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LP relaxation based message passing and flow-based algorithms are two of the popular techniques for per-

forming MAP inference in graphical models. Generic Cuts (GC) (Arora et al., 2015) combines the two ap-

proaches to generalize the traditional max-flow min-cut based algorithms for binary models with higher

order clique potentials. The algorithm has been shown to be significantly faster than the state of the art al-

gorithms. The time and memory complexities of Generic Cuts are linear in the number of constraints, which

in turn is exponential in the clique size. This limits the applicability of the approach to small cliques only. In

this paper, we propose a lazy version of Generic Cuts exploiting the property that in most of such inference

problems a large fraction of the constraints are never used during the course of minimization. We start with

a small set of constraints (called the active constraints) which are expected to play a role during the mini-

mization process. GC is then run with this reduced set allowing it to be efficient in time and memory. The

set of active constraints is adaptively learnt over multiple iterations while guaranteeing convergence to the

optimum for submodular clique potentials. Our experiments show that the number of constraints required

by the algorithm is typically less than 3% of the total number of constraints. Experiments on computer vision

datasets show that our approach can significantly outperform the state of the art both in terms of time and

memory and is scalable to clique sizes that could not be handled by existing approaches.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

MAP inference in graphical models corresponds to finding the

most likely joint assignment to the underlying variables. It is an im-

portant problem for a wide variety of applications including natural

language processing, computer vision and biology. The problem is

known to be NP-hard (in the number of variables) except for some

special cases, such as when the clique potentials are submodular

[1–4]. Irrespective of submodularity, the complexity of the algorithms

suggested in computer vision has been exponential in the size of the

clique. This makes inference intractable even for mid-sized cliques.

Two of the popular approaches for solving the MAP problem in-

clude: LP relaxation based message passing algorithms [5–8] and

flow based algorithms [1,9–12]. A recent comprehensive survey about

the algorithms for MAP inference can be found in [13].

In message passing based approaches, convergence to the optimal

solution is defined only in the limit when the algorithm is allowed to

run indefinitely. Even if the algorithm converges, it may not always

lead to an integral solution. A popular approach is to first define an

LP relaxation of the problem followed by message passing on the re-
∗ Corresponding author.
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axed version [5,6,14]. Komodakis and Paragios [15] have proposed a

ual decomposition framework which solves the dual relaxation of

he general MRF–MAP problem. The original problem is first decom-

osed into a series of subproblems that are easy to optimize. The so-

ution of the original hard problem is obtained by cleverly combining

olutions from the subproblems. Getting the combined solution in a

ual decomposition framework is a non-trivial task even when the

ptimal solutions to subproblems are given.

Flow based algorithms solve a combinatorial optimization prob-

em such as max-flow/min-cut and have been shown to give better

erformance in practice [16]. Ishikawa [17] has proposed to reduce

he higher order potentials into binary ones and combine the reduc-

ion with existing flow based algorithms. However, this reduction

tself is exponential in the clique size in most cases. The reduction

ethod suggested by Fix et al. [18] has been shown to give better

erformance theoretically and experimentally. Their technique is to

educe a group of higher order terms at the same time instead of each

erm individually. A big shortcoming of reduction based approaches

s that the reduced pairwise problem is often non-submodular hence

ard to solve optimally. This is true even when the original higher

rder version was submodular. A different approach to reduction is

y Kahl and Strandmark [19] using the generalized roof duality. Their

ethod can find a submodular approximation to the original higher

rder function of clique size at most 4. Their approach produces

http://dx.doi.org/10.1016/j.cviu.2015.10.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.10.016&domain=pdf
mailto:dineshk@cse.iitd.ac.in
http://dx.doi.org/10.1016/j.cviu.2015.10.016


D. Khandelwal et al. / Computer Vision and Image Understanding 143 (2016) 80–91 81

b

d

w

a

a

r

r

g

a

t

[

G

f

C

n

(

l

(

T

i

s

n

t

l

d

s

l

t

d

g

s

r

c

a

t

W

n

fl

G

s

i

i

c

n

t

a

f

a

a

s

t

e

a

c

l

r

c

n

o

o

fi

O

l

I

t

f

t

v

o

d

g

e

r

g

g

c

n

q

t

r

W

t

2

h

E

w

c

c

r

C

L

X

s

H

b

T

b

a

l

c

e

e

t

s

w

w

etter solutions in practice but is computationally expensive. Re-

uction based approaches do not guarantee optimal inference even

hen the potential function is submodular, for which theoretical

lgorithms for finding optimal solutions are known [20].

Recently, Arora et al. [1] has proposed a max-flow/min-cut based

pproach to deal with higher order potentials directly. Their algo-

ithm, called Generic Cuts (GC), can be seen as a combination of the LP

elaxation based and the flow based approaches. They define a gad-

et based flow graph corresponding to Lagrangian dual of LP relax-

tion, over which running a modified max-flow algorithm results in

he optimal solution when the potentials are submodular. Fix et al.

10] have replaced the augmenting path style flow algorithm used in

C with their improved IBFS, showing improvement in running time

or clique size of 4. The worst case time complexity of the Generic

uts is O(n|C|2k32k) where n, |C| and k are the number of variables,

umber of cliques and the size of max-clique, respectively. There are

2k) labelings on a clique and the higher order potential cost of each

abeling contributes a constraint in the dual formulation. So the term

|C|2k) in time complexity captures the total number of constraints.

hough the algorithm has been shown to significantly outperform ex-

sting state of the art approaches, it is still exponential in the clique

ize making it intractable for larger clique sizes.

The hardness in MRF–MAP optimization problem is due to the

umber of possible labelings on a clique which increase exponen-

ially with clique size. We observe that for many such inference prob-

ems in computer vision, many of these possible labelings are forbid-

en since they attract a high cost in the energy function. In the corre-

ponding optimization problem as defined in Generic Cuts, where the

abeling cost maps to the cost of cutting a few edges in a flow graph,

he solution obtained depends only on a very small set of constraints

efining the cut. To illustrate the point, consider creating a GC flow

raph where all but a subset of the constraints are ignored. We call

uch a problem the relaxed problem. The corresponding flowgraph is

eferred to as the relaxed graph. The constraints which are ignored are

alled the inactive constraints and the remaining ones are referred to

s the active constraints. As we show later in this paper, the flow in

he relaxed graph is an upper bound for the flow in the original graph.

e also show that a maximum flow in the relaxed graph which does

ot violate any flow constraint of the original graph is a maximum

ow for the original graph as well.

Motivated by the observation mentioned above, we propose Lazy

eneric Cuts (LGC), which brings in the constraints lazily to the active

et, and gradually learns the relaxation in which a maximum flow

s consistent with the original graph. For finding a maximum flow

n the relaxed graph, we use standard GC with the modification to

alculate residual capacities using active constraints only. Since the

umber of active constraints are usually significantly smaller than the

otal number of constraints in a typical computer vision problem, this

llows each iteration to run much faster as well and requiring only a

raction of the memory compared to that of original GC.

We show that the LGC algorithm is guaranteed to terminate in

finite number of steps at the optimum when the clique potentials

re submodular. Though there is no optimality guarantee for non-

ubmodular clique potentials, our experiments show that the solu-

ions inferred by our algorithm have good visual quality and their en-

rgy value is close to that obtained by GC. Note that the number of

ctive constraints can be significantly less than the total number of

onstraints. This property is key to scalability of the LGC algorithm to

arger clique sizes.

