accuracy by adding
that feature vector in the descriptor.

We present the detailed run time analysis for each step in
Table 5. Unlike the previous methods which involve hand and
object segmentation, our method, though involves computation of
many features, is fast and highly parallelizable. This is mainly due
to the fact that we rely only on low level feature descriptors.
Fig. 3. First and second columns show the object and camera trajectories for ‘pour’ and ‘

Similar works in egocentric vision use complex image segmentation algorithms to arriv
3.1. Baseline: dense trajectories

In third person action recognition, the constraints of feature
representations derived from regularly shaped video volumes are
well recognized. Therefore, the newer approaches rely on features
computed along the trajectories. Typical keypoint detectors pro-
duce sparse feature trajectories affecting the quality of results. Use
of feature points sampled on a regular grid has been proposed as a
remedial measure. This leads to dense trajectories and improves
stability and performance of the algorithms.

We use dense trajectory based feature [38] as a baseline for our
work. As suggested by Wang et al. [38], we extract dense trajec-
tories for multiple spatial scales. Feature points are sampled on a
grid spaced by W pixels and tracked in each scale separately. Each
point ( )=P x y,t t t at frame t is tracked to the next frame +t 1 by

( ) ( ) ( ) ( )ω= = + ⁎ |+ + + ¯ ¯P x y x y, ,t t t t t x y1 1 1 ,t t

where  is the median filtering kernel, ω = ( )u v,t t is a dense op-
tical flow field, and ( )¯ ¯x y,t t is the rounded position of ( )x y,t t .
Tracked points in subsequent frames are concatenated to form a
trajectory: ( )…+ +P P P, , ,t t t1 2 .

The shape of a trajectory encodes local motion patterns.
Given a trajectory of length L, we describe its shape by a
sequence ( )= Δ … Δ + −S P P, ,t t L 1 of displacement vectors

( ) ( )Δ = − = − −+ + +P P P x x y y,t t t t t t t1 1 1 . The resulting vector is nor-
malized by the sum of the magnitudes of the displacement vectors
as

( )′ =
Δ … Δ

∑ ‖Δ ‖
+ −

=
+ −S

P P

P

, ,
.t t L

j t
t L

j

1
1

The vector is referred to as trajectory descriptor.
To leverage additional motion and appearance information in

dense trajectories, we compute HOG and HOF descriptors within a
space–time volume around the trajectory. The size of the volume is

×N N pixels and L frames. The volume is subdivided into a spatio-
temporal grid of size × ×σ σ τn n n . We use the default sampling
step size of W¼5 and 8 spatial scales spaced by a factor of 1/ 2 ,
and parameters N¼32, =σn 2, =τn 3. Length of a trajectory is set
to L¼15 frames. Both HOG and HOF orientations are quantized into
8 bins using full orientations, with an additional zero bin for HOF.
Both descriptors are normalized with their L2 norm.

In order to classify the action at frame m, we take a sliding
window of size +M 1 frames and extract dense trajectories within
this window. A sliding window centered at frame m consists of
( )− … … +m M m m M/2, , , , /2 frames. In all our experiments, each
sliding window consists of 31 frames (M¼30). Frames at the
border of the video are appropriately padded by reflection. We use
a bag of words (BOW) model to represent the video segment. Vo-
cabulary for each feature is built separately. For vocabulary con-
struction, we randomly select 10% of training data and then use
stir’ actions. There is enough information in the cues to classify first person actions.
e at the labeling of hands and handled objects.



S. Singh et al. / Pattern Recognition 62 (2017) 45–55 49
KMeans clustering and vector quantization for hard vocabulary
assignment. Wang et al. [38] use vocabulary of size 4000 for each
feature and concatenated histograms are used for classification
using a one-vs.-rest SVM classifier with χ2 kernel. In a similar way,
we use vocabulary size of 2000 for all features for all experiments
on GTEA dataset [5]. Later, the histograms corresponding to each
feature are concatenated for classification. For classification, we
train a one-vs.-rest SVM classifier using χ2 kernel. The classifier
parameters are estimated using 4-fold cross validation.

