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Abstract. In this paper, we propose an algorithm for optimal solutions
to submodular higher order multi-label MRF-MAP energy functions which
can handle practical computer vision problems with up to 16 labels and
cliques of size 100. The algorithm uses a transformation which transforms
a multi-label problem to a 2-label problem on a much larger clique. Earlier
algorithms based on this transformation could not handle problems larger
than 16 labels on cliques of size 4. The proposed algorithm optimizes the
resultant 2-label problem using the submodular polyhedron based Min
Norm Point algorithm. The task is challenging because the state space of
the transformed problem has a very large number of invalid states. For
polyhedral based algorithms the presence of invalid states poses a challenge
as apart from numerical instability, the transformation also increases
the dimension of the polyhedral space making the straightforward use
of known algorithms impractical. The approach reported in this paper
allows us to bypass the large costs associated with invalid configurations,
resulting in a stable, practical, optimal and efficient inference algorithm
that, in our experiments, gives high quality outputs on problems like
pixel-wise object segmentation and stereo matching.

Keywords: Submodular Minimization, Discrete Optimization, Hybrid
Methods, MRF-MAP, Image Segmentation.

1 Introduction

Many problems in computer vision can be formulated as pixel labeling problems, in
which each pixel p € P needs to be assigned a label [, € £. Finding the joint label-
ing configuration, lp, over all pixels, with maximum posterior probability can then
be formulated as a MRF-MAP inference problem [25/48]. The formulation involves
solving the following optimization problem: 15 = argmin .17 ) cee fo(le)-
Here, c, also called a clique, is defined as a set of pixels whose labels are contex-
tually dependent on each other. A labeling configuration on a clique € is denoted
as l¢, P denotes the set of all pixels and C denotes the set of all cliques. The
order of the MRF-MAP problem is considered as one less than the size of the
maximal clique, kK = maxcec |C|. Each term, fc(lc), also called the cligue potential,
measures the cost of the labeling configuration l; of a clique ¢, depending on how
consistent the labeling is with respect to the observation and prior knowledge.
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Optimal inference problem, in general, is NP hard even for first order MRFs.
Therefore, researchers have explored approximate solutions to the inference
problem for first order [9I28/32/52] as well as higher order MRFs [7I33/50]. Another
line of research has been to identify sub-classes of clique potentials which model
vision problems well and for which optimal inference algorithms can be devised
with polynomial time complexity. The MRF-MAP problems with submodular
clique potentials is one such popular sub-class [2ITTI32], which is also the focus
of this paper.

Use of higher-order cliques in an MRF-MAP problem is important because
it has been established that they can capture more complex dependencies be-
tween pixels thereby significantly improving the quality of a labeling solution
[211126133140/4T46I5TI53]. Our experiments also show improvement over state of
the art techniques based on the deep neural networks. Note that MRF-MAP
formulation allows one to use the output of deep neural networks as the likeli-
hood term in the objective function. Therefore, performing posterior inference,
even using the manually defined priors, helps exploit the problem structure, and
improves performance further.

Inference algorithms for higher-order MRF-MAP with general clique poten-
tials output approximate solutions, and are generally based on either message
passing/dual decomposition [I8IBTI33I37I38/47/49] or reduction to first-order po-
tentials frameworks [TOT2ITHI2TITI2413239I4T]. The focus of this paper is on
developing optimal inference algorithm for multi-label, submodular, higher-order
MRF-MAP problems.

One approach to handle multi-label potentials is to use encodings [2120153] to
convert a multi-label problem to an equivalent 2-label problem while preserving
submodularity. However there are some practical challenges. For a multi-label
problem of order k£ with m labels, the encoding blows the problem to cliques
of size mk and exploding the size of the solution space to 2™* [2]. Note that
only m* of the 2 binary configurations resulting from the encoding correspond
to the original m* labeling configurations. The rest are invalid in the problem
context. Note that if potentials for invalid states are kept very large and those
for valid states the same as in the original multi-label version, the minimum is
always among the valid states.

The use of Block Co-ordinate Descent (BCD) based techniques to handle
the Min Norm Point polyhedral algorithm[45/46] is also possible in principle
for such transformed problems. But the encoding based transformations pose
new challenges. As explained in the next section, these techniques maintain the
current feasible base vector as a convex combination of a set of extreme bases.
For the 2-label problems arising out of encoding multi-label versions, some of the
values in the extreme bases can correspond to energy of the invalid states. Giving
a large or effectively an infinite value to the invalid states creates numerical
challenges in maintaining/updating these convex combinations. Also, encoding
increases the size of the cliques by m times, which increases the dimensions of
the polyhedral space to an extent that cannot be handled by the algorithm in
[46].
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The main contribution of this paper is to show that there is enough structure
in the submodular polyhedron to handle invalid extreme bases arising out of
converted 2-label problems efficiently. The proposed algorithm raises the bar
significantly in that using it we can handle multi-label MRF-MAP problems with
16 labels, and clique size upto 100. In comparison the current state of the art [2)]
can only work with cliques of size up to 4.

At this stage we would like to contrast out mapping technique with that of
[29], which has exploited the linear relationship between a tree and order in labels,
to map multi-label submodular functions to the more general class of tree based
Lf-convex functions. However, these algorithms have high degree polynomial
time complexity (based on [3512236]), limiting them to be of theoretical interest
only. Our focus on the other hand is to extend the frontiers of practical optimal
algorithms.

Finally, we would like to point out that when the case for higher-order
potential was first made, the then existing algorithms could only work with small
cliques. Solutions were approximate and potentials many times were decomposable
[26/33/41]. It is only with [45] and [46] that experiments could be done with cliques
of size 100 or larger. Experiments reported in [46] established that quality of
object segmentation improves with larger clique sizes [46]. We extend that exercise
further here by focusing on quality of multi object segmentation as a function of
clique size.

2 Background

We briefly describe the basic terminology and results from submodular function
manimization (SFM) literature required to follow the discussion in this paper.
We direct the reader to [44] for more details. The objective of a SEFM problem is
to find a minimizer set, S* = mingcy f(S) of a submodular function f, where
V is the set of all the elements. W.l.o.g. we assume f(¢) = 0. We associate
two polyhedra in RV with f, the submodular polyhedron, P(f), and the base
polyhedron, B(f), such that

P(f)y={z|zeRV, vUCV:2(U) < f(U)}, and
B(f) ={z |z € P(f),z(V) = fV)},

where z(v) denotes the element at index v in the vector z, and z(U) = ) iy z(v).
A vector in the base polyhedron B(f) is called a base, and an extreme point of B(f)
is called an extreme base. Edmond’s greedy algorithm gives a procedure to create an
extreme base, b, given a total order < of elements of V such that < : v1<... <v,,
where n = |V|. Denoting the first k elements in the ordered set {v1, ..., vk, ..., Un}
by k<, the algorithm initializes the first element as b=(1) = f({v1}) and rest of
the elements as b=(k) = f(k<) — f((k — 1)<). There is a one to one mapping
between an ordering of the elements, and an extreme base. The Min Maxz Theorem,
states that max{z~ (V) | z € B(f)} = min{f(U) | U C V}. Here, 2z~ (V) gives
the sum of negative elements of x.
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The min-norm equivalence result shows that arg max, ¢ p(p) 7 (V) = argmin, ¢ g5,
|lz|l,. Fujishige and Isotani’s [14] Min Norm Point (MNP) algorithm uses the
equivalence and solves the problem using Wolfe’s algorithm [13]. The algorithm
has been shown empirically to be the fastest among all base polyhedron based
algorithms [23[46]. The algorithm maintains a set of extreme bases, {b=¢}, and a
minimum norm base vector, z, in their convex hull, s.t.:

=Y N A >0, and Y N =1 (1)

At a high level, an iteration in the MNP /Wolfe’s algorithm comprises of two
stages. In the first stage, given the current base vector, x, an extreme base, ¢,
that minimizes £7q is added to the current set. The algorithm terminates in case
lz]] = 2Tq. Otherwise it finds a new x, with smaller norm, in the convex hull of
the updated set of extreme bases.

The MRF-MAP inference problem can be seen as minimizing a sum of
submodular functions [30/46]. Shanu et al. [46] have suggested a block coordinate
descent framework to implement the Min Norm Point algorithm in the sum of
submodular functions environment when cliques are large. A very broad overview
of that scheme is as follows.