LGC can also be seen in the light of cutting plane inference algo-

ithms proposed earlier for graphical models [21,22]. One of the key

haracteristics of these algorithms is their ability to deal with large

umber of constraints by working with a relaxed problem which has

nly a small subset of constraints (i.e. the active set in our terminol-

gy). If at optimality all constraints in the original problem are satis-

ed, then the current solution is also optimal for the original problem.
therwise the algorithm refines the active set by including the vio-

ated constraints which is then used to cut down the feasible space.

n our approach, we use the simple but effective strategy of scanning

hrough all the constraints and including all the violated constraints

or the next iteration. After including violated constraints we solve

he new relaxed problem. This process is repeated until there are no

iolated constraints. Exploring more efficient ways for refining the set

f active constraints is part of the future work. It should be noted that

espite the linear scan to refine the active set, LGC algorithm can still

ive substantial gains as such scans are only done at the beginning of

ach iteration. However this allows each flow augmentation of GC to

un on a significantly smaller set of active constraints only.

We evaluate our algorithm on binary denoising problem. Our al-

orithm is able to scale to clique sizes which none of the existing al-

orithms can handle. Even on problem sizes which earlier techniques

ould handle, we are significantly more efficient both in terms of run-

ing time and memory.

The outline of this paper is as follows. We first present the re-

uired background on Generic Cuts [1] in Section 2. We then describe

he LGC algorithm in detail in Section 3. We also give a proof of cor-

ectness and convergence for the proposed algorithm in this section.

e describe our experimental evaluation in Section 4 and conclude

he paper with directions for future work in Section 5.

. Background

The generalized version of MRF–MAP minimization problem with

igher order cliques is given as:

(l∗P ; D,W) = min
lP

[∑
p∈P

Dp(lp) +
∑
c∈C

Wc(lc)

]
, (1)

here P denotes the set of pixels/sites and C denotes the set of

liques. lp denotes label on a pixel p and lc denotes labeling on clique

. lP is the labeling configuration on set of pixels P . Dp is generally

eferred to as the Data/Singleton Term, while Wc is referred to as the

lique Potential. We follow the notation of Arora et al. [1] and give the

P relaxation of the MRF–MAP minimization problem as follows:

min
l
p,Y

lc
c

∑
p∈P

∑
l∈L

Dp(l)Xl
p +

∑
c∈C

∑
lc∈Lk

Wc(lc)Y
lc

c (2)

ubject to
∑
l∈L

Xl
p = 1, p ∈ P, (3)

∑
z∈{lc}p,l

Y z
c = Xl

p, p ∈ P, l ∈ L, c ∈ C (4)

Xl
p ≥ 0, Y lc

c ≥ 0. (5)

ere {lc}p, l denotes the set of all labeling configurations with the la-

el of pixel p as l. We refer to the problem as the primal problem.

here are two primal variables introduced in the relaxation. Xl
p has

een introduced for each pixel p and for each label x0142; that can be

ssigned to pixel p. It takes value 1 whenever pixel p is assigned label

and 0 otherwise. Similarly variable Y lc
c , introduced for each clique

and each labeling configuration lc on clique c, takes value 1 when-

ver clique c is assigned labeling configuration lc. Eq. (3) ensures that

ach pixel is assigned exactly one label and Eq. (4) enforces consis-

ency between pixel and clique labeling configurations.

The Lagrangian dual of the relaxed LP can be written as:

max
U

∑
p∈P

Up (6)

ubject to Up ≤ hl
p, p ∈ P, l ∈ L, (7)

here hl
p = Dp(l) +

∑
c:p∈c

Vc,p,l, (8)∑
p∈c

Vc,p,lp
c

≤ Wc(lc), c ∈ C, lc ∈ Lk, (9)

here l
p
c denote the label of pixel p in labeling lc.
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Fig. 1. A gadget for 5-clique.
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2.1. Reparameterization

Vectors D, W can be seen as parameters for the primal problem.

Similarly vectors U, V together with D, W defines the parameters for

the dual problem. Kolmogorov and Rother [23] define reparameteri-

zation as follows:

Definition 2.1. If two parameter vectors (D, W) and (D
′
,W

′
) define

the same energy function, i.e., E(lP ; D,W) = E(lP ; D
′
,W

′
) + F for all

configurations lP and for a constant F , then (D
′
,W

′
) is called a repa-

rameterization of (D, W).

Intuitively, the above definition says that two parameter vectors

correspond to a reparameterization if the respective energy functions

differ at most by a constant (positive or negative). Reparameteriza-

tion is an important concept and has been used extensively in the

existing literature [23,24]. Based on the prior work, we explain be-

low some special reparameterizations that will be important for our

exposition.

Lemma 2.2 (Primal reparameterization). The two parameter vectors

(D, W) and (D
′
,W

′
) for the primal problem (2) are reparameterizations

of each other if for a pixel p, a label l on p, an arbitrary clique c: p ∈ c,

and any δ

D
′
p(l) = Dp(l) − δ,

and W
′
c(lc) = Wc(lc) + δ ∀lc : lp

c = l (10)

It is easy to see that the reparameterization suggested in the

lemma simply moves the contribution from the singletons to the

clique potential terms for a pixel p which is assigned label l, leaving

the sum unchanged. It may be noted that the reparameterization is

correct irrespective of the sign of δ.

Lemma 2.3 (Dual reparameterization). The two parameter vectors (D,

W, U, V) and (D
′
,W

′
,U

′
,V

′
) for primal and dual pair (2), (6) are repa-

rameterizations of each other if for a pixel p, a label l on p, an arbitrary

clique c: p ∈ c, and any δ

V
′

c,p,l = Vc,p,l − δ, (11)

D
′
p(l) = Dp(l) + δ (12)

and W
′
c(lc) = Wc(lc) − δ ∀lc : lp

c = l (13)

Note that all the dual constraint equations (8) have equal and op-

posite changes in values of hl
p and Vc, p, l. Similarly dual constraints (9)

have equal changes on both sides of inequality. This ensures that all

the dual constraints remain equivalent. From the primal perspective

also, equal and opposite changes have been made in singleton and

clique potential terms leaving the sum unchanged (similar to primal

reparameterization).

2.2. Generic Cuts

Generic Cuts (GC) proposed by Arora et al. [1] is a flow based al-

gorithm for solving 2-label MRF–MAP problems. For the purpose of

the discussion in this paper we will denote the two labels as a and

b. GC creates a gadget based flow graph for cliques of arbitrary size.

The flow graph contains a gadget corresponding to every clique in the

MRF. A gadget corresponding to a clique of size k contains k + 2 ver-

tices. A sample flow graph corresponding to a single clique of size 5

is shown in Fig. 1. There are three types of nodes in the flow graph.

There is a pixel node corresponding to each pixel in the original prob-

lem, two auxiliary nodes (m and n) for every gadget and two terminal

nodes source and sink for the overall graph. The pair of edges from a

pixel node, p, to the auxiliary nodes, m and n, is called a conjugate edge

pair corresponding to pixel p. A pixel node corresponding to pixel p

is connected to terminal nodes source and sink by edges called termi-

nal edges. The capacity of the edge from p to the sink is set as Dp(a)
nd that of the edge from the source to p is set as Dp(b). Every gadget

orresponding to a clique stores a potential table of size 2k (the num-

er of possible labelings). Finding a maximum flow in the GC flow

raph is equivalent to performing the optimal inference for the origi-

al problem when the clique potentials are submodular.