The experiments conducted using dense trajectories with HOG

and HOF descriptors resulted in an accuracy of 50.17% and 30.16%
respectively on GTEA dataset [5]. We give more details in Section 5.

3.2. Motion cues: motion boundary histogram

Dalal et al. [47] proposed the motion boundary histogram
(MBH) descriptor for human detection from a moving camera,
where derivatives of flow instead of raw optical flow itself are
used. In egocentric videos, the use of the gradient of the optical
flow counters the effect of head motion by suppressing the flow
of the background. Therefore, we also use MBH in the proposed
scheme. For computing the MBH descriptor, we compute the
spatial derivative of the optical flow field ( )=ωI I I,x y , and or-
ientation information is quantized into histograms, similar to the
HOG descriptor. We then obtain an 8-bin histogram for each
component (MBHx and MBHy) and normalize them separately with
the L2 norm.

The experiments conducted using MBH descriptor resulted in
48.69% accuracy on GTEA dataset and using HOGþHOFþMBH improves
the accuracy to 50.83%. For L¼15, the lengths of descriptors are 30,
96, 108 and 192 dimensions for trajectory descriptor, HOG, HOF and
MBH respectively.

Our comparison with PoT features [43] while using same un-
derlying feature descriptors (HOGþHOFþMBH) confirms the effec-
tiveness of our simple trajectory aligned features. The experiments
show that using PoT features on raw video segment gives 45.60%
accuracy on GTEA dataset while our method achieves 54.61%.

3.3. Action in reverse: bi-directional trajectories

We observe that human beings can recognize an action even if
it is played in reverse. Flow fields, and hence, HOF as well as MBH

histograms are different but meaningful when features are com-
puted in the reverse direction. By adding extra information from
reverse playback into the feature allows us to detect the action by
using information from both playback directions in one go. We use
features from forward and reverse trajectory as if they are ob-
tained from independent trajectories, and hence the name ‘bi-di-
rectional’ trajectories. The lengths of descriptors obtained from a
bi-directional trajectory are same as traditional dense trajectory
descriptors described in the earlier section. The trajectories ob-
tained from both playback directions are used to build BOW
Fig. 4. Motion of the egocentric camera is due to D3 rotation of wearer's head and can be
flow overlayed on the frame. Right: compensated optical flow followed by thresholding
representation together (instead of separate histogram for each)
and hence do not affect the BOW histogram size.

Using bi-directional trajectories improves the frame level first
person action recognition accuracy from 50.83% to 54.61% on the
GTEA dataset.

3.4. Handling wild motion: head motion cancellation

The motion of the camera due to head motion of the wearer
pollutes the observed trajectories in an egocentric video. By ap-
plying head motion cancellation on the flow (see Fig. 4), the ob-
served trajectories tend to be smooth and enhance object and
hand motion. We model the observed motion due to head
movement as D2 affine and cancel such motion from trajectory
descriptor computed earlier. We observe an improvement in ac-
curacy from 54.61% to 56.87% after cancelling head motion. In-
terestingly, we observe that camera stabilization as pre-processing
also leads to similar gains.

3.5. Fast and slow actions: temporal pyramids

The bag of words representation of trajectory aligned features
that we have presented so far ignores the temporal structure of
activities. To overcome the limitation, we represent features in a
temporal pyramid, where the top level is a histogram over full
temporal extent of the video segment, the next level is the con-
catenation of two histograms obtained by temporally segmenting
the video into two halves (while quantization) and so on. The
frame where the trajectory first appears is used to decide the
histogram to which it is assigned. All levels of pyramid have the
same BOW histogram size that we have discussed earlier. We obtain
a coarse-to-fine representation by concatenating all such histo-
grams together. We use a three-level pyramid for HOG and HOF in
our experiments. This makes feature dimension size 14,000 or

× ( + + )2000 1 2 4 for HOG as well as HOF and 4000 for MBH. Using
temporal pyramid further improves the frame level action re-
cognition to 58.50% on GTEA dataset.

