
Int J Digit Libr (2000) 2: 236–250 I N T E R N AT I O N A L  J O U R N A L  O N  

Digital Libraries
 Springer-Verlag 2000

ImAge: an extensible agent-based architecture for image
retrieval

Hiranmay Ghosh1, Santanu Chaudhury2,∗, Chetan Arora2, Paramjeet Nirankari2

1 Centre for Development of Telematics, 9th floor, Akbar Bhawan, New Delhi 110021, India;
E-mail: ghosh@cdotd.ernet.in
2 Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, India;
E-mail: santanuc@ee.iitd.ernet.in

Abstract. We present an open and extensible architec-
ture, ImAge, for content-based image retrieval in a dis-
tributed environment. The architecture proposes the use
of system components with standard public interfaces
for implementing retrieval functionality. The standard-
ization of the components and their encapsulation in
autonomous software agents result in functional strati-
fication and easy extensibility. Collaboration of the in-
dependent retrieval resources in ImAge results in en-
hanced system capability. Reuse of existing retrieval re-
sources is achieved by encapsulating them in agents with
standard interfaces. The addition of independent agents
with domain knowledege adds the capability of process-
ing conceptual queries, while reusing the existing system
components for feature-based retrieval. A communica-
tion protocol allows the declaration of the capabilities of
the system components and negotiations for optimal re-
source selection for solving a retrieval problem. The use
of mobile agents alleviates network bottlenecks. This pa-
per describes a prototype implementation that validates
the architecture.

Key words: Content-based image retrieval – Digital li-
brary – Multi-agent system – Distributed architecture –
Conceptual query interpretation

1 Introduction

The availability of digital images for different applica-
tion domains calls for effective retrieval tools. An image,
which is a two-dimensional array of image pixels, en-
codes an enormous amount of information. Research in

∗ Correspondence to: Santanu Chaudhury

content-based image retrieval investigates new ways to in-
terpret image data (pattern recognition algorithms) and
establishing similarities between the images using such
an interpretation. The effectiveness of different retrieval
algorithms depends on the application. The same set of
images needs to be interpreted differently by different
retrieval methods to meet diverse user requirements. In
a networked world, the image collections, the retrieval
tools and the users are expected to be distributed across
multiple locations. This paper addresses the problem
of designing an image retrieval system that can fulfil
the needs of a distributed environment and disperate
constraints.

The existing image repositories adopt different re-
trieval paradigms and implement a few retrieval methods.
Some of them use aggregate image features such as the
color histogram and texture [5, 10], some use segmenta-
tion information, i.e., image regions with relatively ho-
mogeneous properties [4], while some others associate se-
mantic meaning to the image segments using some do-
main knowledge [6, 15, 18]. An image repository adopts
some data model for representation of the image data.
The images are indexed with one or more entities in the
data model and are retrieved using a combination of these
indices in the context of a query. The nature of the queries
that can be satisfied by a repository is limited by the
data model implemented in the collection. For example,
a retrieval system like Webseek [5] that supports some se-
mantic categorization of images and indexing based on
aggregate image features in its data model cannot sup-
port a query requiring segmentation. The different image
repositories on the internet exhibit heterogeneity with re-
spect to the data models and hence, with respect to their
access mechanisms.

An integrated framework for a multimedia digital
library reusing the existing heterogeneous network re-



H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval 237

sources has been attempted in UMDL [2] and the Stan-
ford University Digital Library [19] projects. These sys-
tems use some mediator software to coordinate retrieval
from the multiple repositories, which may have differ-
ent organizations and different built-in retrieval methods.
The loose coupling between the producers and consumers
of information and the mechanism of dynamic resource
discovery make the systems amenable to easy extension.
The systems direct a query transparently to a set of ca-
pable repositories. However, the architecture does not
enhance the capabilities of the individual repositories. As
a result, retrieval is restricted to the repositories having
a built-in capability to process a query. Moreover, there
can be heterogeneity in the local interpretations resulting
in an inconsistent set of documents being retrieved.

There are some examples of extensible image data-
bases, where the data-model of a repository can be en-
hanced by the action of external agencies. In MOODS [12],
the system stores a set of low-level media features, while
a user can provide the rules for their interpretation using
a script language. Thus, the data model of the system can
be extended by adding new user scripts. In Mirror [7],
some demons visit the database to extract new media fea-
tures to augment the capability of the system. In either
case, the extension becomes a permanent feature of the
system, is done in anticipation, and cannot be dynami-
cally tailored to the needs of a specific query.

In this paper, we present ImAge, an open and exten-
sible architecture for a digital image library, where the
retrieval functionality is implemented through the inter-
action of standard reusable components. These compo-
nents represent various entities required for a retrieval
system, for example, the query interface of a repository,
the data entities that populate a repository, and the pat-
tern recognition routines, that transform a data object
into another. The components may have different inter-
nal structures but are encapsulated with standard public
interface definitions. The different repositories may sup-
port different sets of the data and query objects, thereby
having their own individual character.