The gadget in GC models the dual problem as given by Eq. (6) such

hat there exists a one to one relationship between the dual variables

nd the flow in the conjugate edge pairs in the gadget as follows:

c,p,a = f c
n→p − f c

p→m, (14)

here f c
n→p represents the flow in edge n → p corresponding to

lique c. GC restricts flow to be non-zero in only one edge of a con-

ugate edge pair and maintains all dual variables of type Vc, p, b at

ero throughout the execution of the algorithm. Replacing variables

f type Vc, p, a in Eq. (9) with flow in the conjugate edge pair from

q. (14), gives a constraint on how much flow can be sent in each

dge of the gadget as follows:∑
p∈c:lp

c =a

( f c
n→p − f c

p→m) ≤ Wc(lc), c ∈ C, lc ∈ Lk. (15)

efinition 2.4. Using the notation given by Arora et al., each con-

traint described by Eq. (15) on the flow in the conjugate edge pairs

s called a dual feasibility constraint (DFC) corresponding to labeling

c on clique c and is denoted by DFC(lc).

All the pixels p such that l
p
c = a are referred to as the pixels par-

icipating in DFC(lc). The corresponding conjugate edges are called

he participating edges. A DFC limits the sum of the flows in the set

f its participating edges. The quantity Wc(lc) is called the cost of the

FC(lc). There are 2k DFCs on a clique of size k corresponding to each

ossible labeling.

efinition 2.5. The quantity

c(lc) = Wc(lc) −
∑

p∈c:lp
c =a

( f c
n→p − f c

p→m) (16)

s referred to as the slack of the DFC(lc).

The slack of a DFC is the difference between the sum of flows in

he participating edges and the cost of the DFC.

efinition 2.6. A DFC with slack equal to zero is referred to as tight.

efinition 2.7. The residual capacity, Rc(p), of a conjugate edge pair

orresponding to a pixel p in clique c is defined as the minimum slack

f all the DFCs in which it participates. For the residual capacity cal-

ulation, we exclude the DFCs corresponding to uniform labeling, i.e.,
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1 A flow F is called valid if it does not violate any DFC in corresponding dual formu-

lation.
hen either all the pixels have been assigned label a (denoted as

c = a) or all the pixels have been assigned label b (denoted as lc = b).

ormally:

c(p) = min
lc:lp

c =a,

lc 	=a,b

Sc(lc) (17)

It is instructive at this point to compare the notion of capacity of

n edge in GC with that in a standard max-flow problem. In a stan-

ard max-flow problem, the flow in an edge is constrained by a single

calar called capacity of the edge. In contrast, the constraints on the

ow in an edge in a GC flow graph are due to multiple DFCs in which

hat edge participates. Each such DFC limits the sum of flows in the

articipating edges. The capacity of an edge in GC can be seen as the

ow of maximum value that can be sent in the conjugate edge pair

ithout violating any DFC. Any flow augmentation through a gadget

ncreases flow in one pair of conjugate edge, and decreases the same

mount in another pair of conjugate edge, so that slacks in DFCs cor-

esponding to uniform labeling never changes and can never be vi-

lated. That is why the residual capacity calculation excludes DFCs

orresponding to uniform labeling.

It has been known that a MRF–MAP problem with pairwise sub-

odular potentials can be solved by finding a minimum cut in an

ppropriately constructed graph. It is known that finding maximum

ow is the dual problem of minimum cut. Arora et al. showed that

ith the generalized notion of capacity proposed by them, the dual

s essentially finding a maximum flow in the gadget based flow-

raph. They showed that almost all the results from the standard

ax-flow problem such as augmenting path, non-decreasing short-

st path length extend to the GC framework as well. This allows them

o use any regular max-flow algorithm within the framework for op-

imizing the dual. Arora et al. give a generalized definition for the cut

n the gadget based graph which maps to the primal (integral) prob-

em. They show the optimality of the inference as stated in the below

heorem.

heorem 2.8. (Arora et al. [1]) In a flow graph when the clique po-

entials on all the cliques are submodular, the maximum flow value

s equal to the cost of a minimum cut and is the optimal inference for

he MRF–MAP problem (2).

The output labeling is recovered from a minimum cut by labeling

ll pixels in the S side of the cut as b and the remaining pixels as a.

A residual graph G
′

with respect to flow f of a gadget graph G con-

ists of the same vertex set as G and the edge capacities defined as

esidual capacities in G. The implementation presented in [1] uses

n augmenting path algorithm to find a maximum flow. In each it-

ration of flow augmentation, a shortest path is found between the

ource and the sink and the flow equal to the minimum capacity of

he edge along the path is augmented through the path. After flow

ugmentation, a residual graph is constructed by updating the slacks

f DFCs along the path. The steps are repeated until no more flow can

e augmented after which the pixel nodes reachable from sink are

iven the label a and remaining nodes the label b. Note that flow can

e augmented using any heuristic used in traditional max flow algo-

ithms. In practice the algorithm by Boykov and Kolmogorov [9] for

ugmenting flow works faster compared to other strategies.

. Lazy Generic Cuts (LGC)

We explain our proposed algorithm in this section. We start with

he preliminaries to motivate our approach followed by the details of

ur algorithm. For the sake of conciseness and readability, the proofs

f the lemmas and theorems have been moved to the appendix.
.1. Preliminaries

Lemma 3.1 relates the residual graph after flow augmentation in

he gadget graph and the reparameterization:

emma 3.1. The residual graph created after each flow augmentation in

C corresponds to a reparameterization of the original problem.

The lemma allows us to visualize the residual graph created after

ach flow augmentation, in the original graph, as a reparameteriza-

ion of the original problem. The two problems differ by a constant

actor equal to the augmented flow. The GC algorithm can thus be

quivalently seen as carrying out a series of reparameterizations. It is

nteresting to note that the set of reparameterizations carried out by

C keeps all DFCs non-negative at all stages.

Consider a set W, containing all DFCs present in the dual problem

6). Denote an active set of DFCs by A ⊆ W . The relaxed dual problem

s defined by considering only DFCs which are present in the set A:

max
U

∑
p∈P

Up (18)

ubject to Up ≤ hl
p, p ∈ P, l ∈ L, (19)

here hl
p = Dp(l) +

∑
c:p∈c

Vc,p,l, (20)

∑
p∈c

Vc,p,lp
c

≤ Wc(lc), c ∈ C, lc ∈ Lk, DFC(lc) ∈ A. (21)

efinition 3.2. A flow graph GA corresponding to the relaxed dual

roblem (18), considering DFCs in the set A only, is called the relaxed

raph.

emma 3.3. Let FA be a valid flow1 in a relaxed graph GA. The residual

raph created after augmenting flow FA in G corresponds to a reparam-

terization of the original problem.

The proof follows simply from the observation that the number of

ertices and the edges are same in G and GA and therefore the flow

n GA can be mapped to a flow in G as well. The fact that a flow in G

orresponds to a reparameterization (Lemma 3.1) is not affected by

he choice of ignoring some DFCs while calculating the flow.

We can now relate a maximum flow in GA and G as follows:

emma 3.4. Consider a relaxed graph GA and a maximum flow FA in

t. If FA is a valid flow for G, then it is a maximum flow for G also.

Lemma 3.4 gives us an immediate strategy to find a maximum

ow in G. We can search for a relaxed graph GA, such that a maxi-

um flow in GA is a valid flow in G. Searching for a GA essentially im-

lies searching for a suitable A ⊆ W . A simple search strategy could

e to start with an arbitrary A and find a maximum flow FA in corre-

ponding GA. If FA is not valid for G, then there must exist some DFCs

hich are violated in G. We can add these DFCs to the set A and rerun

he max-flow algorithm in GA. The process continues until we reach

set A such that a maximum flow in GA is a valid flow in G.