3.6. Kinematic and statistical features

As kinematic features, we use local first-order differential scalar
quantities computed on the flow field around the trajectories. We
consider the divergence, the curl and the hyperbolic terms similar
to [39]. They encode the physical pattern of the flow which is
useful for action recognition. We also use statistics related to tra-
jectories from entire video segment as features. These features are
number of the trajectories, and the average and standard deviation
for x and y coordinates of the trajectory. Trajectory length as well
as net displacement of tracked points in horizontal and vertical
directions is added as features. A number of trajectories heading
towards each quadrant normalized by total number of trajectories
are also appended to it. Kinematic and statistical features improve
frame level action recognition on GTEA to 60.11%.
easily compensated by a D2 homography transformation of the image. Left: optical
. Almost all camera motion has been compensated by this simple technique.
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3.7. Egocentric cues: camera activity

Camera motion in an egocentric video is due to motion of the
wearer's head and is an important cue for action recognition. We
represent the camera motion as a global frame to frame D2
translation, denoted as Δ = (Δ Δ )c x y,M . For a video consisting of

+M 1 frames, a camera activity descriptor C is described by a se-
quence ( )= Δ … ΔC c c, , M1 of displacement vectors. The vector C is
normalized by the sum of the magnitudes of the displacement
vectors as

( )
′ =

Δ … Δ

∑ ∥ Δ ∥
−

=
−C

c c

c

, ,
.M

j
M

j

1 1

1
1

We concatenate ′C , total displacement, displacement average and
standard deviation to represent camera movement and refer to it
as camera activity feature. Using camera activity feature improves
the frame level, first person action recognition accuracy from
60.11% to 61.23% on GTEA dataset.

3.8. Semantically meaningful temporal segmentation using proposed
features

We have described our features within the context of a classi-
fication problem so far. However, the features can also be used for
temporal segmentation of egocentric videos. For such semantic
segmentation, we pose our problem as a probabilistic graphical
model (MRF) where likelihood is derived from classifier score and
smoothness prior is used as the regularizer. Modelling the problem
in this way helps to overcome the difficulties in recognizing an
action boundary by only likelihood based formulation without
prior. We formulate the segmentation problem as follows. Con-
sider a weighted graph where each vertex is a frame which can be
labelled with an action label. Each pair of neighboring frames with
the same action label will be connected by a low weight edge
whereas a pair of neighboring frames with different action (action
boundary) will be connected with a higher weight edge. Neigh-
borhood of each frame is defined as 5 temporally adjacent frames
on both sides (past and future). We assign edge weight using
Euclidean distance between global HOF histograms of two neigh-
boring vertices.

The intuition here is that the change in action between frames
should cause a significant change in flow magnitudes and direc-
tions in neighboring frames. We proceed to estimate the minimum
energy cut using the α-expansion algorithm. We report segmen-
tation accuracy of 62.50% using the proposed formulation on GTEA

dataset. Fig. 5 illustrates the segmentation result and errors using
the proposed approach for GTEA dataset.
4. Datasets and evaluation protocol

In our work, we use four different publicly available datasets of
egocentric videos: GTEA [5], Kitchen [11], ADL [12] and UTE [16]. Out of
these, only GTEA and Kitchen datasets have frame level annotations
Fig. 5. Semantically meaningful temporal segmentation using proposed features: error v
color coded. We use MRF based method for refining predicted label. We assign penalty acc
its neighbors. Predicted action labels using classifier score are shown in the top row, actio
action labels in the bottom row. (For interpretation of the references to color in this fig
for first person actions. For ADL and UTE datasets, where similar
action level labelling was not available, we selected a subset of the
original dataset and manually annotated the short term actions in
the parts where a wearer is manipulating some object. Other kind
of actions such as walking, watching television, etc. is labelled as
‘background’. Statistics related to datasets are shown in Table 1.

GTEA dataset: This dataset consists of 28 videos, captured using
head mounted cameras. There are 4 subjects, each performing
7 long term activities in a kitchen. Each activity is approximately
1 min long. We follow the experimental setup of [8] and use vi-
deos of subject ‘S2’ for testing and others for training. There are 11
action classes, viz., ‘close’, ‘pour’, ‘open’, ‘spread’, ‘scoop’, ‘take’,
‘fold’, ‘shake’, ‘put’, ‘stir’, and ‘background’.