The approach followed in ImAge has quite a few ad-
vantages. The definition of standard component inter-
faces allow separation of the different functional units of
the retrieval system, such as query interpretation, clas-
sification and pattern recognition methods. These inde-
pendent modules can be encapsulated into autonomous
software agents. The agents collaborate with each other
during retrieval using the methods defined in their public
interfaces. New agents conforming to the interface speci-
fications can be dynamically incorporated in the system,
resulting in its extensibility. The agents can declare their
capability set, which is used for negotiation in the context
of a retrieval. The architecture includes a mechanism for
benchmarking these agents against some common bench-
mark data to ascertain their relative merits. Components
encapsulating semantic knowledge can also be added to
the system resulting in the capability to process concep-

tual queries. The standardization of the interfaces result
in the possibility of independent research teams to con-
tribute image analysis routines and domain knowledge
to the system independently of the underlying repository
structures. These routines can be used with any image
repository resulting in effective resource sharing. They
can also build upon one another using public interfaces.
It is also possible to include the existing image retrieval
resources (e.g., WebSeek [5], QBIC [10], BlobWorld [4],
etc.) in the architecture, by encapsulating them into au-
tonomous agents conforming to the standard interface
definitions.

The ImAge architecture, which is motivated by
UMDL, proposes a new communication framework which
allows the autonomous agents encapsulating the different
system components to collaborate during a retrieval. The
different retrieval resources can be contributed by inde-
pendent research groups and may exist anywhere in the
network. We encapsulate the pattern recognition routines
as mobile agents, so that they can travel across a wide
area network to the repository sites and analyze the im-
ages at their source.

We have implemented a prototype image retrieval
system, ImAge, based on this architecture. The basic
system supports query by example using the extracted
image features. Though the implementation is generic,
we have experimented with the system on a collection of
tourism-related images. An extended implementation in-
cludes conceptual knowledge in the domain of tourism
and supports conceptual query. The system can be easily
extended to other applications by incorporating appro-
priate domain knowledge.

The aim of our research is the development of an ar-
chitecture that will support content-based image retrieval
from a multitude of distributed repositories which sup-
port a standard retrieval protocol. We explore the pos-
sibility of encapsulating the retrieval resources to realize
standard interfaces, so that they can collaborate during
retrieval. We do not consider the development of spe-
cific retrieval algorithms, such as data models and pattern
recognition algorithms, as part of this research. There
is currently a strong research interest in multimedia re-
trieval methods and adequate availability of the retrieval
resources has been assumed.

The rest of this paper is organized as follows: Sec-
tion 2 presents an overview of the multi-agent archi-
tecture and describes the various roles played by the
agents in the system. Section 3 describes the proto-
col for capability negotiation and selection of agent
teams. Section 4 describes the communication archi-
tecture for the agents constituting the system. Sec-
tions 5 and 6 describe some global policies for formulating
search strategy. Section 7 describes vertical extension
of the basic feature based retrieval system for concep-
tual query processing. Finally, we conclude (Sect. 9)
with a summary of our contribution and scope of future
work.



238 H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval

2 Architecture

ImAge has been modeled as an open society of au-
tonomous and communicating software agents. Each
agent in the society implements an independent unit of
retrieval functionality. The collaboration of these agents
results in solving a retrieval problem. New agents can dy-
namically join the society and contribute to its growth.
In order that an autonomous agent can contribute in an
open society, we define some definite roles in the sys-
tem. An agent participates in the system in one of these
predefined roles. We have followed an object-oriented ap-
proach. An agent class has been associated with each of
the roles in the system. Every agent is viewed as an object
belonging to an agent class. Each agent class is charac-
terized by a public interface definition, which defines its
functional behavior. Different agents in an agent class im-
plement the public interface in its own way. Each agent
class has a generic implementation that implements its
public interface. Every agent belonging to a class extends
the generic agent and implements its technology specific
methods. For example, the generic Search Agent (SA) de-
fines an abstract method similarity(), that returns the
similarity value between two images. It is extended by
every agent of that class with a feature specific algorithm.
ImAge puts no restrictions in the internal design or know-
ledge representation techniques of an agent.

The agent classes in ImAge and their interactions are
shown in Fig. 1. A User Interface Agent (UIA) provides
the human-machine interface of the system. It encapsu-
lates the knowledge about the users, e.g., a user’s prefer-
ences, feedback, history, etc. A UIA can implement any
type of user interface, e.g. natural language interface,
query by example, etc. However, it must communicate
the query to the rest of the system in a standard form.
A Search Coordination Agent (SCA) encapsulates the
knowledge and the heuristic methods for solving a re-
trieval problem and its optimization. It accepts the user
query from a UIA, interprets it and interacts with the

Meta

Collection
Agent

Registrar

Collection
Agent

Coordinator
Search

User
Interface

Search
AgentAgent

Search
Agent

Search

Registrar

Fig. 1. Agent interaction

other agents for planning and scheduling the retrieval
subproblems. A Collection Agent (CA) forms a layer of
abstraction over an image repository. It encapsulates the
repository structure and produces a standard view of the
different data elements available with the repository. It
declares the capabilities of a repository in terms of its
query and data services to the external world. A Search
Agent (SA) encapsulates a specific image retrieval al-
gorithm. It is developed independent of any repository
structure and are made available in the network for pub-
lic use. These agents can build upon one another to derive
a complex data-model. These agents are designed as mo-
bile agents so that they can travel to the collection sites
and can analyze the documents at their sources.