With each f¢, the submodular clique potential of clique ¢, one can associate
a base polyhedron such that:

B(fe) = {ye € R¥ | (V) < fo(U), YU C 5 4o(c) = (0] (2)

The following results [46] relate a base vector x of function f, and a set of base
vectors yc of a fc:

Lemma 1. Let z(S) = > . yc(C N S) where each yc belongs to base polyhedra
B(fc). Then the vector x belongs to base polyhedron B(f).

Lemma 2. Let x be a vector belonging to the base polyhedron B(f). Then, x
can be expressed as the sum: x(S) =Y . yc(S Nc), where each yc belongs to the
submodular polyhedron B(fc) i.e., yc € B(fc) V c.

The block coordinate descent approach based on the results requires each
block to represent a base vector yc as defined above (c.f. [46]). Note that a base
vector yc is of dimension |c| (clique size), whereas a base x is of dimension |V|
(number of pixels in an image). Since |¢| < |V|, minimizing the norm of y; over
its submodular polyhedron B(fc) is much more efficient than minimizing the
norm of x by just applying the MNP algorithm. However, for reasons already
given and discussed in the Introduction, the algorithm based on the above fails
to converge on multi-label submodular MRF-MAP problems when transformed
to a 2-label MRF-MAP problems using an extension of the encoding given in [2]
that preserves submodularity.

We now show how these problems can be overcome by performing block coor-
dinate descent over two blocks: one block has convex combination of only extreme
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bases corresponding to valid states and the other has the convex combination of
extreme bases corresponding to the invalid states. The block corresponding to
valid states is small enough for the traditional MNP algorithm to output optimal
solutions. For the larger block corresponding to the invalid states we develop a
flow based algorithm to find a vector with minimum ¢ norm. This results in an
algorithm which is numerically stable and practically efficient.

3 Properties of the Multi-label to 2-Label Transformation

Let F be a multi-label submodular function defined over the set of n pixels P.
Let X and Y stand for the n-tuples of parameters. Let V and A be max and min
operators and let (X VYY), (X AY) denote the n-tuples resulting from element
wise application of the max and min operators over n-tuples X and Y. F is called
submodular if:

F(X)+F(Y)>F(XVY)+F(XAY). (3)

We now summarize the transformation to convert a multi-label to a 2-
label problem as suggested in [220]. Consider an unordered set of pixels P =
{p1,---yPis.-.,Pn}, and an ordered set of labels £ = {1,...,m}. To save the
notation clutter, whenever obvious, we denote a pixel simply using variables p, g
without the subscript index.

Definition 1 (Binary Encoding). The encoding £ : L — B™ maps a label
i € L to a m dimensional binary vector such that its first m — i elements are 0
and the remaining elements are 1.

For example, £(1) = (0,...,0,0,1), and £(2) = (0,...,0,1,1). Let us denote the
encoded label vector corresponding to a pixel p; as v; = (p;,...,p"),p! € {0,1}.
We denote by I' € B™", the vector obtained by concatenating all encoded
vectors v : I = (V1,...,%,---,7n). The vector I" represents encoding of labeling
configuration over all the pixels. We also define a universal set containing all
elements of I' : V = {pl,....p7", ...,pL, ..., pm}.

Definition 2 (Universal Ordering). Assuming an arbitrary ordering among
the pizels, the universal ordering, defines a total ordering of the elements p!,
1€ Zl:naj € Zim:

1 1
<o ipp < =P =Py <P

We denote by S C V), called state, set of all the elements, pf of I' labeled as 1.
Note that there are 2™" possible states, however only m™ of them correspond
to valid I" vector obtained by encoding labeling configurations over the pixels.
We call such states as walid states. If label of a pixel p; is denoted as [; € L,
a valid state may be represented as: S = {€(l1),...,E(l),...,E(y)}. Similarly
Sy, = {€(l,)} includes elements corresponding to pixel p.
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Definition 3 (Valid Ordering/Extreme Base). An ordering < is called a
valid ordering, if for any pl,pk € V, j > k = p] < pF. An extreme base b= is
called a valid extreme base, if it corresponds to a valid ordering.

The states, orderings or extreme-bases which are not valid are called invalid. We
denote the set of all valid states by S.

Definition 4 (Covering State, Minimal Covering State). For an arbitrary
state, S, a valid state, Se S, is called covering if S C S. There may be multiple
covering states corresponding to a S. The one with the smallest cardinality among
them is referred to as the minimal covering state, and is denoted by S. There is a
unique minimal covering state corresponding to any S. For a valid state S = S.

We are now ready to show that the above transformation can be used to
define a binary set function which is not only submodular but is also identical to
the multi-label submodular function on valid states. We encode the multi-label
function to a submodular pseudo-Boolen function f defined over set V of size
mn as follows:

Definition 5 (The Extended Binary Set Function).

JFC ), if S={...,&(),...}
J5) = {f(S) +(|S| —|S|)L  otherwise

Here l; € L is label of pizel p;, and L > M = [maxges f(S) — minges f(5)].
It is easy to see that f(S) can also be defined as follows:

Definition 6 (The Extended Binary Set Function: Alternate Defini-
tion).

F(8) = f(S) + (18] — IS,)L, (4)

peP

where S, gg, and S, C S are the subsets containing elements corresponding to
pizel p in S and S respectively.

Theorem 1. The extended binary set function f, as given by Definition [5, is
submodular, and min f(-) = min F(+).

To prevent the breaking of thought flow, and due to restrictions on length,
the detailed proof of this theorem as well as those following are given in the
supplementary material.

The reader may, at this stage, wonder whether it is at all possible to limit
to working only with the valid states in the submodular mode, perhaps using
one-hot encoding as in [53]. The answer is no, since in a one-hot encoding the set
of all valid states is not a ring family [34], and hence the encoded function is not
submodular.
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Note that in the proposed encoding, any value of L > M, keeps the function,
f, submodular. However, as we show later, choosing such a large value of L, makes
the contribution of some extreme bases very small causing precision issues in the
computation. We also show that including those extreme bases with very small
contribution is extremely important for achieving the optimal inference. The
major contribution of this paper is in showing that one can perform an efficient
inference bypassing L altogether. Therefore, the use of L is merely conceptual
in our framework. There is no impact of actual value of L on the algorithm’s
performance.

4 Representing Invalid Extreme Bases

In the discussion that follows, we refer to any scalar as small or finite if its
absolute value is < L, and large or infinite if the absolute value is o« L. We write

Eq. as:

r=aybai= Y, NI+ D> AT (5)
b=i€ER b=ieQ
Here, R and @ are the sets of valid and invalid extreme bases, and z,, and x;,
their contribution in x respectively. It is easy to see that, all the elements of x;
must be much smaller than L ﬂ We first focus on the relationship between A and
L in the block of invalid extreme bases.

Lemma 3. For any element, e, of an invalid extreme base, b= : b=(e) = acL+be,
where |ae|, |be| < L and a. € 1.

Lemma 4. Consider two base vectors xy and x5 such that ||z1 ||, |22||* < [V|M2.
If 23 = (1 — N)ay + Ab= and b= is an invalid extreme base, then X < |V|2£.

Conceptually, Lemma [3] shows that all elements of an invalid extreme base are
either small or are proportional to L (and not proportional to, say L2, or other
higher powers of L). Whereas, Lemma shows that since V and M are effectively
constants, A the multiplicative factor associated with in the contribution of invalid
extreme bases, A is proportional to 1/L. Therefore, for L &~ oo, the value of
A = 0. However, it is important to note that the value of Ab=(e), is always finite.
It is easy to see that, whenever a. = 0, A\b=(e) =~ 0, and when a. # 0, the L
present in the b=(e) and 1/L present in A cancel each other, leading to a finite
contribution. The argument as given above motivates our overall approach in
this paper that, for a numerically stable norm minimization algorithm, focus
should be on manipulating the finite valued product Ab=, and not the individual
A and b=(e). We show in the following sections that this is indeed possible.

We start by showing that it is possible to find a small set of what we call
elementary invalid extreme bases whose linear combination contains as a subset
the space of vectors z; as given in Eq. . Crucial to doing this is the notion of
canonical orderings.