Kitchen dataset: The original dataset consists of videos of 43
subjects performing 3 activities, captured using head mounted
camera and IMUs. Camera point of view is from top, and severe
camera motion is quite common. Similar to [11], we select 7 sub-
jects from ‘Brownie’ activity, train using videos of 6 subjects and
test on the video of remaining subject. There are 29 classes of
actions in this dataset. The action classes are ‘Open cupboard
(bowls)’, ‘Get fork’, ‘Open cupboard (brownie)’, ‘Walk to fridge’,
‘Open fridge’, ‘Get eggs’, ‘Close fridge’, ‘Walk to counter’, ‘Break one
egg’, ‘Beating egg(s)’, ‘Pour in water in bowl’, ‘Get oil from cup-
board’, ‘Pour oil in cup’, ‘Put oil away’, ‘Open brownie box’, ‘Pour in
brownie mix’, ‘Pour oil in bowl’, ‘Stir brownie mix’, ‘Get baking
pan’, ‘Spray with Pam’, ‘Put Pam away’, ‘Set stove settings’, ‘Pour
mix in baking pan’, ‘Put pan in oven’, ‘Pour tap water in cup’, ‘Put
cap on’, ‘Get Pam from cupboard’, ‘Remove cap’, and ‘Read recipe’.

ADL videos dataset: The original dataset consists of videos of 20
subjects performing 18 daily life activities, captured using chest
mounted camera with 170° viewing angle. We selected 5 subjects
and manually annotated the short term actions with 21 action
labels. Similar to [8], we use videos of one subject for testing and
the rest for training. The action classes are ‘stir’, ‘cut’, ‘shake’,
‘switch on/off’, ‘take’, ‘open’, ‘close’, ‘fold’, ‘put’, ‘flip’, ‘pour’, ‘wash’,
‘write’, ‘scoop’, ‘wipe’, ‘wear’, ‘tear’, ‘dip’, ‘spray’, ‘type’ and
‘background’.

UTE dataset: Original UTE dataset [16] contains 4 videos captured
from head-mounted cameras. Each video is about 3–5 h long,
captured in a natural, uncontrolled setting. We select three parts
where hand motion is dominant from two subjects and manually
annotate the short term actions. The action labels are ‘stir’, ‘cut’,
‘shake’, ‘switch on/off’, ‘take’, ‘open’, ‘close’, ‘fold’, ‘put’, ‘flip’, ‘pour’,
‘wash’, ‘wipe’, ‘tear’, ‘tap’, ‘mix’, ‘peel’, ‘scrub’, ‘rub’, ‘move’ and
’background’.

IIIT Extreme Sports: Most of the egocentric action databases we
have come across contain actions where wearer's hands or objects
are visible. We are also interested in the performance of our fea-
tures when such cues are not available. Kitani et al. [21] have
suggested unsupervised clustering of such actions for sports vi-
deos but the dataset provided by them is quite small (6 categories
each with only one video). We are introducing a new bigger da-
taset of similar actions with this paper. We refer to the dataset as
‘IIIT Extreme Sports’. The dataset contains 60 videos, amounting to
isualization on all test frames (7 videos) of GTEA dataset. Each action label has been
ording to difference in global HOF histogram of a frame when compared with that of
n labels after MRF based temporal segmentation in the middle row and ground truth
ure caption, the reader is referred to the web version of this paper.)



Table 1
Statistics of egocentric videos datasets used for experimentation. The baseline accuracy is as achieved using dense trajectory method of Wang et al. [38]. The proposed
approach uses various trajectory aligned features and improves the baseline as well as the state of the art result on all the datasets tested. The datasets vary widely in
appearance, subjects and actions being performed, and the improvement on these datasets validates the generality of the suggested descriptor for egocentric action
recognition task. Note that originally, ADL dataset has been used for activity recognition and UTE for video summarization and not for action recognition as in this paper.
Therefore, comparative results are not available for these datasets.