A more efficient version of algorithm can reuse the flow computa-

ion in the previous iteration. For the case of pairwise problem(clique

ize 2) Kohli and Torr [24] have suggested to reuse the flow computed

n an iteration of alpha expansion [25] as initialization for the next it-

ration. Since the initialized flow can be invalid for the next iteration,

hey suggest a reparameterization of the problem such that the flow

ecomes valid for the reparameterized problem. In our case, the flow

n the relaxed graph corresponds to a reparameterization of the orig-

nal problem (as suggested by Lemma 3.3). A flow F which is not
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Start

Create Relaxed Graph G
A

with
Ini�al set of ac�ve DFCs 

Call Generic Cuts on Relaxed Graph G
A

Check for violated DFCs and
reparameterize them to zero

Update Relaxed Graph G
A

with 
DFCs whose cost is less than 

True

No Flow
Augmenta�on

False

Return min-cut on G
A

Stop

Augment flow

Fig. 2. Flow chart of LGC.

Algorithm 1 Lazy Generic Cuts Algorithm.

Input: G // Input Graph
Input: subItr // Number of flow augmentations per iteration
Input: θth // Threshold to include a DFC in A

1: W = GetAllDFCs(G);

2: A = GetInitialActiveDFCs(G); // Include the DFCs with mini-
mum and second minimum
costs per clique.

3: GA = GetRelaxedGraph(G,A);

4: F = 0; // Initialize total flow to zero.
5: repeat

6: FA = GenericCuts(GA, subItr);

7: F = F + FA;

8: // Reparameterize G according to the flow
augmented in GA

9: G = Reparameterize(G, FA);

10: (G,�) = ReparamViolated(G, W \A);

11: F = F + �;

12: // Bring all DFCs with cost less than θth after
reparameterization in A.

13: Aθth
= GetLessThanThetaCostDFCs(G, W \A, θth);

14: A = A ∪ Aθth
;

15: GA = UpdateRelaxedGraph(G,A);

16: until (FA == 0)

17: return (GC-min-cut(GA)); // Return a min-cut in GA

Algorithm 2 Reparameterization for violated DFCs.

function ReparamViolated(G, W \A)

� = 0;

for all (DFC(lc) ∈ W \A) do

if ((δ=GetSlack(DFC(lc), G)) < 0) then

// returns a pixel participating in DFC(lc)
such that l p

c == a.
p = GetPixelToReparameterize(DFC(lc),G);

Dp(a) = Dp(a) + δ;

for all (l̂c ∈ L|c|) do

if (l̂
p
c == a) then

Wc(lc) = Wc(lc) − δ;

end if

end for

δ′ = Dp(a);

// If unary cost has become negative, make
it zero as well

if (δ′ < 0) then

for all (l ∈ L) do

Dp(l) = Dp(l) − δ′;
end for

end if

� = � − δ′;
end if

end for

return (G,�)
end function

Algorithm 3 Get the slack of DFC(lc).

function GetSlack(DFC(lc), G)

slack = Wc(lc);

for all (p ∈ c : l
p
c == a) do

slack = slack − ( f c
n→p − f c

p→m);

end for

return(slack);

end function
valid for G essentially implies that slacks of some of the DFCs have

become negative in the reparameterized problem. This is not an issue

since we can always do another reparameterization to make slacks of

these DFCs non-negative (we give the details in the next section). The

reparameterized problem can now be solved using GC or any other

flow algorithm. Note that working with the reparameterized prob-

lem allows us to reuse the computation for the DFCs which were not

violated in the previous iteration. This forms the broad strategy of our

proposed algorithm, Lazy Generic Cuts (LGC), explained in the section

below.

3.2. LGC algorithm

We show the broad steps in our algorithm as a flowchart in Fig. 2.

Algorithm 1 provides the pseudocode which we describe next. We

initialize the algorithm with a subset of DFCs called the active DFCs

(Line 2). As explained earlier, this is a subset of DFCs which are ex-

pected to become tight during the standard GC flow augmentations.

In general, the challenge is how to find a good starting set. In our im-

plementation, we choose the DFCs having the minimum and second

minimum cost as our initial active set. We note that more sophisti-

cated strategies could be employed leading to a decrease in the num-

ber of iterations and better efficiency of the proposed algorithm. The

relaxed graph is then constructed using the initial active set (Line 3).

We then augment flow in GA using the technique prescribed in GC

(Line 6). We have made a modification in GC for our purpose which

maintains and computes residual capacity based upon DFCs in A only.

This ability to ignore the inactive constraints during GC flow augmen-

tation is key to time and memory savings obtained by the LGC algo-

rithm.

It may be noted that we do not necessarily find a maximum flow

in GA and instead stop after subIter flow augmentations (or when no

flow can be augmented, whichever is earlier). This is because the pur-

pose of the iteration is essentially to find a next suitable set of DFCs

A only. Our observation which is inline with other similar works in

traditional max-flow [26] is that augmenting the last few flows in

the graph takes most of the time. By stopping the flow augmenta-

tion earlier we save on compute time without any significant drop in

identification of the new active set.
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2 http://www.iiitd.edu.in/∼chetan/abstracts/gc.html.
3 http://www.cs.cornell.edu/∼afix/Software/sum-of-submodular.tar.gz.
4 http://www.f.waseda.jp/hfs/ELC1.04.zip.
Since the numbers of vertices and edges in G and GA are same we

an map the flow in GA to G. As suggested in Lemma 3.3, the flow aug-

entation in the graph G can be seen as a reparameterization of the

riginal problem (Line 9). The reparameterization maintains all active

FCs to be non-negative but other (inactive) DFCs may become neg-

tive after reparameterization. We refer to such negative cost DFCs as

iolated constraints. Once we have identified the violated constraints,

e reparameterize the problem to bring the cost of such constraints

o zero (Line 10).

Our strategy of maintaining an active set is on the basis of the

osts of the DFCs. Since the flow augmentation and reparameteriza-

ion may change these costs, we update the active set at the end of

ach iteration and compute the new relaxed graph based on the mod-

fied active set (Line 15). We fix a threshold θth and bring all the DFCs,

hose cost is less than or equal to this threshold, in the active set

Line 13). GC is now run on the new active set of constraints. The al-

orithm terminates when the flow augmentation returned by the GC

s equal to zero. The min-cut (or max-flow) in the relaxed graph at the

ermination is output as a solution to the original problem. We give

he proof of correctness and convergence of the algorithm in the next

ection.

.3. Convergence and correctness

In every iteration of LGC we add at least one constraint to the ac-

ive set. Since there are finitely many constraints in the problem, the

GC must converge in a finite number of iterations.

Intuitively, the algorithmic steps in LGC can be seen as a special-

zation of the cutting plane strategy [27]. Initially, we can think of

ur optimization problem to be the one with the original dual ob-

ective function but with only a small subset of the dual feasibility

onstraints (DFCs). At each iteration of LGC, we check if the solution

o the current problem satisfies the required constraints (i.e. satis-

es all the original DFCs). If it does, we terminate. If it does not, we

mpose additional cutting constraints by adding new DFCs to the cur-

ent problem. Addition of the new constraints does not exclude any

easible solutions of the original problem but reduces the feasible so-

ution region with respect to the current problem. This similarity be-

ween LGC and the cutting plane strategy can be used to visualize

any of the theoretical guarantees, including convergence and cor-

ectness, for the LGC as described below.

