
MAVI: An Embedded Device to Assist Mobility of
Visually Impaired

Rajesh Kedia∗, Yoosuf K K∗, Pappireddy Dedeepya∗, Munib Fazal∗, Chetan Arora†, and M. Balakrishnan∗
∗ Indian Institute of Technology Delhi

† Indraprastha Institute of Information Technology Delhi

Contact Email: kedia@cse.iitd.ac.in

Abstract—Mobility for visually impaired people in an out-
door environment has always been a challenge. Traditionally,
white cane or guide dogs have been used to help in mobility,
but they suffer from many limitations. Modern solutions like
Smartcane or Ultracane can help detect obstacles in the path,
but cannot differentiate among these obstacles. Moreover, they
do not support navigation. Considering the limitations with
existing aids for mobility of visually impaired, we propose a new
device to help visually impaired in their outdoor mobility. This
device uses an RGB camera and image processing techniques to
recognize the surrounding objects and inform/alarm the user
accordingly. Our prototype incorporates signboard detection,
face detection and surface texture detection to address issues
related to mobility of a visually impaired user. Localization
module implemented using GPS and IMU helps to support
navigation. In this paper, we explain our initial implementation
of various image processing tasks. We focus on the exploration
for the choice of algorithms, design decisions, and various
implementation decisions. We explain the challenges and results
of implementing these applications on an embedded platform
(Zedboard) for prototyping.

I. INTRODUCTION

As per World Health Organization (WHO) fact sheet re-

leased in August 2014 [1], globally 285 million people are

estimated to be visually impaired, out of which 39 million are

blind and 246 million have low vision. The major problems

faced by the visually impaired during outdoor pedestrian

movement are obstacle detection and hindered navigation.

These problems also lead to safety issues, social isolation,

etc. Thus, there is a dire necessity to develop aids to assist

the visually impaired people in overcoming these problems.

Since 90% of the world’s visually impaired people live in

developing countries in low-income settings, the solutions

targeting to address their mobility challenges should be low

cost and affordable.

Traditionally white cane and guide dogs have been used by

blind people to avoid obstacles in their walking path. White

cane can detect obstacles only from a close distance and guide

dogs are very expensive to breed and train as well as maintain.

Solutions like Smartcane [2] and Ultracane [3] can improve

the detection distance for cane and can also warn the user of

a potential obstacle 3-4 meters ahead. However, they are not

able to classify obstacles based on potential danger and also

do not support navigation. Recent smart solutions built using

Google Glass [4] or Microsoft’s seeing AI [5] use a cloud

server to perform all the processing, limiting their usability in

areas without connectivity. Moreover, in order to save energy,

such solutions tend to be user triggered and not spontaneous,

restricting their usage in safe navigation applications.
Ye et al. [6], Apostolopoulos et al. [7], Jain et al. [8]

propose aids for navigation and obstacle detection for visually

impaired, but their research is limited to an indoor environment

only. We are trying to address mobility in an outdoor environ-

ment which pose different challenges compared to indoors.

Yasser et al. [9] proposed a solution for outdoor navigation

but it assumes a controlled environment with various locations

tagged with barcode. Moreover, the existing aids (commercial

or academic) do not address problems specific to an unstruc-

tured environment, typical of a developing country like India.

Our proposal identifies some of these specific challenges for

visually impaired pedestrians walking outdoors and attempts to

address them through the design of a dedicated device, which

we name as Mobility Assistant for Visually Impaired (MAVI).
MAVI uses an optical RGB camera of VGA resolution to

capture the surrounding scene and process the captured frames

to extract useful information for the user. The specifications

of MAVI has been defined based on a survey conducted by

our group to assess the mobility needs for visually impaired

and limitations with existing solutions. We aim to address

navigation, safety, and social inclusion problems related to the

outdoor mobility of visually impaired people, specifications

drawn from the typical street infrastructure and environment

of developing countries like India. We explain the features of

MAVI in detail in section II.
Rather than developing new algorithms, MAVI development

focusses on using existing image processing algorithms and

adapting them to meet the requirements of the device. We

have explored different algorithms to implement each of the

requirements. For testing the developed system, we have con-

ducted experiments on real pictures taken from our university

campus. We had overcome various challenges associated with

porting the developed algorithms to an embedded platform and

getting the live system to work. We will discuss these in the

later part of this paper.
The specific contributions of this paper are as follows:

• We have developed a concept demonstrator of a device

targeting independent mobility for visually impaired peo-

ple.