Dataset Subjects Videos Frames Classes Baseline accuracy [38] State of the art accuracy Our accuracy Temporal segmentation

GTEA [5] 4 28 31,253 11 45.15% 47.70% [8] 61.23% 62.50%
Kitchen [11] 7 7 48,117 29 44.80% 48.64% [11] 59.74% 61.42%
ADL [12] 5 5 93,293 21 20.10% – 31.40% 35.16%
UTE [16] 2 3 208,230 21 31.78% – 52.62% 55.20%
IIIT Extreme Sports 60 60 412,250 18 43.81% – 51.20% 53.30%

Fig. 6. Sample frames from the ‘IIIT Extreme Sports’ dataset introduced by us. The figure shows examples for ‘jump’ action in different sports categories: ski, jetski, mountain
biking and parkour. Note the variations among the samples which makes the dataset extremely challenging for action recognition task.
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nearly 8 h, from 5 extreme sports categories (mountain biking,
jetski, skiing, speedflying and parkour). We have annotated the
videos manually into 18 short term ego-actions similar to Kitani
et al. [21]: ‘forward’, ‘bumpy forward’, ‘curve-left’, ‘curve-right’,
‘turn-left’, ‘turn-right’, ‘left-right’, ‘jump’, ‘slide-stop’, ‘run’, ‘walk’,
‘roll’, ‘flip’, ‘climb’, ‘vault’, ‘lift’, ‘fly’ and ‘spin’. Fig. 6 shows some
samples from the database.

These sports categories are very different from each other in
terms of terrain, nature and types of actions. Due to fast move-
ment nature of extreme sports, severe camera shake and motion
blur are very common. We selected first person action classes si-
milar to ego-actions used in [21]. Each video is captured using
head-mounted cameras in diverse terrain (mountain, snow, river,
sea, and air), weather and lighting.
4.1. Evaluation protocol

We consider short term actions performed by different subjects
while performing different activities. Speed and nature of actions
vary across subjects and activities (e.g., consider the action ‘open’ in
two scenarios, ‘open’ water bottle and ‘open’ cheese packet). For-
mally, classification accuracy for first person action recognition task
is defined as the number of frames (or video segment) classified
correctly divided by the total number of frames (or number of video
segments) in the videos used for testing. Frame level action re-
cognition is important for continuous video understanding. This is
also crucial for many other applications (e.g., step-by-step guidance
based onwearer's current actions). We also evaluate our method for
action recognition at the video segment level. In this case, there is
only one action in each video segment. However, the length of the
segment is not fixed. In this setting, we have an approximate
knowledge of action boundaries which naturally improves action
recognition results. Segment level action recognition is different
from temporal segmentation as each segment is independent of
each other. For temporal, segmentation we perform labelling of
each frame without explicit knowledge about action boundaries.
5. Experiments and results

We first present our experiments and analysis of the proposed
action descriptor on GTEA dataset to bring out the salient aspects of
the suggested approach. Experiments with other datasets are de-
scribed later. Note that these datasets are quite different from each
other, and performance improvement on all these datasets com-
pared to the current state of the art show the generality of our
features.

In these datasets the duration of action varies from a few
frames to a few hundred frames. The size of the sliding window
plays a crucial role in correctly classifying an action. There can be
more than one action within a sliding window at the action
boundaries, leading to noisy training data. Due to this reason, we
do not use features extracted from frames at the action boundaries
for vocabulary construction and SVM training. However, all the
frames are used for testing.

The annotated dataset and the source code for the paper are
available at the project page: http://cvit.iiit.ac.in/projects/
FirstPersonActions/

5.1. Results on different datasets

We follow the experimental setup of Fathi et al. [8] for GTEA

dataset. They perform joint modelling of actions, activities and
objects, on activities of three subjects and predict actions on ac-
tivities of one subject. They have reported an accuracy of 47.70%
using their method. Table 2 summarizes our analysis of the effect
of different parameters on the performance of our descriptor on
the dataset.

We have done a comparison (Table 3) with Pooled Time Series
feature [43] using their released code. Note that, when using same
underlying local feature descriptors (HOG, HOF, and MBH) and same
temporal pooling extent (3 level temporal pyramid), PoT gives an
accuracy of 49.14% on GTEA dataset. In contrast, our result is 58.50%,
which clearly outperforms the pooled features by a significant
margin. When combined with kinematic, statistical and camera
activity features, the result further improves to 61.23%. The

http://www.cvit.iiit.ac.in/projects/FirstPersonActions/
http://www.cvit.iiit.ac.in/projects/FirstPersonActions/


Table 2
Effect of different parameters on the performance of our algorithm. The experi-
ments are done on GTEA dataset. We use trajectory, HOG, HOF and MBH features using
2K vocabulary size for each feature for the experiment. Accuracy reported is
computed per frame.