We now state the formal results for the convergence and correct-

ess of LGC. The proofs of these claims have been given in the ap-

endix.

heorem 3.5. Let G be a flow graph. Lazy Generic Cuts algorithm, as

escribed in Algorithm 1, terminates in a finite number of iterations.

heorem 3.6. Consider a problem containing submodular clique poten-

ials and let A be the set of active constraints. Let GA be the relaxed graph

t the termination of the LGC algorithm (Algorithm 1). Let F be the ac-

umulated flow and EA be a minimum cut in GA. Then, F is a maximum

ow in G. Further, the set EA is a minimum cut in G and has the value F .

. Experiments and results

We have extensively evaluated the performance of our proposed

pproach Lazy Generic Cuts (LGC) on the problem of binary image

enoising. We have compared LGC with the current state of the art

ethods using a variety of clique potentials. Next, we present the de-

ails of the methods compared, our dataset, clique potentials and the

etup used in our experiments. This is followed by the presentation

f our experimental results.
.1. Experiment setup

All the experiments have been conducted on a computer with 3.1

Hz Core i7 processor with 16 GB of RAM, running the Ubuntu 15.04

perating system. We compare the following four algorithms in our

xperiments.

• LGC: Lazy Generic Cuts (LGC) is the algorithm proposed in this

paper. It is built upon publicly available implementation of GC [1]

(details below).
• GC: Generic Cuts (GC) is the flow based algorithm proposed by

Arora et al. [1] for inference with higher order clique potentials.

We used the publicly available code2 for GC.
• SoS-IBFS: This is the algorithm proposed by Fix et al. [10] where

they have modified the incremental breadth first search (IBFS) al-

gorithm for minimizing submodular functions to work with the

sum of submodular (SoS) case. We used the publicly available

code for SoS-IBFS.3 We refer to the algorithm as IBFS in our dis-

cussion.
• ELC-Approx: This is the reduction based method proposed by

Ishikawa [28]. Their method tries to reduce higher order terms

into pairwise without introducing any auxiliary variables. We

used the publicly available code for ELC-Approx.4 We refer the

work as ELC in this section.

.1.1. LGC settings

We work with a modified implementation of GC which takes as in-

ut the current set of active DFCs and the stopping criteria i.e. num-

er of augmenting flow iterations after which algorithm should be

topped. This is the subItr parameter as described in Section 3. We

se a value of 30, 000 for the subItr parameter in all our experiments.

e initialize the active DFC set by choosing the minimum and sec-

nd minimum cost DFCs, in each clique. We have experimented with

wo different values of the θth parameter i.e. θth = 20, and θth = 40.

ecall that θth controls which DFCs should be added to the active set

fter the current reparameterization. All the DFCs whose reparame-

erized cost becomes less than or equal to θth are made active. We

lso analyze sensitivity of LGC with varying values of subItr and θth.

All the above mentioned codes are available in C++. We plan to

elease our code also in C++ under open source license.

.1.2. Dataset and clique potentials

All our experiments have been performed on the two label image

enoising task with higher order cliques. The images used in the ex-

eriments have been taken from [29]. In the description below, when

e say we use a clique size of k × k, we include potentials over all

he overlapping windows of size k × k with a stride of 1 in the image.

e have used different clique potential types in order to show the

esilience of our approach with respect to the underlying potential.

pecifically, the following clique potentials have been used:

• Edge based potentials: The cost of a clique configuration is given

by
√

E. Here, E denotes the set edges produced by a labeling con-

figuration. An edge is defined over a pair of neighboring pixels

(we consider 4-neighborhood, i.e., up, down, left and right) with

opposite labels (a/b) assigned to them. Fig. 3 shows an example.

The total number of edges in the figure is 9 and hence, the cost

of the configuration is given by
√

9. Edge based potentials have

been used previously in the literature [1] and have been shown to

perform particularly well for the binary image denoising task. The

potential is submodular for the cliques of sizes less than equal to

4 but not in general.

http://www.iiitd.edu.in/~chetan/abstracts/gc.html
http://www.cs.cornell.edu/~afix/Software/sum-of-submodular.tar.gz
http://www.f.waseda.jp/hfs/ELC1.04.zip


86 D. Khandelwal et al. / Computer Vision and Image Understanding 143 (2016) 80–91

Table 1

Comparison of time and memory of different inference algorithms on count based potential

with increasing clique size. The potential is submodular for all clique sizes. Image size is 80 ×
80. For LGC θth = 40.

Clique size Time (s) Memory (MB)

GC LGC IBFS ELC GC LGC IBFS ELC

2 × 2 0.01 0.06 0.12 0.03 25 37 30 43

3 × 2 0.03 0.21 0.34 0.06 28 64 54 44

3 × 3 0.82 2.53 3.29 2.10 40 233 106 44

4 × 3 92.08 20.9 131.00 80.82 111 344 319 45

4 × 4 4489.85 547.90 701.67 – 1750 580 3104 –

Fig. 3. The figure displays an image patch corresponding to a 3 × 3 sized clique. The

nodes are numbered from 1 to 9. Each node in the figure has the label a or b denoting

a specific labeling configuration. We consider the 4-neighborhood i.e. up, down, left

and right. For example, the neigbhors of node 5 are given as 2, 4, 6 and 8. A pair of

neigboring pixels defines an edge if one of them has the label a and the other has label

b. The edges for the above figure are shown using solid lines. The total number of edges

is |E| = 9. Using the edge based potential, the cost of labeling is given by
√|E| = √

9 =
3. If |Va| and Vb| denote the number of pixels labeled a and b, respectively, the cost of

count based potential for the above example is given by |Va| ∗ |Vb| i.e. 5 ∗ 4 = 20.
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• Count based potentials: The cost of a clique configuration is given

as |Va| ∗ |Vb| where Va and Vb denote the sets of pixels labeled a

and b, respectively, in the given configuration. For the example

shown in Fig. 3, the values of |Va| and |Vb| are 5 and 4, respectively.

The cost of the clique configuration is given by 20. The potential

is submodular for all clique sizes and has been used previously in

the literature for tasks such as binary object segmentation [30].
• Learned potentials: We have also experimented with submod-

ular potentials learnt using the technique proposed by Fix et al.

[10]. We have used the publicly available code [31] (with minor

modifications to make it work on our system) to generate these

potentials. The method uses a set of noisy images and their corre-

sponding ground truth for the learning. Since the original dataset

used in [10] is not available, we have generated our own dataset

using the method described in [10]. Specifically, we selected 10

butterfly images from the binary image dataset [29] each of size

120 × 120 for the learning. To get noisy images we have added

independent Gaussian noise at each pixel and used Hamming dis-

tance as a loss function between the ground truth and the pre-

dicted image.

In all of our experiments, the unary potentials are chosen as the

difference of the pixel intensity value from the respective ideal value

(i.e. 0 for label a and 255 for label b) for the given configuration.

4.2. Scalability with clique size

In this section, we present the comparison of LGC with GC, IBFS

and ELC using various clique sizes and a fixed image size. Table 1 com-
ares the time and memory required by the various algorithms when

he image size is fixed at 80 × 80. The clique potential used is count

ased. For clique size up to 3 × 3, GC performs best both in terms

f time and memory. But its performance degrades significantly as

lique size increases. ELC performs reasonably well till clique size of

× 3 but is unable to run for larger clique sizes. A ‘–’ in the table

eans that the algorithm ran out of memory.