Since ImAge allows dynamic growth, the agents in
the system cannot be aware of each other’s existence.
The Registration Agents (RAs) maintain a list of the
agents available in the system with their capability de-
scriptions and provide a mechanism for dynamic resource
discovery. Since the architecture encourages agents to be
freely installed in the system, the system may be popu-
lated with a number of agents with similar capabilities
but with different performance figures. The Benchmark
Agents (BAs) benchmark the agents against a common
set of data, which enables optimal choice of agents for
solving a retrieval problem. The agent classes are de-
scribed in more detail in the following subsections.

2.1 User Interface Agent

A UIA provides the human-machine interface of ImAge.
It is possible to have different types of user interfaces in
ImAge that incorporate different forms of inputs, such
as query by example, keywords, natural language input,
etc. A user can select an appropriate UIA depending on
his/her convenience. Every UIA should, however, trans-
late the query to a standard form which is understood by
the rest of the system (see Sect. 4.2). Besides this, a UIA
should be able to handle a few other functions, such as
the convenient display of results, user registration, main-
tenance of history, and accepting user feedback.

Since the functionality of a UIA largely depends on
the nature of the supported interface, there is no generic
implementation for this agent class. A UIA is transpar-
ent to the complexity of the actual retrieval mechanism,
that involves interaction of many retrieval resources. It
views SCA as a complete search engine and submits the
user queries to the latter in interactive or non-interactive
modes.

2.2 Search Coordinator Agent

A Search Coordinator Agent (SCA) coordinates the re-
trieval process utilizing the available resources in the sys-
tem. Collaboration is achieved using a two-phase protocol
as in [14]. In the planning stage, an SCA identifies an op-
timal set of image classes in the available repositories and



H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval 239

an optimal set of search algorithms for each of the classes.
The choice of image classes is guided by two factors:

1. The features of the data-model of a repository and the
available public PR routines may not match for the re-
pository to take part in a retrieval problem. In that
case, the repository is not selected for retrieval.

2. A user is usually not interested in finding out an ex-
haustive set of images that satisfy the query. Thus, it
is possible to improve the performance of retrieval by
selecting a subset of document classes where the prob-
ability of finding the relevant documents is better than
that in the others.

The selection of the search agents for a selected docu-
ment class depends on the query and the data model sup-
ported in the repository. In general, while the breadth of
search (the selection of the image classes) is determined
by the recall requirement, the selection of the search algo-
rithms, where alternatives exist, is determined by the pre-
cision requirements and the real-time constraints. These
aspects are further elaborated in Sects. 3 and 6.

During the execution stage, an SCA contacts the se-
lected CAs, and requests them to schedule the selected
SAs on the selected image categories. At the end of the re-
trieval, an SCA sorts the images by the descending order
of their relevance and produces a subset of the images to
the user that meets the desired precision requirement.

A generic implementation of the search coordinator
implements its overall operational logic, which can be
specialized using specific policies and heuristics to select
optimal set of resources during the planning stage. It is
also possible to implement some specific strategies, e.g.
for duplicate removal, while combining the search results
from multiple sources.

2.3 Collection Agent

Individual image collections in a distributed environment
are characterized by their private data models and re-
trieval methods. Generally, it is not possible for a software
entity to utilize the data, unless it is tightly coupled to
the repository. It is in ImAge that we propose an interface
that allows the repositories to export a part of their func-
tionality, depending on their implementation. The public
view of a repository can be used by software agents that
are developed independent of the underlying repository
structure.

A CA forms a layer of abstraction over a repository.
It declares the public interface of a repository in terms
of its public data and query models and exports the data
elements as standard objects when required by a retrieval
algorithm. Retrieval routines, external to the repository,
can complement the native indexing supported in a re-
pository and thereby augment the retrieval capability of-
fered by the collection.

We view different image representations as reusable
objects when encapsulated with standard interfaces.

For example, the raw image data can be abstracted to
a bitmap format, by supporting public methods like
getHeight(), getWidth() and getP ixel(x, y) regardless
of its physical format. Similarly, a color histogram can
be abstracted to 3-D bin values with public methods like
getBinV al(red, blue, green). We assume a set of such
standard component definitions exist in a development
library and the public interface of a repository to be
developed using such interfaces. The library can be ex-
tended by including new interfaces with innovation of
new image data representations.

The existence of standard data objects in a repository
does not preclude it from having a private data model,
exclusive to the repository. However, the query capabil-
ity arising out of the private data model must be encap-
sulated with a standard public interface. For example,
the semantic categorization of the images in WebSeek
can be implemented using a private data model, while
the query interface can be encapsulated as a standard
keyword-based query. The images retrieved from one or
more semantic categories of WebSeek can be subjected to
external image analysis routines to augment its retrieval
capability.

The repositories in a heterogeneous environment can
implement different data models. However, the data
items need to be encapsulated to a standard form for the
SAs to build upon them. The static data model of the
repository may be built by some manual or automatic
process or generated by some of the available SAs. The
features extracted by the SAs in the context of a query
can also become a part of the data model of a repository,
or can be cached for possible future use, depending on
the policy of the CA. However, such dynamic capability
enhancements increase the complexity of the capability
declaration of the CA.