Method Feature Accuracy (%)

Uni-directional
trajectory

Trajectory 25.36
HOG 50.17
HOF 30.16
MBH 48.69
HOGþHOFþMBH 50.83

Bi-directional trajectory Trajectory 27.09
HOG 51.25
HOF 35.41
MBH 48.87
HOGþHOFþMBH 54.61

Affine-flow
compensation

HOGþHOFþMBH 56.87

Camera stabilization HOGþHOFþMBH 57.10

With 3 level pyramid HOG
PyrþHOF

PyrþMBH 58.50

Combined HOG
PyrþHOF

PyrþMBH and Kinematic þ
Statistical þ Camera activity

61.23

Table 3
Comparisons with pooled features (PoT) [43] using three-level temporal pyramid
(HOGþHOFþMBH) on (a) GTEA dataset and (b) IIIT Extreme Sports dataset.

Input PoT Ours

(a) Comparison on GTEA dataset
Raw video segment (%) 45.60 54.61
Stabilized video segment (%) 49.14 61.23

(b) Comparison on IIIT Extreme Sports dataset
Raw video segment (%) 47.51 50.08
Stabilized video segment (%) 48.28 51.20
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primary reason might be that pooled features do not seem to
consider salient regions specially. We expect that there might be
some merits in considering trajectory aligned pooled features. We
have also done a similar comparison on our IIIT Extreme Sports
dataset as well (see Table 3(b)). Note that the action classes in our
IIIT Extreme Sports dataset are similar to UEC dataset [21], how-
ever, the dataset itself is much larger in size. In this case, the hands
or objects are not visible and our method is not specifically de-
signed for such actions, but we still observe the superior perfor-
mance of our method.

We extend our experiments to other publicly available ego-
centric video datasets. Results on these datasets are shown in
Table 4
Our results for first person action recognition on different egocentric videos da-
tasets. Sliding window based approach for classification used in our algorithm
performs poorly at action boundaries. Therefore, the accuracy for segment level
classification, when the action boundaries are clearly defined, comes out higher.

Dataset Accuracy (%)

Frame level Segment level Chance level

GTEA [5] 61.23 77.40 9
Kitchen [11] 59.74 60.00 3.4
ADL [12] 31.40 31.82 4.7
UTE [16] 52.62 55.12 4.7
IIIT Extreme Sports 51.20 55.74 5.5
Table 4. We follow the same experimental setup as [11] and per-
form frame level action recognition for ‘Brownie’ activity for
7 subjects. Spriggs et al. [11] report an accuracy of 48.64% accuracy
when using first person data alone and 57.80% when combined
with IMU data. We achieve 59.74% accuracy using our method on
egocentric video alone.

The ADL dataset has been used for long term activity recognition
by [12] in the past. We annotated the dataset with the short term
actions and tested our method on it. Similar to our experiment on
GTEA, we test our model on one subject while using the other for
training. We achieve 31.40% accuracy at frame level and 31.82% at
the video segment level using our method. Note that, ADL dataset is
much larger and challenging dataset when compared to others. ADL
contains actions from a diverse set of 18 activities while GTEA

contains 7 activities and Kitchen dataset contains only one activity.
The UTE dataset has been used for video summarization by [16]

in the past. Motion blur and low image quality is fairly common in
this dataset. For action recognition, we achieve 52.62% accuracy at
frame level and 55.12% at the video segment level using our
method.

On our IIIT Extreme Sports dataset, where objects and hands
are not visible, our method achieves similar performance, 51.20%
at frame level and 55.74% at segment level. Short trajectories prove
to be useful for short term actions even in severe camera or head
motion, which is fairly common in first person videos of extreme
sports.

The proposed action descriptor improves the baseline as well
as the state of the art on all the five datasets tested upon (see
Table 1 for the details about dataset and comparison details with
baseline). Fig. 2 shows some of the actions from different datasets
correctly classified by our approach. Note the difference in
appearance.