At smaller clique sizes LGC is comparable to other algorithms in

ime and slightly worse in its memory performance. This is because

f the extra overhead required to maintain the active set. At larger

lique sizes, it takes over other algorithms both in terms of time and

emory. At clique size 4 × 4, LGC is the fastest followed by IBFS which

s about 1.3 times slower. GC is 8 times slower than LGC. At clique size

f 4 × 4, LGC has a third of the memory required by GC and a fifth of

he memory required by IBFS. All the algorithms other than LGC failed

o scale beyond clique size 4 × 4. We present the scaling behavior of

GC at larger clique sizes later in Section 4.4.

Table 2 (left half) compares the time performance of LGC with the

ther algorithms using the non-submodular edge based potentials

Section 4.1.2). We observe similar behavior for LGC and GC as ob-

erved using count based potentials. ELC’s performance degrades sig-

ificantly with increasing clique size. Interestingly, IBFS has a some-

hat better timing behavior compared to LGC (as well as other algo-

ithms). A careful analysis reveals this is because IBFS uses a quick but

rude submodular approximation to the original function. The faster

nference in IBFS comes at the cost of significantly worse energy val-

es compared to both GC and LGC. In contrast, despite the potential

eing non-submodular, both GC and LGC are able to obtain a reason-

ble solution. Fig. 4 compares output of the three algorithms on an

mage of size 80 × 80 using a 4 × 4 potential validating our thesis

bove. We give detailed energy comparison for such potentials in the

ppendix.

Table 2 (right half) compares the memory requirements of the four

lgorithms for edge based potentials. For lower clique sizes, LGC is

lightly worse than GC for the reasons explained earlier. For clique

ize of 4 × 4, LGC has the best memory performance followed by GC

nd IBFS, respectively. ELC performs the worst. LGC requires about

alf the memory required by GC and about a third required by IBFS.

here is an interesting observation to make. For GC and IBFS the

emory requirements are almost identical to the case of count based

otentials for the same clique size. On the other hand, LGC’s require-

ent varies based on the kind of potential chosen (compare results in

ables 1 and 2). This is because of the fact that LGC’s memory needs

epend on the actual constraints brought in memory unlike GC and

BFS which consume a fixed memory for a given image/clique size

ombination. Further exploring the connection between LGC’s mem-

ry requirements and the specific kind of potential used is a direction

or future work.

In order to examine the generalizability of LGC’s performance, we

ave also experimented with learned potentials using the approach

f Fix et al. [10] (see Section 4.1.2). Because of the limitation of the

earning algorithm, we were able to learn the potentials only up to

ize of 3 × 3. The relative performance of various algorithms is sim-
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Table 2

Comparison of time and memory for different inference algorithms on edge based potential with in-

creasing clique size. It may be noted that the potential is submodular for clique size 2 × 2 only. Image

size is 80 × 80. For LGC θth = 40.

Clique size Time (s) Memory (MB)

GC LGC IBFS ELC GC LGC IBFS ELC

2 × 2 0.01 0.08 0.14 0.06 26 37 31 46

3 × 2 0.06 0.74 0.36 1.45 28 47 60 58

3 × 3 4.04 11.23 2.96 195 40 93 107 198

4 × 3 77.73 76.86 29.38 18,533.43 134 238 320 2128

4 × 4 4082.36 1347.42 700.50 – 1786 1049 3110 –

Original Image Noisy Image LGC GC IBFS

Fig. 4. Comparison of visual quality using nonsubmodular clique potentials for denoising problem. Image size is 80 × 80 and clique size is 4 × 4.
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Table 3

Comparison of time and memory of different inference algorithms on count based

potential with increasing image size. Clique size is 4 × 4. For LGC θth = 40.

Image size Time (s) Memory (MB)

GC LGC IBFS GC LGC IBFS

40 × 40 2298.02 92.93 163.52 494 170 730

60 × 60 3923.84 271.26 390.30 1059 371 1700

80 × 80 4489.85 547.90 701.67 1750 580 3104

100 × 100 8297.57 901.32 1395.00 2727 810 4914

120 × 120 12,961.81 1505.05 1705.10 3802 1178 7018
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t
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t

t
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(

lar to the case of submodular count based potentials. We give the

etailed comparison in the appendix.

.3. Scaling with image size

Next we analyze LGC’s performance on varying image sizes for a

xed clique size of 4 × 4. Since we could not learn the potentials be-

ond size 3 × 3, we used only count based and edge based potentials

or these experiments. ELC fails to scale beyond clique size of 4 ×
and is not included in these experiments. The experiments in this

ection have been performed using count based potentials.

Table 3 presents the time as well as memory required by GC, IBFS

nd LGC as we vary the image size. LGC has the best running time

erformance followed by IBFS. GC is significantly slower than both

he algorithms. LGC is up to 1.5 times faster than IBFS and close to

n order of magnitude faster than GC at all image sizes. In terms of

emory, LGC is the best performer with its memory requirement be-

ng about a third of GC and about a sixth of IBFS. IBFS is the worst

erformer in terms of memory.

For non-submodular problems, the behavior is similar to the one

bserved while analyzing clique size scalability. IBFS runs faster but

t the cost of significantly degraded image output quality. We give the

etailed analysis in the appendix.
.4. Effect of algorithm parameters

Having established the superior performance of LGC over exist-

ng state of the art algorithms, we next examine additional proper-

ies of LGC such as its scaling behavior beyond clique size of 4 × 4

here all other algorithms fail to run, the relative amount of time

aken by initialization, reparameterization and actual flow compu-

ation and the total number of DFCs actually activated by LGC for

given problem. We are also interested in analyzing the effect of

he threshold parameter (θth) and the number of flow augmentations

subIter) parameter on time, memory and the energy values obtained

for non-submodular potentials). We analyze these aspects in this
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Table 4

Inference time in seconds and memory in MB

with increasing clique size. Image size is 40 ×
40. θth = 20 for LGC.

Clique size LGC

Time (s) Memory (MB)

3 × 3 1.41 35

3 × 4 15.16 50

4 × 4 238.63 104

4 × 5 5013.35 272

5 × 5 246,484.23 1402

Table 5

Inference time required by different components of LGC algorithm on 4 × 4 clique

problem with θth = 40.

Image size Time (s)

Initialization Flow Reparameterization Total time

20 × 20 0.05 19.84 27.07 46.96

40 × 40 0.25 91.42 113.19 204.86

60 × 60 0.59 256.51 326.32 583.42

80 × 80 1.08 609.32 737.02 1347.42

100 × 100 1.72 896.87 1610.13 2510.72

120 × 120 2.52 1564.35 2897.55 4464.42

Table 6

Number of LGC iterations and fraction of DFCs in active set at conver-

gence. Clique size is 4 × 4.

Image size # of GC iterations % of DFCs active

(θth = 20) (θth = 40) (θth = 20) (θth = 40)

20 × 20 13 8 0.98 2.90

40 × 40 12 10 0.86 2.60

60 × 60 17 11 0.92 2.50

80 × 80 23 13 1.00 2.70

100 × 100 31 19 0.91 2.70

120 × 120 41 24 0.92 2.50
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Fig. 6. Time taken by LGC for various values of flow augmentations allowed in each

LGC iteration. Image size is 60 × 60, clique size is 4 × 3 and θth = 20.

L

i

D

b

o

w

t

a

G

r

i

g

O

t

b

E

r

t

i

m

e

4

m

f

section. All the experiments in this section have been performed us-

ing edge based potentials.

Scaling beyond 4 × 4: Table 4 shows the performance of LGC as we

vary the clique size for a fixed image size of 40 × 40. LGC can eas-

ily scale to clique sizes of 5 × 5 which is an important milestone for

computer vision applications given that the earlier best reported in

the literature is clique sizes of 4 × 4.5 The memory required for clique

size 5 × 5 is close to 1.5 GB which is easily accessible on a standard

laptop. Time required does shoot up at this clique size and optimizing

this further is a part of the future work.