3 We start the algorithm with a valid extreme base, where the condition is satisfied.
In all further iterations the norm of x decreases monotonically, and the condition
continues to remain satisfied.
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4.1 Canonical Ordering and Its Properties

In an arbitrary, valid or in-

valid, ordering < consider two ordering < ERERE G R
adjacent elements u and wv
such that v < v. We term
swapping of order locally be-
tween v and v in < as an ez-
change operation. The opera-
tion will result in a new order-
ing <pew such that u and v are still adjacent but v <pew u.

Consider a strategy in which starting with < we carry out exchange operations
till all the elements corresponding to a pixel come together, and repeat this for
all pixels. Note that we do not change the relative ordering between elements
corresponding to the same pixel. We call the resultant ordering the canonical
form of the original ordering < and denote it by <. The corresponding extreme
base is called canonical extreme base. Note that there can be multiple canonical
forms of an ordering. Figure [I] contains an example of an arbitrary ordering and
one of its canonical orderings. We emphasize here that there may be more than
one canonical orderings corresponding to <.

Note that a valid (invalid) ordering leads to a valid (invalid) canonical ordering.
For any p’ and p*, in a valid canonical ordering, if j = k + 1, then p7, p* are
adjacent in the ordering and p* =< p7. Further, a canonical ordering is agnostic
to any relative order among pixels. For example, for pixels p and ¢, a canonical
ordering only requires that all elements of p (or ¢) are contiguous. An ordering in
which elements corresponding to p come before those of ¢ will define a different
canonical ordering from the one in which the relative ordering of elements of p
and ¢ is vice-versa. In general a canonical ordering < corresponding to a < can
be any one of the possible canonical orderings.

Canonical Ordering<  p? q! r3 rt p2?
Fig. 1: Top: An ordering of elements in P = {p, q,r},
for a label of size 3. Bottom: Corresponding canonical

ordering.

Lemma 5. Let < be an invalid ordering and < be its canonical ordering. Then,
b=(e) —b%(e) < L,Ye € V.

The above result serves to indicate that by changing an invalid extreme base
to canonical one, the change in value of any element of the extreme base is much
less than L. Therefore, due to Lemma, @ one can conclude that the contribution
of an invalid extreme base or its canonical extreme base in a base vector is going
to be the same.

Lemma 6. For a canonical invalid ordering <, let p"' and p? be two adjacent
elements corresponding to a pizel p, s.t. p* < p’. Let ?;;J be the ordering obtained
by swapping p' and pi. Then: b=’ — b= = (x) — xp)(aL 4 b), where x}, is an
indicator vector for the element p', and a,b < L.

Lemma [0] relates the two extreme bases when one pair of their elements is

swapped. It is useful to note that in a valid extreme base all elements have
small values. With each swap in an invalid canonical ordering we either move
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the canonical ordering towards validity or away from it. In each swap the change
in the value of an element is proportional to L (positive or negative). Since
conversion of an invalid canonical ordering to a valid one may involve swaps
between a number of elements, the extreme base corresponding to the invalid
ordering will contain multiple elements with values proportional to L. The special
cases are the ones in which only one swap has been done. In these cases there will
be only two elements with values proportional to L (positive and negative). We
show that using such extreme bases as the basis to represent canonical invalid
extreme bases. In the next section we show that it is indeed possible.

4.2 Elementary Invalid Extreme Base

Definition 7 (Elementary Invalid Extreme Base). The ordering obtained
by swapping two elements p? and p’t, corresponding to a pizel p, in a canonical
valid ordering, is called an elementary invalid ordering. Its corresponding extreme

base is called elementary invalid extreme base, and is denoted as b=r.

Lemma 7. Consider an elementary invalid extreme base bi;, obtained by swap-
ping two adjacent elements (p*+L, p?) in the universal ordering, <o (Def. @) Then:
b=p —p=0 = (X; fX;+1)(L+b), where b=° is the valid extreme base corresponding
to <.

Lemma 8. An invalid canonical extreme base, b=, can be represented as a
linear combination of elementary invalid extreme base vectors such that: b= =
> pep St a;lﬁ; + A, where 0 < of) < L, and A is a vector with all its
elements much smaller than L.

Due to Lemma [5] the above result is also true for representing the invalid extreme
bases (and not only the canonical ones), with a different A. Lemma [7] allows us
to further simplify the result of Lemma [8] to the following;:

Lemma 9 (Invalid Extreme Base Representation). An invalid extreme

1 . . .
base can be represented as b~ =37 > a;L(x; — ,XTZ’H) + A, where X, is
an indicator vector corresponding to element p', 0 < a,, < L, and A is some

vector whose all elements are < L.

Recall from Eq. : r = x, + x;, where x, = Zb<_7-€R )\jb<j, and z; =
Zb<i€Q Aib~i. Using LemmaE to replace the second term, and noting that
L ~oo= X\ ~0,and)_ \; = I, one observes that the term ZMieQ X A; in the
expansion can be made smaller than the precision constant by increasing the
value of L ( A\ < [V|M/L by Lemma[) and can be dropped. As one of the final
theoretical results of this paper, we can show the following;:

Theorem 2 (Main Result).

m—1
D oAb =N BEL(G — xp T, (6)

vb=ieQ pEP k=1

where X; >0, B = > bieQ api-
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Note that the above result incorporates all the invalid extreme bases, not merely
the ones involved in the representation of base vector x in any iteration of MNP. Us-

2
ing the result in Eq. 7Weget ||* = sz<J€R)\ 0+ ep Dy ﬁkL(Xp X’;‘H)H .

5 The Multi-label Hybrid Algorithm

In this section we give the algorithm for minimizing the norm of the base vector
corresponding to a single clique in the original MRF-MAP problem, where the
pseudo-Boolean function is generated from encoding the multi-label function.
For solving the overall MRF-MAP problem with multiple cliques, the proposed
algorithm can be used in the inner loop of the BCD strategy as suggested in [46].
Theorem opens up the possibility of
minimizing ||z|° for a single clique using the Source
BCD strategy. We will have two blocks. The m
first block, called the wvalid block, is a convex  (pa) () (p1) (a3)(a2)(a) (ra) (r2)(rs)
combination of valid extreme bases b~7, where L \\/
standard MNP algorithm can be used to op- sink
timize the block. The other block, called the
inwvalid block, corresponds to the sum of the mn
terms of type: ﬁij(Xp X’;‘H), representing
the invalid extreme bases. For minimizing the
norm of the overall base vector using the in-
valid block, we hold the contribution from the valid block, x,,, constant EL Each vec-
tor BkL(Xp k“) may be looked upon as capturing the 5;; increase/decrease due
to the exchange operation between the two adjacent elements which define an ele-
mentary extreme base. This exchange operation can be viewed as flow of ﬁ}’;L from
the element p**! to p*. We model the optimization problem for the invalid block
using a flow graph whose nodes consists of {p* |p € P,1 <k <m — 1} U {s,t}.
We add two type of edges:

Fig. 2: Flow graph corresponding
to the exchange operations for opti-
mizing the block containing invalid
extreme bases.

— Type 1: If z,(p*), corresponding to the valid block contribution, is > 0, then
we add a directed edge from s—p”, else we add the edge from p*—t with
capacity x,(p*).

— Type 2: The directed edges p**! to p¥, 1 < k < (m — 1) with capacity |V|M
to ensure that the capacity is at least as large as ,6’£L: much larger than any
permissible value of x,(p¥). Thus, any feasible flow augmentation in a path
from from s to ¢t can saturate only the first or the last edge in the augmenting
path (i.e. the edge emanating from s or the edge incident at ¢ in the path).

Figure [2] is an example of a flow graph for 3 pixel and 3 label problem.
Since the starting state is x, the “initial flow” prior to pushing flow for flow
maximization requires setting flow in a type 1 edge incident at p* equal to the
value of z,(p*) and that in type 2 edges as 0. This is because sum of flow on all

4 Recall that we start from a valid extreme base. Therefore, at initialization z = .,
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Algorithm 1 Computing Min /5 Norm from the Flow Output

Input: Vector e the output of the max flow algorithm.
Output: The transformed vector e with minimum ¢ norm.
1: for Vp € P do

2 for i =2:m do
3: repeat
4: Find smallest k, + > k& > 1, such that
e(p’) > el ™) =e(p'?) - = e(p*) or
() = elp=) = e(p'?) - = e(ph*) > epb):
5: Set e(pt),e(p'1),...,e(p*) equal to avy,
where avy, is the average of e(p’), e(p'~1),...,e(p");
6: until e(pF*1) < e(p*)
7.  end for
8: end for

edges incident at a node may be looked upon as the value of the corresponding
element in the base vector EL In effect initially there are non zero excesses on the
non s,t nodes in the flow graph defined as the sum of net in-flow on all edges
incident at a node. The excess at node py is denoted by e(py). Max flow state can
be looked upon as that resulting from repeatedly sending flow from a positive
excess vertex to a negative excess vertex till that is no more possible. Values
in the optimal base vector (optimal subject to the given z,) at the end of this
iteration will be the excesses at nodes when max flow state has been reached.