2.4 Search Agent

In ImAge, the capability of a repository is complemented
by the action of some public1 pattern recognition (PR)
routines in the context of a query. A PR routine accepts
raw image data or extracted features through the public
interface of a repository and incorporates methods to in-
terpret them in a novel way. These routines are developed
independently of any specific repository structure and
can be contributed to the system by independent research
teams. Moreover, these PR routines can build on one an-
other and can produce a complex view of the image data.

An SA encapsulates a specific pattern recognition al-
gorithm. Besides a feature extraction algorithm, it must
implement a method to compare the feature object with
a similar one to determine a similarity score for a pair of

1 The word public does not have any commercial connotation.
The PR routines may be used for a fee or free of cost depending on
the policy of its provider.



240 H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval

images.2 Like a CA, an SA can allow public access to its
data model, so that other SAs can build over it. In such
cases, the data elements must be encapsulated as stan-
dard objects. The interface specification for such data
objects are made publicly available in ImAge.

We consider two types of SAs in ImAge. Generic SAs
implement some feature-based retrieval algorithms, like
colors [22], textures [23] or simple shapes [11]. These
agents can be used for many different applications. Spe-
cialized SAs are application specific and incorporate
a specific intelligence and training set for recognition of
complex image objects, e.g., the face of an important per-
sonality. They can build upon low-level image features
extracted by Generic SAs.

The SAs are designed independently of any repository
structure. They complement the native capabilities of the
repositories during a retrieval process. It may be neces-
sary to use more than one SA in succession to satisfy
a query. The SAs are implemented as mobile agents, so
that they can travel to the collection sites and process the
media data or meta-data at their source. This feature alle-
viates network traffic when a large number of multimedia
documents from different repositories are to be processed
using a series of SAs. It also alleviates the computational
bottlenecks by distributing the processing to multiple re-
pository sites.

2.5 Registration Agent

The agents in the open-ended system do not have a priori
knowledge of each others capabilities and communication
addresses. The Registration Agents (RAs) aid the agent
community in dynamic resource discovery. Every agent,
which implements some services to be utilized by others,
registers itself with an RA. A capability-based search by
a client with the RAs yields the set of prospective agents
with the required capabilities. There can be several RAs
on the network. An agent can get registered with any of
these RAs. The existence of multiple RAs distributes the
workload and reduces the network traffic. The RAs them-
selves register with a meta-registrar, which helps in their
discovery. The address of the meta-registrar is universally
known in the system.

A generic RA defines methods to register and to with-
draw an agent. An agent is uniquely identified by its URI
in a global network. An RA maintains a list of capabili-
ties of an agent in quantitative terms. It defines a lookup
method, which produces a ranked list of agents with re-
spect to the desired capability set.

2 There may be different similarity computation algorithms asso-
ciated with the same media feature, for example, histogram inter-
section and vector space distance for color histograms. We assume
exactly one of the methods to be implemented in an SA. Another
similarity measure may be implemented in another agent which is
known in the system using a different URI.

2.6 Benchmark Agents

Since ImAge encourages uncontrolled addition of PR al-
gorithms in the form of SAs, it is possible that the system
will be populated with many SAs with similar capabili-
ties but different performance figures. It is necessary to
compare their performances against a common set of rep-
resentative media data, so that the most suitable agent
can be selected for a retrieval. A Benchmark Agent (BA)
benchmarks a set of similar SAs against a common set of
benchmark data. It typically contains a reasonably large
set of sample images drawn from multiple domains. A BA
is designed to support benchmarking of a set of SAs, all
of which can work with similar data models. A number
of BAs can co-exist in the system, having different data-
models, and hence capable of benchmarking different sets
of SAs.

An RA looks for suitable BAs that can benchmark
an SA at the time of its registration. If no such agent is
found (which is more likely in case of the Special SAs),
the agent cannot be benchmarked and the performance
declaration by the provider of the agent is relied on. If
more than one BA is found, the performance data for the
agent is computed as a union of all benchmark results.
The performance data are stored with the RA for future
reference.

The retrieval algorithm in ImAge relies on fusion of
information from many SAs. The algorithms employed
for similarity computation may produce results in dif-
ferent ranges with different semantic interpretation. It is
therefore required to normalize the results to a common
scale before combining them. We normalize the values
to the range [0,1] using Gaussain normalization as in
MARS [17].

3 Capability negotiation for agent team
formation

The different image repositories in a heterogeneous en-
vironment, in general, implement different data models
and have different capabilities. A repository can be en-
capsulated in a CA to conform to some standard query
interface definitions. The SAs can exploit these stan-
dard interfaces to retrieve image data (or metadata). The
standardization of the interface, however, does not imply
uniformity. A repository may support a few of the sev-
eral different interfaces defined with the system. For ex-
ample, while WebSeek provides keyword-based semantic
retrieval, a system like NetView [26] provides color-based
classification. Therefore, the SAs required for solving a re-
trieval problem depend not only on the the query but
also on the public interface of the repository. The prob-
lem can be modeled as a search problem where the ob-
jective is to reach any of a set of destinations (available
access methods of the repository) from a source (query re-
quirement) through the intermediate states that can be
generated by the set of available SAs. The situation is