• The effectiveness of our algorithms has been validated

offline using dataset captured in real settings.

2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems

2380-6923/16 $31.00 © 2016 IEEE

DOI 10.1109/VLSID.2017.38

213

2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems

2380-6923/16 $31.00 © 2016 IEEE

DOI 10.1109/VLSID.2017.38

213

2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems

2380-6923/16 $31.00 © 2016 IEEE

DOI 10.1109/VLSID.2017.38

213

Classification

Signboard
Detection

Face
Detection

Animal
Detection

Texture
Detection

GPS +
IMU Depth

Localization
Module

Central
Control

Speech Beep Vibration

Cloud

Video

Fig. 1. Block diagram of MAVI system. The system aims to help visually
impaired people in their following needs (a) Safety: Identify digging, potholes
(surface texture module) and stray animals (animal detection module), (b)
Navigation: Localization with GPS and IMU and identifying multi-lingual
signboards, and (c) Social Inclusion: Detecting people and recognizing known
faces (Face Detection module). The input to the current system is a VGA
image from an RGB camera - depth sensor is planned to be added in future.
Feedback to a user is given by voice, beep and vibration modes.

• We have validated our implementation and generated the

results from a real embedded platform.

The rest of the paper is organized as follows. Section II

describes the features and block diagram of MAVI. Section III

explains the implementation of various sub-blocks in MAVI.

Details of prototyping and porting on embedded platform are

described in Section IV. We present the results from initial

prototyping of MAVI in Section V. Section VI concludes the

paper and describes the future work.

II. MAVI SPECIFICATIONS

Mobility Assistant for Visually Impaired (MAVI) is a device

to help in independent mobility for visually impaired users.

Fig. 1 explains the block diagram and features of the MAVI

system. The input sensors consist of an RGB optical camera,

GPS and IMU sensors. There are four image processing

modules integrated with the system: Texture Detection (TD),

Signboard Detection (SBD), Face Detection (FD) and Animal

Detection (AD). The VGA image captured through RGB

camera is passed onto these blocks and depending on their

outputs, further actions are invoked. For example, if SBD

detects a signboard, then an Optical Character Recognition

(OCR) subsystem is invoked to read the contents of the

signboard. A central controller coordinates enabling each of

the modules as per the need. A cloud based server is integrated

for storing landmarks and other relevant information. The

server may also be used to offload intensive computations in

future releases. The localization module uses GPS information

augmented with IMU mechanization to detect the location of

the user. The user interface is implemented over mobile which

also acts as a gateway for the device to connect to the cloud.

III. IMPLEMENTATION DETAILS

In this section, we explain the choice of image processing

algorithms for SBD, TD and FD modules and correspond-

ing implementation details. The implementation is based on

RGB Image
(640X480)

Grayscale
Image

(640X480)

SVM Classifier
(Training &

Testing)

Output Feature
Extraction

(SFTA)

Fig. 2. Block diagram of Texture Detection module. We use features based
upon Segmentation-based Fractal Texture Analysis (SFTA) [15] followed by
one vs all SVM classifier for different classes. SFTA features gave similar
accuracy as Gabor but computed in a fraction of time. At test time we used
sliding window based approach and classified each window into one of the
four categories: pavement, road, grass, and mud.

OpenCV 3.1 libraries [10]. Our current implementation is lim-

ited to the infrastructure - footpath, signboards, etc. available

within our university campus.

A. Texture Detection

We chose four different types of surface textures: pavement,

road, grass and mud. Texture Detection (TD) implementation

to classify the surface into one of these textures is based

on Support Vector Machine (SVM) classifier owing to its

effectiveness and the portability constraints to an embedded

platform. Though Deep Neural Networks (DNN) have shown

state of the art results in many areas in last few years, we have

not used them in our setup due to limited dataset available and

limited memory available on the target embedded platform.

In the future, we plan to explore DNN with pre-training/fine-

tuning techniques to work with the limited dataset and pruning

techniques to fit the network into limited memory. Fig. 2 shows

an overview of our implementation of TD, which is explained

in following section.