5.1 Computing Min ¢ Norm By Flow

Since there is no edge between any two nodes corresponding to different pixels
max flow can be calculated independently for each pixel. When max flow state
is reached in the flow graph associated with a pixel, a vertex which still has a
negative excess will be to the left of vertices with positive excess (planar flow
graph laid out as in Figure [2|) otherwise flow could be pushed from a positive
excess vertex to a negative excess vertex.

Note that the optimal base vector is not unique. Consider two adjacent vertices,
pF*t1 and p¥, in the flow graph when the max flow state has been reached. If
e(p**1) is larger than e(p*) then increasing the flow in the edge from p**+! to p*
by & decreases e(p**1) by § and increases e(p”*) by §. The result of this “exchange
operation” is to create another optimal base vector but with a smaller /5 norm.

An optimal base vector with minimum ¢5 norm will correspond to the max
flow state in the flow graph in which e(p**1) < e(p*) for all adjacent pairs of
type 2 vertices. If this is not so then there would exist at least a pair e(p**!) and
e(p*) such that e(pF*1) > e(p*). Doing an exchange operation between p**1 and
p" involving setting e(p**1) and e(p*) to the average of the old values will create
a new optimal base vector with lower value of the 5 norm. Algorithm [1| gives an
efficient procedure to transform the optimal base vector outputted by the max

% we refer the reader to [45] for details about the flow to base vector correspondence
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flow algorithm to one with minimum /¢ norm. Note that the proposed algorithm
simply updates the base vector in one pass without any explicit flow pushing.
In contrast, the corresponding algorithm for general flow graphs given in [45]
requires O(nlogn) additional max flow iterations over an n vertex flow graph.

5.2 Overall Algorithm

The proposed Multi-label Hybrid (MLHybrid) algorithm is quite similar to the
algorithm in [46] in its over all structure. Just like [46], we also create blocks
corresponding to each clique, and optimize each block independently (taking the
contribution of other blocks as suggested in [46]) in an overall block coordinate
descent strategy. The only difference between SOSMNP and MLHybrid is the way
we optimize one block. While SOSMNP uses standard MNP, we optimize using
a special technique, as outlined in previous section, with (sub)blocks of valid
and invalid extreme bases, within each block/clique. Hence, the convergence and
correctness of overall algorithm follows from block coordinate descent similar
to [46]. What we need to show is that for a single clique/block, the algorithmic
strategy of alternating between valid and invalid blocks converges to the optimal
for that clique/block.

Recall that in a standard MNP algorithm iteration, given the current base
vector x, an extreme base ¢, that minimizes x7q is added to the current set.
Hence, steps to convergence of MNP is bounded by the number of extreme bases
that may be added. In our case we have shown in the Supplementary Section
that when we start with a valid extreme base, the extreme base generated in
the valid block after using the latest contribution from the invalid block, will
come out to be a valid extreme base. This implies that the number of iterations
involving invalid blocks can not exceed the number of valid extreme bases added
as in the standard MNP algorithm. This ensures convergence of the optimization
step for each block. The formal convergence proof for the MLHybrid algorithm is
given in the Supplementary Section.

The correctness of our optimization for each block follows from the fact
that the optimization for valid blocks proceeds in the standard way, and results
in a new extreme base given the current base vector. The correctness of the
optimization step of the invalid block, which finds a minimum norm base vector
given a valid block, has already been explained in the previous section.

6 Experiments

We have experimented with pixel-wise object segmentation and stereo correspon-
dence problems. All experiments have been conducted on a computer with Intel
Core i7 CPU, 8 GB of RAM running Windows 10. Implementation of our al-
gorithm is in C++ (https://github.com/ishantshanu/ML-Minnorm). For the
segmentation experiments, the input images are from Pascal VOC dataset [S]
with a small amount of Gaussian noise added. We have experimented with two
types of submodular clique potentials:


https://github.com/ishantshanu/ML-Minnorm
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Input GT Deeplabv3+ Pairwise Standard-Hyp.  Small(ABS)  Small(Concave)  Big(ABS) Big(Concave)
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Fig. 3: Pixel-wise object segmentation comparison. Input images from the Pascal VOC
dataset.

S
Input GT MPI TRWS a-expansion MPLP DD MLHyb MLHyb(Concave)
3.25 619.02 5477.68 157.77 63.35

2.46,-2.46  -2.48,-2.48  -2.49,-2.49
6730.29 176.24 67.20

o

.46, -2.46
341.93

Y (X

-2.46,-2.46  -2.48,-2.48 -2.49,-2.49

-2.46,-4.93 -2.45,NA -2.46,-2.46

(primal, dual) /108 —2.4, NA

Fig. 4: Stereo matching problem. Input images from the Middlebury dataset.

— Decomposable: Sum of absolute difference of labels for all pixel pairs in a
clique. Denoted by ABS.

— Non-decomposable: Concave-of-Cardinality potential defined in [53] as:
> e (number of pixels — number of pixels which have their label as 1)*. We
have used a = 0.5 in our experiments.

For both the potentials, two types of clique sizes namely “Small” (cliques ranging
from 60 to 80 elements) and “Big” (cliques ranging from 300 to 400 elements)
have been used for the experiments. Overlapping of cliques has been ensured by
running SLIC algorithm [I] with different seeds.

Figure [5] shows the IOU values as bars for Deeplabv3+ [6] fine-tuned on noisy
images (red), running MLHybrid with small cliques (green) and with big cliques
(blue) on all the classes of the VOC dataset for the segmentation problem. The
likelihood of a label on each pixel, required for our algorithm, is estimated using
the scaled score from the Deeplabv3+. The scaling factors are specific to labels
and are the hyper-parameters in our algorithm. We use the pre-trained version
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_EEE Deeplabv3+  EEE MLHybrid-small ~ EEE MLHybrid-large

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10 Class1l Class12 Class13 Class14 Class15 Class16 Class17 Class18 Class19 Class20  mioU

Fig.5: Shows IOU values across all the classes of PASCAL VOC dataset.

of Deeplabv3+ from [6]. Deeplabv3+ gives overall pixel accuracy of 82.79 and
with MLHybrid we get pixel accuracy of 84.07 and 85.11 respectively for small
and big cliques. Mean IOU values (three bars at the right end) are 0.544, 0.566,
and 0.579 respectively. MLHybrid has been run with non-decomposable clique
potentials and the same standard fixed hyper parameters on the VOC dataset.

The performance of MLHybrid improves with fine tuning of hyper parameters.
Figure[3]shows the visual results on four pictures from the data set when the hyper
parameters have been tuned. To show the extent of improvement we have also
included in Figure [3| the MIHybrid output with the standard hyper parameters
(standard-hyp). We have also included the IOU values in the images (upper left
hand corner) corresponding to Deeplabv3-+, MIHybrid (Big(concave)) run with
standard and fine tuned hyper parameters respectively. For all the four images
I0OU values hover around 0.9 when MLHybrid is run with big cliques and concave
potentials. Run time for MLhybrid in seconds are shown at the upper right
corner of the respective images. Deeplabv3+ takes approximately 0.5 seconds per
image excluding the training time. Hyper parameters for a-expansion running
on pairwise cliques (4*" column in Figure|3)) are the optimized parameters used
for MLHybrid as are the likelihood labels for the pixels.

Note that the quality of output is distinctly better for the non-decomposable
concave potential in comparison to the decomposable ABS potential for both
Small and Big clique configurations. The output for Big(Concave) matches the
ground truth significantly. The time taken for concave potentials is distinctly less
than ABS potentials for the same size and number of cliques. This difference is
because the number of iterations taken for convergence is proportionately less
for non-decomposable potentials. It is reasonable to infer that the segmentation
quality improves with clique size. Since for large cliques, potentials will need
to be predefined and not learnt, designing clique potentials calls for further
investigation. Also, since fine tuning of hyper parameters improves quality of
segmentation results significantly an area of research with high pay off is how to
automate the process of fine tuning the hyper parameters for the segmentation
problem.