5.2. Failure analysis

We rely on motion and appearance based cues for action re-
cognition. While statistical and trajectory aligned features are
useful for all the action classes, camera activity feature is parti-
cularly helpful with actions that have specific camera motion such
as ‘pour’, ‘stir’ and ‘shake’. Though highly discriminatory, we do
see the instance when such features fail to classify correctly be-
cause of either dominant visual similarity or motion similarity or
both. Yet some other errors arise due to limited capability of the
proposed action descriptors to describe the action complexity and
various ways in which the same action could have been per-
formed. Fig. 7 shows some failure cases and possible reason for the
failures.

Fig. 8 gives the confusion matrix of the proposed approach for
the GTEA dataset. A large portion of observed errors occur on the
action boundaries where the features from two actions merge. Part
of it may be attributed to inherent ambiguity in the problem itself.
One cannot say at which instant the action has started or has
ended. For example, consider the action ‘open’ with the object
‘water bottle’. One may consider the instant the hand starts in-
teraction with water bottle is the start of action, while other may
agree that the moment the hand starts twisting the cap of water
bottle as the start of action (Fig. 7(c)). Also, most action occurs
before or after ‘BG’ (see Fig. 5), hence the most common confusion
with almost all the actions. Also note that, a high percentage error
for some classes (e.g., fold, shake, put, etc.) is due to very few
samples of those actions in the dataset. For example, ‘fold’ action
accounts for less than 0.5% of all the actions in the dataset and has
only 82 frames for training and 54 frames for testing. Handling
multiple complex actions and the action boundaries are the weak
points of the proposed framework and directions for our future
research. The presence of multiple actions poses another



Fig. 7. Some failure cases of our method. (a) ‘shake’ classified as ‘stir’ due to high visual and motion similarity. On the right, a similar frame with ‘stir’ action classified
correctly. (b) ‘pour’ classified as ‘spread’ due to hand movement. Notice the high similarity between ‘pouring’ mayonnaise and ‘spreading’ jam. On the right, a frame classified
correctly as ‘spread’. A large portion of observed errors occur on the action boundaries where the features from two actions merge. (c) shows two frames which are at action
boundary ‘open’ (left, predicted correctly) and ‘BG’ (right, predicted as ‘open’), and (d) on the left, ‘fold’ classified as ‘pour’ due to very few samples for ‘fold’ available in the
dataset. ‘fold’ action accounts for less than 0.5% of all the actions in the dataset and has only 82 frames for training and 54 frames for testing. On the right, a frame classified
correctly as ‘pour’. Same objects present in left and right images might have led to the confusion. We believe, our method requires more examples of such scarce actions to
distinguish between these cases.

Fig. 8. Confusion matrix for our method on GTEA dataset. We observe that many
errors occur because action boundary is not clearly defined. ‘close’ is commonly
confused with ‘open’ due to similarity in the nature of the action. Also, most action
occurs before or after ‘background’, hence the common confusion. High percentage
error for some classes (e.g., fold, shake, put, etc.) is because very few sample of
those actions in the dataset.

Table 5
Detailed runtime analysis of our method. For a video segment at 15 fps and with 31
frames, feature extraction from our bi-directional trajectories takes 0.71372 s while
the complete pipeline takes 2.2047 s on an average. The runtime for each com-
ponent is averaged over 100 iterations. We use serial single thread CPU im-
plementation for all the steps in our pipeline. We limit all trajectories to length of
15 frames. The overall runtime is for feature extraction from a video segment of 31
frames at a spatial resolution of 360� 240 pixels. We use vocabulary of size 2K for
each feature.

Component Type Time (s)

Optical flow (Färneback algorithm) Frame to frame 0.02658
Affine-flow compensation Frame to frame 0.00483
Camera stabilization Frame to frame 0.00531

Feature extraction (uni-directional) Per video segment 0.35285
Feature extraction (bi-directional) Per video segment 0.71372

Vocabulary assignment Per video segment 0.54194
Vocabulary assignment (3 level pyramid) Per video segment 1.47098

Overall runtime (video at 15 fps) Per video segment 2.2047
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challenge. Enhancing the proposed action descriptor when the
two actions are being performed jointly is another area of future
research.