1) Texture Feature Extraction: Texture feature extraction

involves creating a database of various classes of textures to be

identified. For the training and test dataset, we have captured

VGA images (640×480) with various camera orientation,

scale and illumination conditions. We have captured more

than 200 samples per texture class. After experimenting with

various descriptors like SIFT [11], SURF [12], LBP [13],

Gabor [14] etc., we found Segmentation-based Fractal Texture

Analysis (SFTA) [15] to be a good compromise for speed and

accuracy. The samples for training are cropped from original

images of size 640×480 to sizes of: 80×60, 80×80, 160×120,

and 160×160. We chose SVM classifier with linear kernel,

since in our experiments linear kernel showed reasonable

accuracy and was faster compared to polynomial and RBF

kernels. We train separate one vs. all SVM classifiers for each

class.

2) Texture Classification: The extracted features from pre-

vious step is used for training the SVM classifier. Each

classifier is trained with more than 3000 samples.

At test time we used sliding window based approach.

We tested with both overlapping and non-overlapping sliding

windows. To reduce the search space, we choose the region

of interest (ROI) by removing image portions containing sky

214214214

Input Image
(RGB)

No Signboard

SignBoard
detected

Blue
Detect

White
Detect

False False

True True

Information
Extraction

Fig. 3. Overview of the signboard detection: The signboard in our context
are standardized as white text written on a blue background. The detection
module is designed accordingly detecting the blue clusters first. We select two
candidate regions with maximum blue and validate the same by ensuring a
pre-selected amount of white pixels in it. Each such verified candidate regions
is then sent to the next stage for OCR.

or trees. This improves accuracy as well as performance of

the task. In the following text, we explain our methodology to

choose the ROI.

3) Extracting Region Of Interest (ROI): We analyzed the

distribution of features of interest in various images by an-

alyzing how many rows of pixels contain desired pavement

information. Our analysis indicates that in 90% of the test

samples, relevant texture is present only in lower 240 pixel

rows. Hence, we removed upper 240 rows of pixels before

attempting to classify the image regions. Based on similar

analysis, we also removed 80 vertical rows of pixels from both

sides of the image. Thus the region of interest within each

image gets restricted to 480×240 and reduces computation

time substantially.

B. Signboard Detection and Information Extraction

Fig. 3 depicts various steps involved in the signboard

detection algorithm. The detection process is divided into

two stages: The blue detection stage followed by the white

identification stage. The input image for all modules of MAVI

system is of VGA resolution (640×480 pixels).

1) Blue Detection Stage (BD): In the blue detection stage,

the image is transformed from the RGB space into a Hue,

Saturation, and Value (HSV) space and then a mask is ob-

tained for the blue coloured pixels in the image using simple

thresholding. We then obtain the contours for each connected

region of blue pixels using implementation of [16] in OpenCV

[10]. We sort the contours in descending order in terms of

their area and then approximate and bound the contours using

rectangles. The two largest rectangles obtained are assumed to

be possible candidates for signboards and are passed as inputs

to the next stage.

2) White Detection Stage (WD): Within each candidate

region detected as blue box, we find pixels coloured white

and cluster the pixels into different clusters based upon flood

fill algorithm. Then, we calculate the amount of white colour

by counting the number of white pixels in all these regions.

Further, the ratio of this to the total number of pixels in

the image is compared against a predefined threshold. If it

exceeds the threshold, then the bounding box is considered to

be a potential signboard and passed onto next stage for text

extraction.

3) Information Extraction: This stage is organized into

various steps like noise removal, word extraction, rectification

of words, character extraction and passing it to the OCR

Noise
Removal &

Straightening

Word and
Character
Extraction

Language
Check

Hindi OCR

Tesseract

Extracted
Text

Hindi

English

Fig. 4. Block Diagram of Information Extraction: For each candidate region
for signboard detection, we attempt to recognize the text by an external OCR
engine. We first perform perspective correction to compensate for tilted text.
The signboards are bilingual and we detect each text line to be Hindi or
English based upon the presence of header line (in Hindi). Each text line is
passed separately to Tesseract (for English) or an in-house engine (for Hindi).

engine. The signboards are assumed to be bilingual and

depending on the language (Hindi or English), we choose

the OCR engine. Currently, the information extraction is

implemented in MATLAB only. The Tesseract engine [17] is

used for the English text identification where as a preliminary

Hindi text identification module developed in-house is used

for Hindi text. Currently, Hindi text identification is in early

stage and needs further improvement. The implementation of

information extraction block is shown in Fig. 4. Noise removal

is done using the area of connected components as a parameter.