For stereo correspondence, the images are from Middelbury dataset [42] and
are of size 200 x 200. The cliques are generated, as earlier, using SLIC algorithm.
Label likelihood is calculated using Birchfield/Tomasi cost given in [3]. There
are 16 disparity labels considered and clique potential used is the same as for
the segmentation problem. Figure [@] shows the output. We have compared with
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implementations of Max Product Inference (MPI) [27], TRWS [28], MPLP [16],
a-expansion [4] available in Darwin framework [I7]. We use the pair wise absolute
difference of labels potential with a pixel covered by maximum of four cliques.
Other than a-expansion, other methods could not handle pairwise potentials
emanating out of all pairs of variables in a clique of size 50 or larger. Primal/Dual
values are shown below the images and their corresponding running times on the
top.

Our final experiments are to
show efficacy of convergence of
the MLHybrid algorithm. Ta- = 10° 10t 1013 101®
ble [1] shows the performance of ‘prmal 1.26(10%%) 1.26(10'7) —1.75(10%) —1.77(10%)
SOS-MNP [46] on the extended Dual —5.37(10%) —5.37(10%) —5.58(10%) —5.60(10%)
pseudo-boolean submodular func-
tion. Since [46] do not bypass [, Table 1: Primal dual for SoS-MNP [46J for dif-
therefore we run it for different val- ferent values of L.
ues of L. Note that primal and dual
do not converge even when the value of L is as large as 10'® after running the
algorithm for approximately 50 minutes. SOS-MNP not only takes huge amount
of time but do not even converge to the right point.

In contrast Figure [6] shows the convergence
performance of the MLHybrid algorithm for
solving a stereo problem on the sawtooth sam-
ple with sum of absolute difference potential.
The figure shows that on the same potential
function and same problem size, time taken
for effective convergence by the MLHybrid al-
gorithm is only around 28 seconds. It must be 26500 27000 27500 28000 28500 29000 29500 30000
pointed out that one of the factors contribut- Time in il seconds
ing to speed gain is the way invalid extreme I 18- 6: Convergence of MLHybrid.
bases are being handled. The flow graph created at each iteration handles a fixed
number of (only n(m — 1)) elementary extreme bases which span the space of all
invalid extreme bases. The run-time at each iteration is essentially independent
of the number of invalid extreme bases added by Wolfe’s algorithm.

w18 oy » Primal
-20 ."h. Dual

‘ -24 "u-

Value of Primal and Dual
L
N

7 Conclusions

In this paper, we have proposed a new efficient inference algorithm for higher-
order multi-label MRF-MAP problems, which enables obtaining optimal solution
to such problems when potentials are submodular, and even when the cliques
are of size upto 100 (for a 16 label problem). This has been made possible by
exploiting the structure of the potentials used to make the extension function
submodular. The min ¢5 norm solution to the block of invalid extreme bases can
be found by max flow techniques on a particularly simple flow graph. What takes
a series of max flow iterations in [45] requires only two linear time passes on the
resultant flow graph.
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Supplementary Material

A Proofs of Lemmas and Theorems

A.1 Proof of Theorem [1]

Theorem. The extended binary set function f as given by Definition [5 is sub-

modular.

Recall that we define the extended binary submodular function for the valid
states as equal to the original multi-label function and for the invalid states as

the following;:
£(8) = f(S) + (IS| = 1SI)L.

Here S is the minimum covering state for an invalid state, S, which is defined as
the smallest cardinality valid state, S € Z, such that S C S. For a valid state
S=S3.

Let us factorize f(S) = g(S) + h(S), where h(S) = f(S) + |S|L, and ¢(S) =
—|S|L. Since, g is modular, it is sufficient to show that h is submodular. We will

need the following result to prove the Theorem.

Lemma 10. For sets X, Y, and (X NY) CV and their minimum covering states
X,Y, and X NY respectively:

fIXNY) < f(XNY))

Proof. Recall that for any valid state S, S = S. Consider, two valid states
A, B CV with A C B. It is easy to see that:

W(B) — h(A) = L(|B| — |A]) + f(B) — f(A) > 0. (7)

Since, A C B, therefore, |B| — |A| > 0. Also L > f(B) — f(A) by definition.
Therefore, h(A) < h(B). Further, it has been shown in section 6 of [43] that for
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two X,Y €V, XUY = (XUY)and X NY C (X NY) holds. Therefore, using
Ba. @, F(XAY) < f(X0Y)). O

We can now give the proof of the theorem as follows. For the valid states, the
extended function f, has been shown to be submodular in [2]. Therefore, here,
we show only for the cases when S is an invalid state. Now, for two arbitrary

(valid or invalid) sets, X, Y C V

h(X)+hY)=f(X)+ fY)+|X|L+|Y|L
> f(XUY)+ f(XNY)+ |X|L+|Y|L
(Using submodularity over X, and Y)
= f(XUY)+ f(XNY)+ |XUY|L+|XNY|L
(Since |X|+ Y] = [XUY|+[X NY))

=f(XUY)+|XUY|L+ f(XNY)+|XNYI|L
(Since X UY = (X UY))

> f(XUY)+|XUY|L+ f(XNY)+|XNY|L
(Using Lemma

=h(XUY)+h(XNY).
The above shows that h is submodular. It is easy to see that, g, as defined

above is modular. Since addition of a modular function and a submodular function

is submodular, therefore, f = g + h is submodular.

A.2 Proof of Lemma [3]

Lemma. For any element, e, of an invalid extreme base, b= : b=(e) = a.L + b,

where |ae|, |be] < L and a. € I.
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Proof. Let Sy be the set of all elements smaller than e as per <. Let S; = SoU{e}.

b>(e) = f(S1) — f(S2) (Definition of extreme base)
= (f(S1) + (IS1] = [S11)L) — (f(S2) + (IS2] = [S2[)L)  (Definition [5)
= (f(S1) = f(S2)) + (IS1] = |S1] = [S2| + [S2]) L

=a.L+b (where |ae|, |be| < L)

O

A.3 Proof of Lemma [4]

Lemma. Consider two base vectors x1 and xzo such that ||z1 >, ||z2]|* < [V|M2.

If zo = (1 — N)a1 + Ab™ and b= is an invalid extreme base, then A < [V|3L.

Proof. Recall that in our algorithm, base vector is represented as the sum of
contributions from valid and invalid extreme bases separately: z = z, + x;,
where x,, and x; are the base vectors collecting contributions of valid and invalid
extreme bases respectively. Further, we start from a valid extreme and in each
iteration of the algorithm, keep on decreasing the norm of the overall base vector.
Note that, all the elements of a valid extreme base are smaller than M. Therefore
the squared ¢ norm of the overall base vector is less than |V|M? at any point in
the algorithm.

We will prove the lemma by contradiction, and show that unless the A for
the invalid extreme base is less than [V|M/L, the squared norm of the overall
base vector is more than |V|M?, which is a contradiction.

We will first need to prove the following result:

Lemma 11. Consider an invalid ordering <, and its corresponding invalid ex-
treme base b=. Let e be the smallest element (as per <), for which validity

condition is violated. Then, 3 a. € R, and a. > (1 — M/L), s.t. b=(e) = a.L.

Proof. Let Sz be the set of all elements smaller than e as per <. Let S; = SaU{e}.

Notice that S5 is a valid and S is an invalid state.
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b=(e) = f(S1) — f(S2) (Definition of extreme base)
= (f(?l) + (‘?1‘ — |Sl|)L) — f(S2> (Deﬁnition
> Ibpeigf(s) — f(S2) + (IS1] = |S1]) L
(S is a valid state, therefore f(S1) > mingez f(95))
> min f(S) — max f(S) + (151 = [S1])L

(S2 is a valid state, therefore f(S2) < maxgez f(S5))

= ([S1] = |S1] = M/L)L (Defintion of M)

Note that for any invalid state S1, (|S1| — [S1]) > 1. Therefore there exists
ae > (1 — M/L) such that b=(e) = a.L. O

To prove our main result by contradiction, assume A > |V|M/L. Let e be
the smallest element (as per < of invalid extreme base b~), for which validity

condition is violated. Consider:

(22(€))* = (1 = Nz (e) + Ab7(e))?