H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval 241

Image
Data

Raw

q

Repository

Native
Data

Model

A

B

C

D

E

F

G

I

H

P Q R S

Fig. 2. Agent cooperation

pictorially depicted in Fig. 2. In the figure, q represents
a query object, {A,B, ...I} represent a set of intermediate
metadata objects, and {P,Q,R, S} represent the public
data interfaces in a repository. The edges Aq, BA, etc.,
represent the action of SAs in transforming one form of
metadata to another. The graph is generated dynamically
in the context of a query by a planning module, encap-
sulated in a SCA with the knowledge of the capabilities
of the CAs and the SAs in the system. In the example,
we find two paths qCDQ and qEFGR that connects the
query to the public data interfaces in the repository. The
least-cost path satisfying the performance constraints is
chosen for satisfying the query. If no such path is found,
the problem is intractable, and the repository cannot
take part in the retrieval process. A capability descrip-
tion language (Sect. 4.3) helps the SCA in this reasoning
process.

4 Agent communication

The retrieval system proposed in this paper has been
modeled as an open-ended multi-agent system, where
problem solving is achieved through coordination of
a set of autonomous agents, and where new agents can
be dynamically added to the system. This necessitates
adoption of a standard communication language (ACL)
throughout the system. There have been some initiatives
on the development of ACL for heterogeneous environ-

ments, namely the KQML3 and the Arcol4. FIPA5 has
released a draft for a standardized version. The moti-
vation behind the development of these languages has
been to enable a set of independently designed agents
to communicate to each other. The languages focus on
the transport and the language levels, i.e., they deal with
the mechanism of sending and receiving messages and
their interpretation at the performative level. Since these
languages are quite generic, their use requires some fur-
ther understandings between the communicating agents.
In order to make a meaningful communication, a sender
agent needs to make some assumptions about the re-
ceiver agent and vice-versa. Besides this, these languages
assume that the agents are implemented using some be-
lief states, resulting in restrictions on the agent design.
Finally, these generic ACLs do not provide for any val-
idation of communication policies and communication
architecture. As a result, a complex protocol is required
to notify the capabilities of the agents to each other and to
recover from a situation when an agent receives a message
that it cannot interpret.

In object-oriented design, it is possible to define the
communication between the objects in terms of the pub-
lic methods defined with these objects. One object can
communicate some information to another by invoking
a public method defined with the latter. The semantics of
the communication is established by defining the mean-
ings of the objects exchanged, either as a parameter or as
the return value, in the method invocation. Distributed
computing platforms, such as Java or CORBA, support
Remote Method Invocation (RMI), which hides the un-
derlying transport mechanism and enables an object to
invoke the method defined in a remote object transpar-
ently, as if they were collocated [8]. We have used RMI
as the underlying message transport mechanism. Each
agent is designed as an object and extends its services
to others through a set of public methods, which can be
remotely invoked. The use of RMI considerably simpli-
fies the communication architecture. Since the messages
that can be interpreted by an agent is defined in its pub-
lic interface, it is possible to validate most of the mes-
sages at compile time, eliminating the need of a runtime
protocol. A stronger semantics for the communication is
established by the communication objects, since the in-
terpretation of a communication object is largely built
into the object itself. Besides, RMI eliminates the need for
development of a communication subsystem, such as the
KQML router interface library (KRIL).

In a proprietary system, where there are a handful of
agents, it is possible to define an interface for every agent
individually, and those interfaces to be globally known to
every other agent in the system. However, in an open-
ended system where agents can be dynamically added,

3 University of Michigan: www.cs.umbc.edu/kqml
4 France Telecom: www.arcol.asso.fr
5 Foundation for Intelligent Physical Agents: www.fipa.org



242 H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval

there will be a large diversity of messages and the com-
munication will break down, if every agent were allowed
to define its own communication language, i.e., its own
public interface. To overcome this difficulty, we have de-
veloped an ACL based on social commitments [21]. In
this model, an agent-based system is viewed as a commu-
nity of agents with some defined social roles. Every agent
in the system participates in a problem-solving exercise
in one (or more) of these roles. The communication be-
tween any two agents in such system is guided by the roles
they perform. With a finite and predefined number of
roles in the system, the diversity of communication needs
can be contained without either limiting the number of
agents or imposing any restrictions on their internal de-
sign. The definition of the messages in the system forms
the functional specifications for the roles, and any agent
can participate in the role by adhering to those specifica-
tions. In the proposed architecture, the agents are classi-
fied into a few broad functional categories as described in
Sect. 2. Each of these agent classes corresponds to a role
in the system required for solving a retrieval problem.
A public communication interface, that includes a set of
methods, is defined for every class of agents. Every agent
in an agent class implements the corresponding public
interface.

The standardization of the communication interface
does not restrict the diversity of operations of the agents
belonging to an agent class. The methods defined in the
public interfaces of an agent class exhibit polymorphism,
since every agent in the class has the flexibility to im-
plement the method in its own way. While some of the
communication objects have a fixed interpretation in the
system, many are defined in a flexible way with the rules
of interpretation encoded in those objects themselves, so
that they can be customized to the needs of some specific
agents using a content language. The content language is
further extended to a query language and to a capabil-
ity description language, which are used to represent the
queries at various stages of refinement and the capabili-
ties of the different agents in the system. These languages
are described in the following subsection.