5.3. Implementation details and runtime analysis

We start by extracting frame to frame dense optical flow using
the algorithm by Färneback [48] as implemented in the OpenCV
library. We found this algorithm to be a good compromise be-
tween accuracy and speed. We further apply 5� 5 median filter to
smoothen the optical flow which is then used for multiscale point
tracking as mentioned in [38]. As discussed earlier, we use the
default value for parameters N¼32, =σn 2, =τn 3. Length of a
trajectory is set to L¼15 frames and length of video segment is set
to 31 frames. Around these trajectories we extract

� trajectory descriptor (30 dimensional);
� texture and appearance descriptor: HOG (96 dimensional);
� motion descriptors: HOF (108 dimensional), MBH (96 dimensional

each for MBHx and MBHy, or 192 dimensional);
� kinematic features (288 dimensional);
� statistical features (20 dimensional);
� camera activity descriptor (60 dimensional).

Feature extraction from a video segment of 31 frames around
bi-directional trajectories takes 0.71372 s on an average on an Intel
Core i7-4790K CPU at 4.0 GHz (see Table 5).

We use statistical and camera activity feature as it is. For other
features, we build a BoW representation using a uniform voca-
bulary size of 2K. For vocabulary construction, we randomly select
10% of all trajectories from training videos for clustering as the
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total number of trajectory is too large. We use hierarchical KMeans
for clustering for its speed and efficiency. For vocabulary assign-
ment, we use Fast Approximate Nearest Neighbor Search (FLANN)
[49] with four randomized kd-trees, which we found to have good
accuracy versus speedup trade-off when compared to nearest
neighbor search. The complete pipeline (optical flow, video sta-
bilization, feature extraction and computing BoW representation)
takes 2.2047 s on an average from a video segment of 31 frames on
Intel Core i7-4790K CPU at 4.0 GHz (see Table 5).

Total feature dimension when using temporal pyramid as dis-
cussed earlier is 24,080 or + + + +14, 000 4000 6000 20 60. Such
BOW histograms feature is very sparse. With the mentioned fea-
tures, we train a multiclass Support Vector Machine (SVM) using
Liblinear library [50]. We use VLFeat's [51] homogeneous kernel
map, which is a finite dimensional linear approximation of
homogeneous kernels, including the intersection and χ2 kernels. In
all experiments, we use homogeneous kernel map for χ2 kernel of
order 3. Using homogeneous kernel mapping helps us reduce the
SVM training time by a significant amount.
6. Conclusions

We propose a new action descriptor for first person action re-
cognition from egocentric videos. In the absence of wearer's pose,
the important cues for such action recognition tasks are objects
present in the scene, how they are being handled and the motion
of the wearer. The proposed descriptor accumulates all such cues
by a novel combination of features from trajectories, HOG, HOF, MBH,
as well as kinematic and statistical features. We also explore the
importance of head motion and capture it using camera activity
features. The proposed feature and bag of words model is able to
adequately learn the representation and improves the state of the
art in terms of accuracy by more than 11%. We validate the pro-
posed descriptor by testing on widely varying egocentric action
dataset. The performance improvement on all the datasets vali-
dates the generalizability of the proposed descriptor. Our method
gives similar performance for action recognition even when han-
dled objects or wearer's hands are not visible.

The thesis of our work and an important conceptual contribu-
tion is the observation that while objects and hands are important
in first person actions, explicitly segmenting or recognizing them
is not necessary. It may be noted that trajectory based features
cannot be applied as is to egocentric actions, as shown in our
baseline in Table 1. This is due to the extreme shake present in
egocentric videos because of motion of wearer's head. Our second
thesis is that for the purpose of egocentric actions, such motion
can be adequately compensated using homography alone.

Another crucial contribution is to create a bridge between first
person and third person action recognition techniques. Many of
the proposed features have been used in problems from areas
other than egocentric. Their use for egocentric actions now looks
obvious after our experiments and findings. However, none of the
prior art for egocentric actions cited in the paper have used such
features.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.patcog.2016.07.031.
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