Runtime profiling: We would like to understand where LGC spends

most of its time. The key steps in the algorithm are: initialization,

reparameterization and the flow computation. Recall that LGC needs

to initialize the graph once in the beginning and then the reparame-

terization and flow computation need to be performed at every LGC

iteration (see Algorithm 1). Table 5 compares the total time spent by

LGC during the initialization, reparameterization and flow computa-

tion steps for varying image sizes and clique size fixed to 4 × 4. Total

time taken by LGC is also shown for reference. Initialization cost is

negligible in all cases. Interestingly, LGC spends a significant amount

of time (more than 50%) during the reparameterization step. Coming

up with better strategies to reduce the time spent in reparameteriza-

tion is a direction for future work.

θ th, no. of iterations and active DFCs: Table 6 shows the number of iter-

ations taken by LGC to converge and also the percentage of the DFCs

which have become active at the time when the algorithm converges.

We show these numbers for two different values of the θth parameter:

θth = 20 and θth = 40. At a smaller value of θth (20 vs 40), LGC is more

conservative in making DFCs active. This results in a larger number of

iterations required for the algorithm to converge (41 vs 24) before all

the required DFCs are actually made active. At the same time, this re-

sults in lesser percentage of DFCs being made active (0.92 vs 2.50).

The behavior is similar to typical precision vs recall characteristics of

a prediction technique.
5 There are techniques such as the one proposed by Kohli et al. [32] which scale

to larger clique sizes but they use only a very small subset of potential values during

inference.

e

m

t

8

We have performed a detailed analysis of the performance of

GC as we vary the threshold parameter in a larger range for a given

mage and clique size. As the value of θth increases, the chance of a

FC being included in the active set increases. Some of these DFCs

elong to the minimum cut we are trying to find and the chances

f such DFCs being included in the active DFCs set quickly increase

ith increase in θth. This reduces the number of LGC iterations and

herefore improves the time efficiency. Increasing the threshold to

very high value is not useful since this essentially turns LGC to

C, having only one iteration but spending wasteful time in finding

esidual capacity with constraints which will not be included in min-

mum cut. We, therefore, expect to see a sweet spot for the threshold

iving us maximum benefit in efficiency. Fig. 5(a) confirms the same.

n the other hand, the memory requirement is expected to mono-

onically increase with increasing θth. Fig. 5(b) confirms the expected

ehavior.

ffect of parameter subIter: Fig. 6 shows the variations of time

equired for LGC as we change the number of flow augmenta-

ions in each iteration of LGC. The image size for the experiment

s 60 × 60 and clique size is 4 × 3 with θth = 20. The experi-

ent spells the reason for the choice of subIter = 30, 000 in all our

xperiments.

.5. Visual quality

The purpose of the experiments here is to validate the algorith-

ic improvement suggested in the paper. So far in the paper we have

ocused on the computational efficiency of our algorithm and the en-

rgy of the inferred solution. In this section we show the improve-

ent in visual quality with increase in the clique size. Fig. 7 shows

he visual results obtained for denoising different images of size 80 ×
0 as the clique size is increased from 2 × 2 to 4 × 4.
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Original

Image

Noisy

Image

Clique Size

2 × 2 2 × 3 3 × 2 3 × 3 4 × 3 4 × 4

Fig. 7. Improvement in visual quality for denoising problem using cliques of different sizes. Image size is 80 × 80.
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6 As a corollary, for the DFCs which contain edges corresponding to both p and q, the
. Conclusion and future work

In this paper, we have proposed a lazy version of the state of

he art algorithm, Generic Cuts (GC), to solve the MRF–MAP prob-

em. Our algorithm, called the Lazy Generic Cuts (LGC), exploits the

act that for many vision problems there is only a small number of

onstraints which are tight in the final solution and therefore, most

f the constraints do not matter for deciding the min-cut/max-flow.

e express the flow based moves in GC as a set of reparameteriza-

ions. Our algorithm works by running GC iteratively using the cur-

ent set of active constraints. This set is gradually increased at ev-

ry iteration by including those constraints which become tight (or

ear tight) based on the last GC run. LGC is guaranteed to give the

ame results as GC when the potentials are submodular. Our experi-

ents clearly demonstrate that LGC can significantly outperform GC

s well as other state of the art algorithms both in terms of time and

emory on binary denoising problem. Further, LGC can scale to prob-

ems with clique size 5 × 5 which none of the existing algorithms are

ble to.

One of the directions for future work includes working in a mem-

ry bound scenario where we are given an upper bound on the avail-

ble amount of memory. Can we then selectively decide which con-

traints to include in active set and which ones to take out such that

e are always within the memory bound (note that the current ver-

ion of LGC never removes a constraint from the active set)? What

ind of convergence guarantees can be given in such a scenario?

nother direction for further work includes establishing a deeper

onnection with cutting plane style algorithms. Most of these algo-

ithms do not need to look at the entire constraint set to find a con-

traint which is violated by the current solution. Can we do some-

hing similar enabling us not to scan the entire set to check for vi-

lated constraints? It is an interesting problem to pursue in future

ork. Other directions of research include solving other classes of

roblems with techniques similar to our, e.g. multi-label problems

4,11]. It would be interesting to see if we can use LGC for learning the

igher-order potential function inside structured learning approach

f Fix et al. instead of their incremental breadth first search (IBFS)

lgorithm.
s

ppendix A. Proof of lemmas

.1. Proof of Lemma 3.1

First consider a simple case of flow of type source → p → sink. The

esidual graph after flow of this type does not affect any DFC. How-

ver, the residual capacity of the terminal edges is decreased by δ.

he maximum flow value in original and residual graphs differs by δ.

ow consider the reparameterization where both the data costs Dp(a)

nd Dp(b) have been reduced. The flow graph for the reparameterized

roblem is identical to the residual graph. Similarly, the reparameter-

zed and the original problems differ by the value δ for all labeling

onfigurations.

Now consider flow through paths of length 1. We use the defini-

ion of path length in terms of number of path fragments, as defined

y Arora et al. [1], where a path fragment is a portion of augmenting

ath containing a pair of pixel nodes and the auxiliary nodes from a

lique/gadget containing the pair. Consider a path of type source →
→ q → sink. Any flow augmentation of δ through such a path de-

reases the residual capacities of terminal edges and changes slack

f DFCs in the following way. For node q, the slacks of all DFCs, in

hich the edge corresponding to q participates, decrease by δ. For

ode p, the slacks of all DFCs, in which the edge corresponding to p

articipates, increase by δ.6 The reparameterized problem can be un-

erstood from Lemma 11 where two reparameterizations have been

one, one with respect to p of −δ and another with respect to q of +δ.

The paths of length more than 1 can be assumed to be of type

ource → p → q → r → sink, containing one or more nodes of type

. The reparameterized graph to residual graph equivalence can be

nderstood by splitting the path into path fragments and establishing

he equivalence for each path fragment. In this case the equivalence

an be established for path fragments source → p → q and q → r →
ink using the similar arguments as for paths of length 1.

Therefore residual graph after any flow augmentation in GC can be

een as a flow graph corresponding to the reparameterized version of

he original problem where augmented flow can be seen as the differ-

nce in cost for a labeling between the original and reparameterized

roblems.
lack does not change. However, this has no consequence on our current discussion.
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Table B.7

Comparison of minimum energy value reached by different infer-

ence algorithms on edge based potential with increasing clique

size. Image size is 80 × 80 and θth = 40 for LGC.