4.1 Content language

In order to offer flexibility in agent communication, some
of the message fields are loosely defined as generic ob-
jects and no type checking is enforced on them at com-
pile time. Examples of such fields include agent capability
description, query specification, etc. These objects are
polymorphic in nature, i.e., they can be overloaded with
different types of information depending on the context.
We encode these objects in a descriptive way similar to
ASN.1 [1] so that they may be unambiguously interpreted
by the recipient agents. The complex data structures are
built recursively using fundamental data types, integer,
float and String, and construction mechanisms, fields,
repetition and choice. We have extended the repetition

construct to include logical operations AND, OR and
NOT . Every data type is represented by a name. Each
data is encapsulated in a class TypeV alue which is an
ordered pair of the type (name) and the value of the data
item. A value field can contain an elementary value, fields,
repetition, or another TypeValue specification.

The vocabulary of the content language is not re-
stricted to a finite set but is left open-ended. Thus, it is
possible to extend the language to include new elemen-
tary or complex data types which are relevant for some
new agents. As a result, it may not be possible for an
agent to interpret every message fully. In the distributed
architecture, where an agent solves a part of the problem,
such a capability is not required. An agent interprets only
that part of a message that is relevant for it, i.e., for which
it is designed. In fact, the selection of an agent team at
any stage of solving a retrieval problem is based on the ca-
pability of the agents to interpret the different parts of the
(refined) query.

In the following sections, we use the notation t= v to
denote a TypeV alue pair. A more complex type (a recur-
sive buildup of TypeV alue pairs) is represented as t1 =
(t2 = v) where any depth of nesting is allowed. The funda-
mental data types are expressed directly, e.g., by “string1”
instead of string =“string1”, or true for boolean= true.
The absence of a value is represented by ∅ (null). Repe-
tition is be denoted by [v1, v2, . . . ] and logical operations
by op[v1, v2, . . . ] where op denotes a logical operator. For
example,

keyword :OR[“tiger”, “panther”, “leopard” ]

indicates a logical disjunction of the three keywords.
Fields are represented by {f1, f2, . . . fn}, for example
quality : {cost, performance} indicates that the quality
information includes cost and performance fields.6 Com-
ments are enclosed between /∗ · · ·∗/.

4.2 Query language

ImAge has been designed as an open-ended system, where
different types of retrieval mechanisms may co-exist. This
motivates the development of a generic query language
which is expressive enough to integrate a variety of query
objects. At the same time, the language should not be
limited by a static set of vocabulary but should be eas-
ily extensible to yet unforeseen image features as well as
conceptual query objects.

The query language is defined on top of the generic
content language and a query object is defined as a repe-
tition of smaller query objects. Each of these sub-queries,
in turn, can be a repetition of even smaller query ob-
jects or can be a choice of specifications, such as image
categories, search specifications, performance specifica-
tions, and time constraints. This choice can be extended

6 A TypeV alue pair could also be expressed as fields, but we use
a different notation for its special significance.



H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval 243

to include other types of specifications, such as concep-
tual specifications. Every specification object can be an
elementary specification, or a logical combination of ele-
mentary specifications. Every elementary specification is
associated with a score, indicating its importance in the
query.

As an example, consider a query to retrieve yellow
flower from image category nature, with a precision level
of 0.8. A “flower” is specified as a blob with yellow color
and shape similar to that of any of a set of alternate
sample blobs, sample1, ..., samplen. The query can be ex-
pressed as:

query = {

category = (keyword= “nature”),

feature= (blob= [

{color = {255, 255, 0}/∗yellow ∗/,

weight= 0.4},

{shape= (blobData=

OR[sample1, ..., samplen]),

weight= 0.6}])

performance= [(precision= 0.8)]

}

Since the architecture is intended to be open-ended,
the vocabulary of the query language is not restricted to
a closed set of terminology. Thus, any agent in the system
may not be able to interpret an entire query specifica-
tion. An agent is designed to interpret only the part of the
query language required to perform its role successfully
in the system. For example, while the field category can
be interpreted by a CA, a feature with color attribute is
interpreted by an SA incorporating a histogram compari-
son algorithm.

4.3 Agent Capability Description Language

In ImAge, the SCA forms a team of CAs and SAs for
solving a retrieval problem using a capability negotiation
process. In order to form an agent team that can effec-
tively solve a retrieval problem, the capabilities of the
individual agents need to be known. The Capability De-
scription Language (CDL) allows the CAs and the SAs to
declare their capabilities. The language is a extension of
the generic content language.

Wavelets

(with spatial relationships)
Blobs

Image Data

Color
Histogram

Texture

Fig. 3. Data model for a Blobworld-like repository

The capability specification for an SA includes the dif-
ferent types of input objects it can accept, the cost for
processing each of the inputs (to extract the metadata of
interest) and its performance. For the generic agents, the
performance is computed in terms of the axes of the per-
ceptual space through a benchmarking process described
in Sect. 5. For special agents, their performance towards
their specific functionality is declared by the designer
of the algorithm. The capability description for a SA,
that implements color matching through histograms, is as
follows:

capability = {

input = [

{data= bitmapImage,cost= 2.0},

{data= colorHistogram, cost= 0}],

performance= [

{attribute= color, score= 0.95}

{attribute= texture, score= 0.80}]

}

In the above example, the SA can accept either
bitmap image data or color histogram data with costs 2
and 0 (zero) units, respectively. Since the SA uses his-
togram for image similarity computation, the feature
extraction cost is zero when histograms are directly avail-
able. The agent has the performance scores 0.95 towards
color and 0.80 towards texture, as judged by a benchmark
process.