Word extraction is done based on the aspect ratio of connected

components. Finally, each text line is passed to the appropriate

OCR engine depending on the language.

Modes of Operation: The algorithm for signboard detection

supports two modes: Default mode and low energy mode. We

observe that we need VGA sized images for reasonable OCR,

however, just the signboard detection can be done reliably

even at lower resolutions as well. Thus, while the default

mode is same as described above, in low energy mode, we

reduce the computation overhead by either resizing the image

to 320×240 for blue detection stage or sending only the largest

bounding box from BD stage to WD stage. In both the cases,

the search space is reduced resulting in a lower number of

computations. Based on the above description, we define four

operating modes in SBD task: NRS BOTH, NRS SINGLE,

RS BOTH and RS SINGLE. The SINGLE suffix denotes that

a single bounding box is passed from BD to WD stage while

NRS and RS refer to No-ReSize or ReSize of the input image

before BD stage.

C. Face Detection and Recognition

The motivation for including face recognition (FR) in a

mobility aid is to help visually impaired users identify their

known persons, if encountered on the path. Face detection

(FD) helps to inform the users about any human being present

in the vicinity, so that the user can seek help if needed. The

block diagram of the implementation is shown in Fig. 5. The

following sections explain the details of FD and FR modules.

1) Face Detection: The seminal work by Viola and Jones

[18] lead to the first real time face detection framework in

computer vision. We follow the same classical algorithm and

use pre-trained OpenCV Haar cascade classifier consisting of

215215215

VGA
Camera

Face
Detection

Face
Recognition

FR
training

FR
Application

OpenCV
Fisher face
recognizer

Cropped
faces

FD
Application

OpenCV
Haar Cascade

Classifier

frames

Face
Database

YML
file

Fig. 5. Block Diagram of Face Detection (FD) and Recognition (FR) Module:
The algorithm operates in two steps: FD and FR. FR is invoked only if a face
is detected in FD stage. Instead of sending the entire frame to FR, the cropped
portion corresponding to the detected face is sent.

20 stages and 1047 features. The OpenCV functions require

multiple parameters to be specified based on the application

needs. These parameters impact the accuracy of detection

as well as execution time. We explored scaleFactor and

minNeighbor parameters during our implementation of FD.

Parameter tuning for FD: scaleFactor is one of the pa-

rameters for FD which controls the scaling of frames from

one pass of the algorithm to the next. We varied scaleFactor

from 1.05 to 1.4 in intervals of 0.05 over the test data of 65

images containing 0, 1 or 2 faces. We measured the accuracy

and computation time from the embedded implementation for

each of these settings to come up with the optimal value of

scaleFactor. Another parameter named minNeighbor allows for

removal of false positives from the detection results but leads

to missing out some of the true results. Based on experiments

with different database, we chose minNeighbor=2 for our

implementation.

Minimum face size: Ability to detect faces of smaller

size enables the device to support face detection from larger

distance. The trained cascade classifier provided along with

OpenCV has minimum face window of 20×20 pixels. From

our experiments, we determined that this corresponds to a

maximum detection distance of 6 meters. For detection of

further small faces, we opted for scaling the input image and

then performing FD. This has adverse effect on computation

time and false positives though it could detect smaller faces of

size up to 7×7 pixels (by scaling the image to four times). This

corresponds to a distance of about 12 meters. Note that smaller

faces also impact the accuracy in FR and our experiments

conclude that faces closer than 3 meters gave a recognition

rate of 65%, while beyond 3 meters, an accuracy of less than

50% was achieved.

2) Face Recognition: Once a face is detected by the FD

stage, FR system attempts to match the cropped portion of

image with its database of faces. Simonyan et al. [19] have

shown that Fisher vectors [20] on densely sampled SIFT fea-

tures [11], i.e. an off-the-shelf object recognition representa-

tion, are capable of achieving state-of-the-art face verification

performance on the challenging “Labeled Faces in the Wild”

benchmark [21]. We use the fisher vector representation as

given by the Simonyan et al. and trained the face verification

module with subjects from our research group.