> (1= Nzi(e) + b7 (e)|V|M/L)? (A>[VIM/L)
= (1= Nz1(e) + ac|V|M))>. (Using 1emma

Two cases are possible:

1. z1(e) > 0:

(22(€))* = (1 = Nz (e) + ac|VIM))?
> (ae|VIM)? (Since (1 —X) > 0)
= (acV)(IVIM?)
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Since M <« L, and a, > (1 — M/L), therefore a. ~ 1. The smallest problem size
that we consider is of 3 pixels and 2 labels for which |V| = 6. Hence, for our case,

ae|V| > ac+/|V] > 2. This implies:

(2(€))* > [VIM?.

2. z1(e) <O

Note that for z; and any element e € V we have 21 (e)? < ||z1]|> < [V|M2. This
implies that z1(e) > —/|V| M.

(z2(e))® = (1 = Nai(e) + ac|VIM)?
> (=(1 = NVIVIM + ac|V|M)?
> (—/|VIM + a.|V|M)? (Since 1 > (1 —\) > 0)
= M?|V|(ac/|V] —1)  (As described in the first case a.\/[V] > 2)
> |V|M2.

Both the cases imply that if A > [V|M/L then norm ||z3||> > |V|M? which is a
contradiction. Hence for any invalid extreme base its contribution A in the overall

base vector must be less than |V|M/L. O

A.4 Proof of Lemma [5

Lemma. Let < be an invalid ordering and < be its canonical ordering. Then,

b=(e) —b=(e) < L,Ve € V.
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Proof. Let S and S’ be the set of elements preceding p’,p € P, in ordering <

and < respectively. Consider the term b=(p*):

b3 (') = F(SUP'}) — £(9)
=23 (ISU Dl ~ (SU{pDl) + £ (SUTT)

qEP
-LYy (|§q| - |sq|) - f(?) (Def. [f)
qeP
= L(18, U T — 18, U {p'} ) = L(155] = 15,])

+ f(SUD - £(5)
Similarly we obtain:
b3 (') = LIS, U1 = 18, U tp'H) — L(17] = 15;)
+1(SUT) - ()

Note that a canonical ordering does not change intersay ordering between elements

corresponding to a particular pixel. Therefore, S, = SZ’,, and:
0¥ (p") = b=(p") = (F(SU{p}) = f(S) = F(SU{p'}) + F(F)

Since, all terms in the r.h.s. of the equation above, correspond to valid sets,

therefore b=(p*) — b=(p') < L. O

A.5 Proof of Lemma

Lemma. For a canonical invalid ordering =, let p' and p’ be two adjacent
elements corresponding to a pizel p, s.t. p* < p’. Let ?;’j be the ordering obtained
by swapping p' and p’. Then b<p’ b= = (xJ — xb)(aL +b), where X}, is an

indicator vector for the element p*, and a,b < L.

Proof. Recall that for an extreme base b= : b=(k) = f(k<) — f((k —1)<), where

k is the first k elements in the ordered set {v1,...,vg,...,v,}. Since the swap
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between p’, and p’ leaves the set of preceding elements unchanged for all other

elements, therefore, b=+’ — b= is non-zero corresponding to only p?, and p’.

Let S be the set of elements preceding p* in <. Now:

FESU{PIu{ph) - f(SU{p'})
L(SU{pTy U {p} = 1SU{p U {p'}) + F(SU{p} U{p'})
= L(SU{p} - 1Su{p'})) - F(SU{p'}) (8a)

b= ()

Similarly we have,

J

b= (p7) = LIS U} — S U{p'}) = LS| = S) + FS U} — £(9),
(8b)

Subtracting Eq. from Eq. and using (|[SU{p"}+|SU{p’} —|SU{p'}U
{p?}] —1S]) = 0 we have

b5 (p) — b (¢?) = LIS U] + SO - (SO} U (o] - I3))

+ (f(SU{p’}) — f(S) = F(SU{p }U{p'}) + F(SU{p'}),
=al +b,

where:

a=|SU{p}+[SU{p} - [SU{p'} U{p’} -S|, and

b= (f(SU{p'}) = F(S) = F(SU{p}U{p'}) + F(SU{p'}).

Note that b is sum of function values at valid states and is < L. Two cases arise

for the value of a:

1. i< j:
In this case |S, U {p'} U {p7}| = |S, U {p7}|, and a = |S U {p'}| — |S|. There-

fore, a < L.
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2. j <
In this case |S, U {p'} U {p7}| = |S, U{p'}|, and a = |S U {pi}| — |S|. There-

fore, a < L

Hence b=+’ (p!) —=b=(p?) = aL+b, such that a,b < L. Further, since b=+ and b=<
are extreme bases, and the sum of all the elements in them is constant, therefore,
the reverse must hold for b=+ (p?) — b= (p'). Hence b=r" — b= = (x3 — x;)(aL +
b) O

A.6 Proof of Lemma [T]

Lemma. Consider an elementary invalid extreme base b%, obtained by swapping

two adjacent elements (p'*t1,p?) in the universal ordering, <o (Def. @) Then:
b3 — b0 = (x}, — X, (L + D),

where b™° is the valid extreme base corresponding to <.
Proof. Recall:

— The universal ordered sequence, <, which is a valid ordering, and also defines
a particular ordering among the pixels.

— The elementary invalid ordering, <, which is defined as the ordering obtained
by making one swap between adjacent elements of a valid ordering. The

corresponding extreme base is denoted as b~.

Further, recall from Section where while proving Lemma [6] we showed that:
b<r — b= = (xJ — xp)(aL + b), such that a = ISU{pi}| — [S] (if i < j), or
a = |SU{pi}| —|S] (if 5 < ). Now consider an elementary invalid extreme
base b2;7 obtained by swapping two adjacent elements (pi™!, p?) in the universal
ordering. The term (X; — X;“) may be looked upon as corresponding to the
creation of the elementary extreme base b=» from b=o. Tt is easy to see that for

such special elementary invalid extreme bases created from universal ordering,
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a =1, and we have:

b=r — b0 = (x} — xi) (L +b) (9)

Hence, proved. U

A.7 Proof of Lemma

Lemma. An invalid canonical extreme base, b~, can be represented as a linear

combination of elementary invalid extreme base vectors such that:

m—1 )
=303 aibe + 4,

peEP i=1

where 0 < oz; < L, and A is a vector with all its elements much smaller than L.

Proof. Consider the canonical invalid ordering < and let <4 be the starting
canonical valid ordering from which it can be obtained by a series of swaps
between adjacent elements. Note that since in the canonical ordering all the
elements of a pixel are already together, therefore all the swaps required are
between elements corresponding to same pixels. Let us assume that total number
of such swaps required are 7. Starting from <, let <; represents the ordering
obtained after j such swaps. Hence, <7 = =< by definition. Let j*" swap happens

between elements p*/ and p%, where p € P.

b? — b= = pIT _p=s

(o)

Il
.Mﬂ

Jj=1
T
- Z (Xij - Xl;?) (a;L +b;) (Using Lemma [6)
j=1
T T
= >0 =X)L+ (G — X b
j=1 j=1
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Since (Xi,j - X’;j) = Efil] (x5 — x5t) we can write:

T k;
Y= =30 Y 0 X L+Zb Z Xp—Xp ) (10)
=1 =l j=1 =l

Recall from Lemma [Tt

~i _ . Z+1
b — %0 = () — AL +b)
= (XYL =05 b0 — () — xS (where b}, < L)

Substituting the value of (X; ’“)L in Eq. , we get:

T ki &l ks
_p=e = Zai Z(b<p — b0 — (X = x5TD) + Z b; Z(xp Xy )
J=1 =l =1 =l

Since both <, and <g are valid orderings, we can write b== = b=0 + J; where

elements of d are much smaller than L. Therefore we get

T kj » T kj T kj
b::ZZajb<;+ (1_2 aj)b<o _Z CLJ 1 z+1)b
Jj=li=l; j=li=l; j=1li=l;
(11)
T kj .
22206 =6 +d
j=1li=ly

k;

T .
b3=3" a7+ 4, (12)

J=1li=l;
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where Equation ([12]) has been derived summing the last 4 terms into a vector
A. Note that all the elements of A are < L. It is easy to see that the first term
in the equation essentially is a linear combination of some elementary invalid

extreme bases, allowing us to simplify:
m—1 .
-y S )
pEP i=1

where coefficients «;, corresponding to elementary extreme bases not present in

Equation can be simply set to zero. O

A.8 Proof of Lemma

Theorem. An invalid extreme base can be represented asb™ =3 Z;’;}l o L(x},—
X;‘H) + A, where X; is an indicator vector corresponding to element p*, 0 < a; <

L, and A is some vector whose all elements are < L.