The CAs need to specify its query services and its data
services, i.e., the image features used for indexing the im-
ages, and the views to its data model that is available to
the external world. The CDL used in ImAge is similar to
the Resource Description Framework (RDF) [20] in se-
mantics, but is based on our Generic Content Language
rather than XML. To illustrate the capability description
of the CAs, let us consider a repository like BlobWorld [4],
where every image is segmented into blobs of relatively
uniform color and texture. Let us assume that the reposi-
tory indexes the images based on the color, texture and
the relative position of the blobs, i.e., it is possible to sup-
port a query like “Find the images comprising (at least)
two blobs, blob1 and blob2, where blob1 and blob2 are simi-
lar in color and texture to two given samples, and that
blob1 is left to blob2 in the image”. The data-model re-
quired to support such a query is pictorially shown in
Fig. 3. Let us also assume that the repository provides
public access to the raw image data and to the blob repre-
sentation of the images for the SAs to build upon, but the
histogram and texture data are private to the repository.
The capability description of the CA is as follows:

capability = [

{data= “bitmapImage”, parent= ∅,

access= “public”, key = false}

{data= “blobImage”, parent= bitmapImage,

access= “public”, key = false},

{data= “colorHistogram”, parent= blobImage,



244 H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval

access= “private”, key = true}

{data= “gaborTexture” , parent= blobImage,

access= “private”, key = true}

]

In the above example, the parent field indicates the
relationship between the different elements of the data
model. The access field indicates whether the data item
is available for public access or is private to the repository.
The key field indicates whether the images are indexed by
this data. It is assumed that instances of bitmapImage,
blobImage, colorHistogram and gaborTexture (texture
as determined using Gabor’s functions [23]) are encapsu-
lated in objects with standard interfaces, and that these
strings serve as the Uniform Resource Identifier (URI) for
those classes.

5 Search Agent characterization and selection

The planning process in ImAge relies on an optimal se-
lection of the search agents. It is therefore necessary to
evaluate the SAs against a common set of benchmark
data. An agent may be benchmarked for many of its at-
tributes. We have implemented a simple benchmarking
scheme for Generic SAs that operate on raw media data.

The content of an image is, in general, characterized
by several independent features [17] and the performance
of retrieval is determined by the quality of the SAs in
comparing the images with respect to these features. We
use the subjective judgment of a sample of users as the
basis for benchmarking the agents for their performance.
We consider an orthogonal perceptual space comprising
a set of features, each of which has a definite meaning to
the human beings. It is possible for a person to judge the
degree of similarity between two images in terms of these
features. We have chosen four orthogonal features to de-
fine a perceptual space:

1. Color. It is judged by the color contents (RGB compo-
nents and their combinations) of an image.

2. Texture. It is judged by the dominant textural pattern
of the images.

1 n

Im
ag

e 
   

   
   

 ..
.  

   
   

   
   

Im
ag

e
n

1

Image           ...              Image

Perceptual space

C
ol

or

Texture

Disti
nguish

ing feature

Overall shape

Reference similarity matrix
Fig. 4. Perceptual space and simi-
larity matrix

3. Shape. Shape is judged by the contours of the objects
contained in the images.

4. Distinguishing feature. It is judged by other image
characteristics, which cannot be expressed as a com-
bination of color, texture and shape. For example,
two images may be considered similar if they contain
a common emblem though they are different in all
other aspects. Similarly, the signature of an artist on
his paintings may be a distinguishing feature to iden-
tify the artist.

We assume that the similarity value between two im-
ages i1 and i2 in a perceptual dimension j can be repre-
sented by a number simj(i1, i2), normalized in the range
[0,1], where 1 represents maximum similarity and 0 repre-
sents minimum similarity.

The similarity measure between two images in the per-
ceptual space is expressed as a similarity vector, each
element of which represents a similarity measure in a per-
ceptual dimension. The benchmarking data comprises
a set of sample images and the similarity vectors between
every pair of images. The sample images are selected at
random from a large collection on various themes, be-
lieved to exhibit a spectrum of values in the perceptual
dimensions. The similarity values of every pair of images
in each of the perceptual dimensions are determined as
the average of the subjective judgments from a sample
population of users in a normalized scale [0,1]. The data is
represented as a matrix, where every element corresponds
to a pair of images, and comprises a similarity vector in
the perceptual space. This matrix is referred to as the ref-
erence similarity matrix (Fig. 4).