FR training database size: FR involves training the classi-

fier using sample faces of interest. The number of faces used

in the training is one of the factors impacting the accuracy

of recognition. We experimented with sizes of 5, 8 and 10

images/face for each of 10 different persons. The test dataset

consisted of 25 images from 2 seen and 1 unseen person.

Highest accuracy of 65% was achieved with 8 images/face

and we chose this size for our final implementation.
FR database creation and training: Creation of training

database for face recognition is one of the most time con-

suming activity during the implementation of FD+FR module.

Multiple pictures were taken for 10 subjects in indoor and

outdoor illumination conditions with varied facial expressions

like smiling, sad, laughing, straight, serious. Few images with

some shadow and slight tilting were also included to account

for varying sunlight and face orientations. Next, the faces were

cropped manually from these images. The face images were

registered with nose as the center and the area under hair, ears

and tip of the chin removed from the faces.

IV. EMBEDDED IMPLEMENTATION

Our embedded implementation uses ZedBoard [22] as the

platform which consists of Zynq device from Xilinx. It consists

of a dual core ARM Cortex-A9 processor forming the process-

ing system (PS) and a programmable logic (PL) to implement

custom hardware. The PL is tightly integrated with the PS. We

explain key aspects related to our embedded implementation

and how we managed associated challenges.

A. Linaro Operating System and Booting

For the software-only implementation, Linaro Ubuntu dis-

tribution was used [23]. Linaro is an open-source Linux

distribution based on Ubuntu. It supports graphical desktop

through on-board HDMI port. It is a persistent OS, i.e. all

changes are written to memory and it saves files after a reboot

or shut down. OpenCV 3.1 was built on top of it.

B. Compiling OpenCV and Application for ZedBoard

ARM toolchain provided for Linux arm-linux-gnueabihf
was installed and used to compile OpenCV 3.1 source for

Linaro. OpenCV compilation was explored by using shared

library, static library and stripped down version of OpenCV.

The same tool chain was used to compile the application for

ZedBoard.

One of the biggest challenge in porting the implementation

to ZedBoard was the large size (≈600MB) of OpenCV library.

It could not fit in limited memory available on ZedBoard. To

enable porting to ZedBoard, we strip the library to consist of

only the functions required as per our algorithm implemen-

tation. With this, we were able to reduce the library size to

≈50MB which could easily fit on the embedded platform.

C. Profiling of the Application

Profiling is a key methodology used to analyze the relative

software runtime for different blocks. We performed profiling

to identify candidates for hardware acceleration within each

task. We performed profiling using gprof and perf tool.

216216216

TABLE I
ACCURACY, EXECUTION TIME AND ENERGY FOR TEXTURE DETECTION

Classifier
Accuracy (in %) for various window sizes

80× 60 80× 80 160× 120 160× 160

Pavement 87.8 91.26 86.91 82

Road 65.8 70.3 75.6 71

Grass 83.28 96.74 88.3 92.57

Avg. Exec. Time (s) 2.55 1.83 2.72 2.69

Energy (mJ) 306 219.6 326.4 322.8

D. Application Power Measurement on ZedBoard

A 10 milli Ohm, 1 watt current sense resistor is present in

series with the 12V input power supply. A multimeter (Agilent

34410A) was used to measure the voltage. It can be interfaced

to PC and allows to start/stop the measurement, view the

waveform and export the results to a text file. We obtained

the current drawn by the board by dividing the voltage value

with resistance (Ohm’s law).

The base power drawn by the ZedBoard was very high due

to the presence of many other components on the board. To

explore various implementation options, we needed to measure

the contribution from our application alone which posed

another challenge during our implementation. Our approach

to this involved running a dummy code pinned to core-0 to

keep it busy. This was measured as the reference current.

Now the application was pinned to core-1, and the incremental

change in current was considered as the contribution from our

application.

V. RESULTS

A. Texture Detection

The accuracy in percentage for various classifiers, average

execution time and energy consumption for various window

sizes is shown in Table I.

The time taken for classification depends on the following

factors:

• Number of sample windows per frame, which reduces as

the window size increases.