Proof. Using Equation , we have:
o m—1 »
=S albg A
peP i=1

Substituting representation of elementary extreme base from Equation

b: < L), we have:

3
L

b= = oy (0 + (g = X5 )L+ B)) ) + 4.
-

b
i

m—1

b<o+ZZaLXp z+1 +ZZXp H_lOébZ—i-A

pEP i=1 pEP i=1

ZP

ZL(xp Xp )+ A

'MS “M

S|
m
b
-
Il
-

Note that we have replaced A with > p 37" a AU ED DN i (
Xy abbl + A. O
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A.9 Proof of Theorem [2

Theorem (Main Result).

m—1
Db =D > BLig —x ),
vb=ieQ pEP k=1

where A; > 0, 55 = Zb,;eQ O‘];)‘i‘

Consider the expansion of the term z; = Y 7,<, oAb~ in Eq.. Using
Theorem @ we get:

m—1
m= D0 Y Y hegLig —xth+ D0 Aide
b=ieQ pEP k=1 b=ieQ
Recall from Lemma that, for all b= € @, the coefficient )\; can be made
arbitrarily small. Therefore, we can drop the term ), -, cq Ai/li and rewrite the

above equation as:

m—1

2= Y)Y NagLxE -,

peEP k=1 b=icQ

Replacing by 5;; =D p=icQ )\ia’; we get:

m—1
wi=Y Y BRI —xpT).

peP k=1

B Example for validating importance of invalid extreme

bases

In this section we show that invalid extreme bases contribute to the representation
of optimal vector z*. We consider here small problem with only 2 pixels (p and
q) with 3 labels. We consider the unary cost for labeling pixel p as [0, 1, -100].
Similarly assume unary cost for g as [0, -100, 200]. The clique potential is absolute

difference between labels and L = 1000. It may be noted that in the proposed
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encoding we showed conceptually that label for a pixel could be encoded using m
binary elements. However, notice that the state of the last element corresponding
to each encoding is always 1. Therefore, implementation-wise, one can encode
label at each pixel using m — 1 binary elements only, with the assumption that
elements p™,Vp € P have their labeling set to 1 : p™ = 1,Vp € P. Hence, in this
section we work with the extreme bases of dimension 4, which is corresponding
to 2 pixels and 2 binary elements (p!, and p?, and no p?®) per pixel only. In the
following subsection we first compute the optimal minimizer z* using all valid

and invalid extreme bases.

B.1 Using All Valid and Invalid Extreme Bases

There are 4! = 24, extreme bases for the example problem. We list below, all
valid and invalid extreme base vectors:

( 902, —-1000, 1198, —1000)( 902,—1000, 299, — ( 902,—1000, 1198, —1000)

101)

(1902, —1000, 1198, —1000)( 902, —1000, 299, — ( 902,—1000, 299, —
101) 101)

(=100, 2, 1198, —1000)(—100, 2, 299, — (=102, 2, 1200, —1000)
101)

(=102, 2, 1200, —1000)(—100, 2, 299, — (—102, 2, 301, -
101) 101)

( 898, —( 898, — (~102, 0,1202, —

1000, 1202, —1000) 1000, 1202, —1000) 1000)

(=102,  0,1202, —1000)( 898, — (-102, 0,1202
1000, 1202, —1000) 1000)

( 900, —1000, 299, — ( 900, —1000, 299, — (—100, 0, 299, —

99) 99) 99)

(—102, 0, 301, —( 898, —1000, 301, — (—102, 0, 301, —

99) 99) 99)
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The values of corresponding lambda obtained for the optimal minimum norm

point (z*) in the convex hull of all the extreme points are as given below:

(0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0, 0, 0, 0.0250, 0.0250, 0.949, 0, 0, 0).

Observe that, as described in the main paper, the contribution of invalid extreme
bases in the base vector is still finite and not dependent upon the L. Corresponding
to the above convex combination, we get the optimal base vector as z* =
(=50, —-50,299, —99). Below, we show that z* can not be represented as the

convex combination of valid extreme bases only.

B.2 Considering Only Valid Extreme Points

The 6 valid extreme base vectors corresponding to the example problem are given

below:

(=100, 2, 299, —101)(—100, 2, 299, —101)(—102, 2, 301, —101)

(=100, 0, 299, —99)(-102, 0, 301, —99)(-102, 0, 301, —99)

Note that the first two elements of z* are -50 and -50 which can never be
represented as the convex combination of first two elements of only valid extreme

points.

C Convergence of SOSMNP [46]

Our focus initially is to show the convergence to the optimal solution by the
MNP algorithm running in the block co-ordinate descent mode as in [46]. The
problem formally is to minimize the function f(S) = > ... fe(SNc) S CV,
where fc : 2/°! — R is a submodular function. It has been shown in [46] that f
can be minimized by finding a point « € B(f) with the minimum ¢3-norm Hat:||2
We write z as the sum x = ), yc where yc € B(fc).

We assume that a block corresponds to a clique in C. Let z¢ be the restriction

of = to the elements in ¢ € C, and let zy be the restriction of  on the remaining
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elements. We can write ||z]|> = ||lzc||* 4 ||z¢l|>. The block co-ordinate descent
algorithm in [46] minimizes ||zc||* using MNP over all the cliques ¢ € C cyclically.
This norm minimization step can be viewed as MNP minimizing f(S) = f¢(S) +
ac(S),VS C ¢ where ac = x. — ¥, is a denoting the contribution of the other
cliques which remains constant while running MNP over this clique/block. Note
that ac(S) = Y .cg ac(e), and we can equivalently treat ac as a modular function
as well. Let f4(S) = fo(S) + ac(S),VS C c. Note that the f’ as shown above is a
sum of submodular (f), and a modular function (ac). Therefore, f’ is submodular.

It is easy to show the following result:

Lemma 12. Let qc be a extreme base vector in B(fc) corresponding to an or-
dering <c. Then the vector qc + ac is an extreme base of B(fl) corresponding to

the same ordering <.

Proof. We can calculate the elements in extreme base vector (q; € B(f’)) corre-

sponding to ordering < by Edmond’s Greedy Algorithm,

q(e) = f'(SeUe) — f'(Se), (Se is the set of elements before e € € in <¢.)
= J(5.U€) + ao(S. Ue) — (F(S0) + as(S0)),
= J(5.U )+ ao(S.) +aele) — (F(S.) + ae(5.).
(ac can be seen as a modular function.)
= f(SeUe) = f(Se) + acle),
= gc(e) + ac(e). (By Edmond’s Greedy Algorithm.)

Hence, ¢/ = qc + ac. O
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It is easy to see that:
Te =Ye + ac = Zx\iqc + ac (where >3, \; =1, and \; ;, 0)
= Z Aige + Z)\iac (Since >, A; = 1)
=> Xilge + C;c) =Y e
i i

Hence, x¢ is a base vector of f’. Therefore, minimizing the minimum norm over
a block, the way SOSMNP does it, can be seen as minimizing the norm of x:
the restriction of  over the elements of clique ¢ (and not y¢). Let us suppose,
we have reached a situation where the SOSMNP performs minimization over all
blocks (cliques), and no change was observed in any of the blocks. The following
lemma establishes the relationship between the extreme base of f¢, and the one

corresponding to f.

Lemma 13. Let gc = argmingpy,) xlq, Vo € C. Then b = > ccc G also

satisfies b = argminge () 2T,

Proof. In the SOSMNP algorithm, the extreme base g is generated using Ed-
mond’s Greedy Algorithm [43] on the order < of the indices obtained by
sorting the elements of z¢ in the increasing order. We represent the extreme
base so obtained by gz°. The SOSMNP algorithm for a block terminates when
ag xe = xf (g5 + ac)

Consider the termination situation of SOSMNP for the overall problem (com-
prising of all the cliques). In such a case the algorithms tries to minimize for
all the blocks/cliques and no change is found on any of the cliques. Therefore,
termination condition of each block is met, and ¢g** = arg min, ¢ B(fe) xlq.