Clique size Energy value

GC LGC IBFS ELC

2 × 2 584,511 584,511 584,511 636,423

3 × 2 610,638 610,638 610,641 754,210

3 × 3 631,995 631,995 632,053 755,161

4 × 3 643,248 643,248 642,985 755,412

4 × 4 659,652 659,652 871,406 –

Table B.8

Comparison of time and memory for different inference algorithms on edge based

potential with increasing image size. Clique size is 4 × 4. For LGC θth = 40.

Image size Time (s) Memory (MB)

GC LGC IBFS GC LGC IBFS

40 × 40 2169.13 204.86 161.40 512 240 1428

60 × 60 3684.62 583.42 379.43 1035 513 3371

80 × 80 4082.36 1347.42 700.50 1786 1049 3110

100 × 100 6049.85 2510.72 1150.22 2693 1553 4916

120 × 120 11,301.17 4464.42 1604.04 3849 2213 7158

Table B.9

Comparison of minimum energy value reached by differ-

ent inference algorithms on edge based potential with in-

creasing image size. Clique size is 4 × 4. For LGC θth = 40.

Image size Energy value

GC LGC IBFS

40 × 40 173,530 173,530 213,649

60 × 60 380,373 380,372 491,084

80 × 80 659,652 659,652 871,406

100 × 100 1,009,635 1,009,627 1,320,299

120 × 120 1,431,658 1,431,663 1,877,654
Note that the argument presented above does not depend upon

the value of the flow or if the flow violates any DFC. The same argu-

ment can therefore be used to prove the reparameterization view for

the relaxed graph as well, when the flow is computed ignoring (and

possibly violating) some of the DFCs (Lemma 3.3).

A.2. Proof of Theorem 3.5

Consider an LGC iteration where the set of active constraints is

given by A. Let the corresponding relaxed graph be denoted by GA.

Let F be the flow when GC is called with A as the active set of con-

straints. The LGC algorithm (Algorithm 1) terminates if the value FA
of the flow is equal to zero. We first consider the simpler case, when

subIter = ∞ and for each iteration we can augment as much flow as

possible. This will mean that F is a max-flow for the relaxed graph.

It suffices to prove that for every LGC iteration, we add at least one

constraint to the active set. This is because the active set is bounded

above by the total number of constraints and proving above will mean

that the active set becomes the entire set of constraints in a finite

number of iterations. Running GC with this set will give a max-flow

in the original graph (since all the constraints are active). Hence, the

net flow in the residual graph will be zero in the next iteration and

the algorithm will terminate.

Let WV ⊆ W \A be the subset of inactive constraints which are

violated by the flow F obtained in GA. Clearly, WV is non-empty, since

otherwise LGC will terminate in the next iteration (the flow in the

residual graph from the last step would be zero). At the end of each

iteration, we reparameterize to an equivalent problem where all such

violated DFCs are reparameterized to zero. Hence, in the next step

when all the constraints whose costs are less than equal to θth (θth ≥
0) are made active (Line 10, Algorithm 1), we can safely assume that

at least one constraint is added to the active set. Hence, the active set

increases monotonically at every iteration.

The above arguments suffice to prove the convergence when we

augment a maximum flow in the relaxed graph. In practice we allow

only a certain number of flow augmentations in each iteration. How-

ever, such a change does not effect the convergence guarantees. In any

flow graph including gadget based flow graph, the number of flow

augmentations is bounded by n2 (n is the number of nodes/pixels).

With the bound on number of flow augmentations, in each iteration

of LGC either the set of active constraints becomes bigger or non-zero

number of flow augmentations have happened. Since both the quan-

tities are finite, the total number of LGC iterations is also finite.

By the arguments presented above, LGC always terminates in fi-

nite iterations.

A.3. Proof of Lemma 3.4

The data terms Dp(l) are identical in GA and G and the DFC costs

Wc(lc) in GA are greater than or equal to those in G (by construction).

Hence, any flow F in G, which does not violate any DFCs in G, also

does not violate any DFCs in GA. Hence, F is a valid flow for GA also.

Since, any flow F in G is also a valid flow in GA, the value of maximum

flow in G must be less than or equal to the maximum flow value in

GA.

A.4. Proof of Theorem 3.6

Lemma 3.3 shows that the residual graph obtained after flow aug-

mentation in a relaxed graph corresponds to a reparameterization of

the original problem. At the end of each iteration we perform a repa-

rameterization to bring the cost of the violated constraints to zero.

Therefore, the graph obtained at the end of each iteration as well as

at the termination of LGC corresponds to a reparameterization of the

original problem. Such a reparameterized problem differs from the

original problem by the constant F . By construction, there is no flow
ugmentation possible in the reparameterized problem at the termi-

ation. Therefore, the value of maximum flow is equal to the cost of a

inimum cut, which is equal to zero. Note that a reparameterization

f the problem preserves the set of edges on a minimum cut in the

orresponding graph. Therefore, the minimum cut in the graph at the

ermination of LGC is the same as the minimum cut in the original

raph. Furthermore, such a cut will take the value F in the original

raph. The theorem states the same.

ppendix B. Detailed experimental results

.1. Comparison on non-submodular clique potential

We have compared LGC for non-submodular problem using edge

ased potentials as described before. We observe similar behavior for

GC and GC as in count based potentials. Interestingly, IBFS seems

o use quick but crude submodular approximation resulting in faster

nference compared to other algorithms but also substantially worse

nergy values compared to GC and LGC. On the other hand, despite

he potential being non-submodular, both GC and LGC are able to ob-

ain a reasonable solution. Table B.7 compares the energy values ob-

ained by all the four algorithms for varying clique sizes.

Table B.8 presents the results as we vary the image size (for a

xed clique size). Table B.9 presents the energy values obtained by

he three algorithms validating our claim about poor quality of results

btained by IBFS. Fig. 4 already compared the image quality obtained

y the three algorithms on an image of size 80 × 80 using clique size

× 4. Table B.8 also depicts the memory requirements of the three

lgorithms with varying image size. LGC is the best performing algo-
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Table B.10

Comparison of inference time and memory for different inference algorithms on

learned potential in seconds with increasing clique size. Image size is 80 × 80 and

θth = 40 for LGC.

Clique size Time (s) Memory (MB)

GC LGC IBFS ELC GC LGC IBFS ELC

2 × 2 0.01 0.09 0.13 0.06 26 38 28 43

3 × 2 0.04 0.19 0.29 0.13 27 58 40 44

2 × 3 0.13 0.25 0.27 0.13 27 57 40 44

3 × 3 0.96 4.28 4.10 217.67 40 279 103 200
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ithm with its memory requirement being up to half that of GC and

etween a third and a fifth of IBFS (for different image sizes). IBFS

erforms the worst of the three algorithms in terms of memory re-

uirements.

.2. Comparison using learnt potentials

Table B.10 compares the time and memory required by all the four

pproaches using learned potentials on an image size of 80 × 80 with

arying clique sizes. We were unable to learn the potentials of size

reater than 3 × 3.7 The relative performance of various algorithms

re similar to those obtained for submodular count based potentials.

he real advantage of LGC comes at higher order potentials which we

re not able to demonstrate here due to the limitation of the learning

lgorithm. Memory required by all the four algorithms with varying

lique sizes is also similar to the case of count based potentials. As

efore, we present only up to clique size of 3 × 3 as the learning code

id not scale to larger clique sizes.
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