• Computational overhead of feature extraction, which in-

creases with increasing window size.

The two factors affect the computation time in opposite

ways and explains the results presented in Table I. We ob-

served best compromise between accuracy and computation

time with a window size of 80× 80 and have chosen this size

for all our experiments.

B. Signboard Detection

The dataset consisted of 2957 images of various signboards

in our campus. The images were captured for various direc-

tions, time of the day and distances and then manually segre-

gated as True (with signboard) and False (without signboard).

1724 images were tagged as True while 1233 were tagged as

False. Detection accuracy for these images is shown in Table

II. In our experiments, the proposed system works with more

than 90% accuracy up to a distance of 4 meters.

TABLE II
ACCURACY FOR SIGNBOARD DETECTION

Type Number Percentage

True Positives 1658 96.1721

True Negatives 1168 94.7283

False Positives 65 5.27169

False Negatives 66 3.82830

TABLE III
PERFORMANCE COMPARISON FOR DESKTOP AND ZEDBOARD

IMPLEMENTATION FOR DIFFERENT MODES IN SBD

Mode and Outcome of SBD
Time Elapsed (ms) Energy (mJ)

Desktop ZedBoard on ZedBoard

NRS BOTH
True 34.25442 457.1337 71.31

False 28.6954 209.850 32.73

NRS SINGLE
True 32.42210 444.5515 69.35

False 25.33441 206.9383 32.28

RS BOTH
True 17.9652 261.2473 40.75

False 12.1194 54.51582 8.5

RS SINGLE
True 17.9232 234.5172 36.58

False 10.94612 53.72602 8.38

We also measured the average time taken for executing the

task for each image using different modes of the algorithm.

Table III shows the performance and energy results from Desk-

top and ZedBoard implementations. As expected, the energy

consumed is least for RS SINGLE mode while it is highest for

NRS BOTH. Currently, due to software only implementation,

energy consumption results follow the execution time results.

However, in future, when some of the kernels are implemented

in hardware, we expect the results to provide interesting design

trade-offs.

C. Face Detection and Recognition

1) Variations with scaleFactor: Face detection task was

run on ZedBoard for 65 outdoor images consisting of no

faces, one face or more than one faces in different images.

We varied scaleFactor parameter of the OpenCV API and

measured various metrics for each scaleFactor setting. Fig.

6 shows the variation in accuracy of face detection with the

increase in scaleFactor. The results are normalized w.r.t. the

accuracy obtained for scaleFactor=1.05 (it corresponds to an

accuracy of 64.55%). Since a higher scaleFactor reduces the

search space, we observe a decrease in execution time as

scaleFactor is increased. Fig. 7 shows the trend. We selected

scaleFactor of 1.2 for our prototype implementation since it

provides a reasonable trade-off between execution time and

accuracy.

Fig. 8 shows the variation in energy consumption for face

detection with scaleFactor. Increasing the value of scaleFactor
provides a considerable savings in the energy consumed for

processing. We plan to switch to a higher value of scaleFactor
in case the battery level is low and achieve energy savings at

the cost of accuracy.

2) Distance supported vs. accuracy: We performed exper-

iments to measure the size of face at various distances which

217217217

Fig. 6. Face Detection: Accuracy Fig. 7. Time taken for FD

Fig. 8. Energy for Face Detection Fig. 9. Size of detected face at vari-
ous distances

are successfully detected by our algorithm. The results are

presented in Fig. 9. We only plot the points which are greater

than 20 pixels (approximately 6 meters in our camera settings).

A digital scaling of the image by 2× was observed to increase

the detection accuracy at larger distances. The number of false

positives increases substantially when the image was scaled

by 4×. However, we did not implement scaling in the current

version due to a substantial increase in computation time.

VI. CONCLUSION

In this paper, we present the design of a dedicated device

(MAVI) being developed by us to assist outdoor mobility

for visually impaired users. The specifications of MAVI and

details related to the implementation of various modules

have been described. We have presented the results related

to accuracy, execution time and energy consumption and

corresponding design decisions based on these results. One

key learning from this design exercise was that for such

complex embedded systems, application performance metrics

(accuracy, response time, battery life) and associated trade-offs

with power, hardware resource requirements, etc. are key to

getting an efficient implementation.