Let < be the ordering of elements of = in the increasing order. It is easy to
see that the ordering over x and x. will be consistent with each other, in the
sense that z(e1) <f z(e2) = zc(e1) <c xzc(e2).

Let us create an extreme base of f, corresponding to the ordering <y, and

denote as b=/. Since <y denotes the ordering over elements of z, therefore, from
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Edmond’s algorithm, we have: b=¢ = arg min,e g xTb. Further, we also have:

b7 (e) = f(Se Ue) = f(Se),
(As per Edmond’s algorithm. .S, is the set of elements before e in <)

= fe(SeUenc) - f(S.nc),  (Since f(S) =Y cee fe(SNC))

ceC
= Z gc(enc). (Since <, is the restriction of <)

ceC

Since above holds for all the elements e € V, therefore:

b3 = Z ace.

ceC

Hence, we have proved both the properties of b=# O

We can now give the convergence proof of the SOSMNP with the following

lemma:

Lemma 14. If in a complete cycle of SOSMNP over all the cliques, we can not
improve the norm xc for any c, then we have x € B(f) such that |z|* = 2Tz =

xTh, where b = arg min,e g xTh.

Proof. Recall that for a clique ¢, SOSMNP can be seen as minimizing the norm of
x¢ which is a base vector of fi = fc + ac. Further ¢, = ¢c + ac is an extreme base
of f’. Therefore, from the termination of basic MNP algorithm, the following
must hold:

el e = f (qc + ac). (gc = argmin e g(y,) ¢ q)
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Summing over all the cliques we get

Z xlae = Z x(qe + ac),

ceC ceC

Z x?(yc +ac) = Z IZ(QC + ac),

ceC ceC
ngyc = Z ¢ e (D cec Te ac cancels out)
ceC ceC

Since vector yc and gc have non-zero values only for elements in c. Therefore we

can write 2l yc = 27 ye and xl'qc = 7 ¢c. Substituting the values, we get:

Z xTyc = Z qum

ceC ceC

CUTZQ‘/C xTZ(Ic

ceC ceC

) (where b = arg min,e g 2Tb, by Lemma

The equation above is the termination condition of basic MNP when run over
the overall function f [5]. Therefore, the lemma essentially proves that the basic
MNP terminating with optimal solutions for all cliques/blocks implies that the
the base vector obtained by summing up the base vectors of all the cliques/blocks

is the optimal solution for the overall objective function. O

When MNP algorithm is run in the block co-ordinate descent mode it is easy
to show that any decrease in the ||z.[” of a clique decreases the over all ||z
by the same amount because ||z¢]| is untouched when optimizing for c. Since at
cach cycle there is at least one clique for which ||z.||> decreases, we can say that
|z||* decreases monotonically at each cycle. Note that Theorem 4 of [B] gives us
a lower bound on the improvement in every MNP iteration. It follows that MNP
algorithm running in block co-ordinate descent mode will have a provable rate of

convergence.
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For the sake of completeness we will also like to point out that the optimal
solution obtained when MNP is run globally also corresponds to the individual

blocks having reached their local optima.

D Convergence of ML-hybrid Algorithm

Note that in SOSMNP each block is optimized using the MNP algorithm. In
MLhybrid, on the other hand, each block is further subdivided. One corresponds
to the set of valid extreme bases (the valid block) and the other to the set of
invalid extreme bases (the invalid block) whose convex combination defines the
base vector zc. MNP is run on the valid block. If at any iteration MNP [I3]
inserts an invalid extreme base, the flow based Algorithm [2]is run on the invalid
block. We show below that when MNP is run on the valid block now (that is
just after a run of the flow based algorithm on the invalid block) the extreme

base generated will be valid.

Lemma 15. Algorithm[3 returns a vector z¢ for clique C such that extreme base

e given as ¢ = argmingcp s x¥q is valid.

Proof. It is easy to show that when Algorithm [2| terminates, for any pair of
indices 4, j corresponding to any p € P if i > j then e(p’) < e(p’). Note that
by construction the excess vector e is the base vector z¢. This implies that
the order <. of the indices obtained by sorting the elements of x; will satisfy
Pt <¢ p?,Vi > j, and Vp € P. This is the condition that has to be satisfied for an
ordering to be valid (Cf. Def. [3)). Recall that in the MNP algorithm the extreme
base is found by computing the ordering of sorted elements of x. Hence, the

extreme base g. = argmin,cp(y,) xX'q will be a valid one. O

Lemma [T5 implies that an iteration on the invalid block will be followed by
the MNP algorithm making progress in the form of generation of a valid extreme
base. Also note that the /5 norm decreases when the flow based algorithm is run

on the invalid block. Therefore, termination and convergence of the MLhybrid
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algorithm running on a clique/block follows along the same lines as that for the
standard MNP algorithm [5].

Now we show that termination over a clique/block results in z¢ using which
minimizer obtained comes on a valid state.

Note that generation of an invalid extreme base can always be followed by
generation of a valid extreme base (by running the flow based algorithm on the
invalid block). Therefore, at termination it is guaranteed that the order < of
the indices obtained by sorting the elements of ¢ is valid. That is the optimal
solution corresponds to a valid primal state. Hence, it follows, using Lemma
that the MLHybrid algorithm run in the block coordinate descent manner

converges to the optimal.

E Proposed Complete Algorithm

In this section we give the complete proposed method in Algorithm [3] The algo-
rithm takes tranformed 2-label submodular clique potentials f¢’s and computes
minimum /3 norm of x € B(f) s.t. f =3 .. fc. The overall algorithm solves
valid block with the SoS-MNP algorithm given in [46] and uses Algorithm
to solve invalid block. Let z¢ be the restriction of x over clique ¢, the norm
||| is optimized by computing minimum norm ||z¢||* over each clique cyclically.
Algorithm {4 minimizes ||z¢|* in a very similar way as MNP Algorithm [46]
described in Background section. The only difference lies in handling the invalid

extreme base at step [4] of Algorithm
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Algorithm 2 ComputelnvalidContribution

Input: Vector x¢ the output of the max flow algorithm.
Output: The transformed vector . with minimum /s norm .
1: for Vp € c do

2 fort=2:mdo

3: repeat

4: find smallest k, i > k > 1, such that
wo(p’) > xc(p'™h) = we(p?) - = we(p®) or we(p') = w(pTt) =
ze(p2) - = ac(pPT) > ae(pF);

5: let avy, be the average of x¢(p?), zc(p'™1),. .., zc(p*);

6: set 2¢(p), 2ze(P1), ..., 2c(p*) equal to avy;

7: until z¢(pF*1) < zc(ph)

8: end for

9: end for

Algorithm 3 HybridML: Algorithm for minimizing a sum of multilabel submod-
ular functions

Input: {fc} such that f =5 f..
Output: 2 = argmin ||z||* subject to z € B(f).
# Initialize

1: for all (c € C) do

2:  gc + Take any extreme base of f;

3 Sc:={ackh

4 Yo = qe;

5: end for

6: == . Yc;

# Perform Block Coordinate Descent with blocks specified by Cliques
7: while (]|z|| decreases by more than ¢) do
8 for all (c€C) do

9: MLHybridOver AClique( fc,Sc,Zc,Yc);
10:  end for
11: end while
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Algorithm 4 MLHybridOverAClique

Input: Clique function: f

Input: Set of valid extreme bases selected in last iteration: S¢
Input: Restriction of current solution vector x on C: z¢
Input: Current clique vector: yc

Output: Clique vector y¢ € B(f.) minimizing [|z¢|>
Output: Updated set SZ of valid extreme bases

1: while (TRUE) do
2:  Find new translation a¢ := x¢ — yc;

3:  Find extreme base §c := arg min (zc, ¢c) using Edmond’s algorithm.
chch

4: if Extreme base ¢ is invalid according to Definition [3| then
5: ComputelnvalidContribution(z¢);
6: continue;
7. end if
8:  Find translated extreme base pc = §c + ac;
9: if (||zc]|® < (#c,p) +€) then
10: break;
11:  end if

12: S := 5S¢ U dc;

13: P = {(jc + ac|Qc S Sc}§

14:  Find z¢ in affine hull of F;

15:  If x¢ is not in convex hull P, translate to nearest point in convex hull and
update Sg;

16: end while
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