The current status of the device is an initial concept

demonstrator with SBD, TD and FD tasks implemented and

integrated on ZedBoard as software modules. The localization

module is implemented as hardware software co-design. A

simple controller is implemented in software to schedule

different tasks. A mobile application provides feedback from

the device to the user.

As future work, we plan to improve the prototype by im-

plementing key kernels from FD and TD tasks as hardware in

PL portion of ZedBoard and improve the achieved frame rate.

We also plan to make the central controller more intelligent so

that appropriate runtime decisions could be taken for efficient

utilization of resources. Animal detection is also being worked

on and integrated on the system. Our another ongoing work

on systematic design space exploration for such complex

systems would help in better analysis leading to optimal design

decisions.

ACKNOWLEDGEMENT

We would like to thank Piyush Chanana from IIT Delhi for

the detailed user survey which helped define MAVI specifi-

cations. We would also like to thank Ministry of Electronics

and Information Technology (MeitY) for funding MAVI under

the project “Special Manpower Development Programme for

Chips to System Design (SMDP-C2SD)”.

REFERENCES

[1] “World health organization. visual impairment and blindness.”
www.who.int/mediacentre/factsheets/fs282/en.

[2] “Smartcane,” http://assistech.iitd.ernet.in/smartcane.php.
[3] “Ultracane,” https://www.ultracane.com/.
[4] “Google glass applications for blind and visually impaired users.”

http://www.visionaware.org/blog/visionaware-blog/google-glass-
applications-for-blind-and-visually-impaired-users/12.

[5] “Seeing AI project,” http://www.pivothead.com/seeingai/.
[6] C. Ye, S. Hong, X. Qian, and W. Wu, “Co-robotic cane: A new robotic

navigation aid for the visually impaired,” IEEE Systems, Man, and
Cybernetics Magazine, vol. 2, no. 2, pp. 33–42, April 2016.

[7] I. Apostolopoulos, N. Fallah, E. Folmer, and K. E. Bekris, “Integrated
online localization and navigation for people with visual impairments
using smart phones,” ACM Trans. Interact. Intell. Syst., vol. 3, no. 4,
pp. 21:1–21:28, Jan. 2014.

[8] D. Jain, A. Jain, R. Paul, A. Komarika, and M. Balakrishnan, “A
cellphone based path-directed indoor navigation system for persons with
visual impairment,” in 15th ACM SIGACCESS International Conference
on Computers and Accessibility (ASSETS), 2013.

[9] Y. Ebrahim, W. Abdelsalam, M. Ahmed, and S.-C. Chau, “Proposing a
hybrid tag-camera-based identification and navigation aid for the visually
impaired,” in Second IEEE Consumer Communications and Networking
Conference, 2005. CCNC. 2005, Jan 2005, pp. 172–177.

[10] “OpenCV. Open source computer vision.” http://opencv.org/.
[11] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.
[12] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust

features (surf),” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–
359, Jun. 2008.

[13] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987,
Jul. 2002.

[14] M. R. Turner, “Texture discrimination by gabor functions,” Biol. Cy-
bern., vol. 55, no. 2-3, pp. 71–82, Nov. 1986.

[15] A. F. Costa, G. Humpire-Mamani, and A. J. M. Traina, “An efficient
algorithm for fractal analysis of textures,” in 2012 25th SIBGRAPI
Conference on Graphics, Patterns and Images, Aug 2012, pp. 39–46.

[16] S. Suzuki and K. Be, “Topological structural analysis of digitized binary
images by border following,” Computer Vision, Graphics, and Image
Processing, vol. 30, no. 1, pp. 32–46, Apr. 1985.

[17] “Tesseract,” https://github.com/tesseract-ocr.
[18] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.

Comput. Vision, vol. 57, no. 2, pp. 137–154, May 2004.
[19] K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Fisher

Vector Faces in the Wild,” in British Machine Vision Conference, 2013.
[20] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel

for large-scale image classification,” in Proceedings of the 11th Euro-
pean Conference on Computer Vision: Part IV, ser. ECCV’10, 2010, pp.
143–156.

[21] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[22] “Zedboard,” http://zedboard.org/product/zedboard.
[23] “Linaro,” http://www.linaro.org/.

218218218