When an SA m is registered with a registrar, the lat-
ter runs it to evaluate the similarity vectors between the
image pairs in the benchmarking database. The similar-
ity score awarded by the search agent, which is also in
the range [0,1], is then compared with the correspond-
ing score in every perceptual dimension, wherever avail-
able, and an error function εmji = smk−srji is computed.
Here, smk represents the similarity score awarded by the
search agent m to the i-th image pair, and srji represents
the similarity score in the reference matrix for the same



H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval 245

pair of images in the perceptual dimension j. The score of
the agent m in a perceptual dimension is then given by

σmj = 1−

(
1

κj

∑
i

εmji
2

) 1
2

,

where the similarity measure for the j-th dimension is
available for κj pairs of images in the reference similar-
ity matrix. The benchmark data bm for a search agent
m comprises its scores in the dimensions of the percep-
tual space and its average time of execution for comparing
a pair of image, i.e., bm = 〈σm1, σ

m
2, ..., σ

m
n, τm〉, where

there are n dimensions in the perceptual space and τm
represents the average time taken by an agent to compare
an image pair. This processing time is measured under
some ideal conditions and is weighted by a penalty factor
depending on the target execution environment.

In order to select the optimal search agent(s) in con-
text of a query, we need a ranked list of SAs with respect
to a requested search criterion. The different search cri-
teria are interpreted as different points in the perceptual
space with different projections in the feature dimensions.
For example, the criterion appearance maps to 0.5 in each
of the color and shape dimensions.

The score of a search agent m with respect to a crite-
rion c is computed as σmc =

∑
j p

c
jσ
m
j , where pcj is the

projection of the criterion c on feature j and σmj is the
score of the agent m with respect to the feature j as a re-
sult of benchmarking. The agent with the highest value of
σmc is normally selected for retrieval.

While many pattern recognition algorithms are de-
signed to deliver good performance for one or more fea-
tures in this conceptual space, there could be some agents
that encapsulate algorithms for specialized applications,
for example, identifying the face of an important person-
ality. Benchmarking on the perceptual space is insuffi-
cient to capture these capabilities. To account for these
agents, we have defined a distinct class of SAs, namely
the special search agents. Rather than benchmarking, the
RA records the feature(s) and score(s) of the agent as
declared by the supplier of the agent using the capabil-
ity description language as described in Sect. 4.3. These
scores are processed in the same way as the benchmark
scores in the context of a retrieval.

6 Collection expertise

In principle, it is possible to analyze every image in every
possible repository online using a collaboration of CAs
and SAs in response to a query. Such an endeavor will
be prohibitively costly on the internet, where millions of
image documents exist. Besides, searching a general col-
lection of images with a limited set of media features is
likely to result in poor precision 7.

7 Try any feature-based image retrieval engine on the web, e.g.,
QBIC, Webseek or Blobworld.

A CA encapsulates an image repository and provides
a standard query interface if supported by an underly-
ing data model of the repository. The query interface
can be used to identify some document classes (subsets
of documents in a repository produced as a result of
a priori classification), where the query is more likely to
be satisfied. In the absence of any classification infor-
mation, all images in the repository may be considered
to belong to a single image class. ImAge utilizes avail-
able classification information to prune the search space.
For example, consider a query like yellow flower, which
would be very difficult to satisfy on a general collection
of images. However, a collection like WebSeek organizes
its collection in several semantic categories, including
“nature/flowers”. A search for a predominance of yellow
color in this image class is likely not only to reduce com-
putational overheads8 but also to yield more satisfactory
results.

In general, the different repositories may classify the
documents with different perspectives independently of
the other system components. Therefore, the image cate-
gory requested in a query may not directly map to one or
more categories of a repository. The different categories
in the repository will rather have different degrees of sim-
ilarity with the query specifications. The degree of simi-
larity between a query and the available categories can be
measured in many ways. We have implemented a vector-
space based method. Every image class is associated with
a set of keywords. Some relevant keywords are also asso-
ciated with a query, either by the user or by some domain
knowledge (see Sect. 7). The independently supplied key-
words are mapped to some controlled vocabulary using
a thesaurus, so that a document class and a query rep-
resent two points in a defined vector-space. A similarity
value in the range [0,1] is computed as a function of the
angles of the two vectors in the vector space. An image
category having some non-zero similarity value (where
at least one of the keywords matches) with respect to
a query qualifies for participating in the retrieval process.
Ideally, we need to select a subset of the qualifying image
categories which satisfies the required recall value with
minimum computational overheads for optimal retrieval.

We use the following heuristic method to find a subset
of qualifying image categories that satisfies the requested
recall at a low computational cost. Let nj denote the total
number of images in a qualifying image category σj , and
sj the similarity value of the category with respect to
a query q. An estimate of the number of relevant images
in σj is given by n̂j = sj×nj . Let {m1, ...mκj} be the set
of SAs selected for query q. Let τk represent the standard
cost of execution for an agent mk and pjk be the penalty
function for that agent for image category σj . The total
retrieval cost for σj in the context of the query is given by
cj = nj×

∑
k=1..κj

(τk×pjk).

8 The nature/flowers category of WebSeek contains 853 images
against a total of 65000 image in the whole collection.



246 H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval

We define a figure of merit for an image category σj as
fj = n̂j/cj , and prepare a ranked list of categories using
this figure of merit. From the top of the list, we select the
least number of image categories so that the requested
recall is satisfied. The estimated number of relevant docu-
ments in a set of image categories Sκ = {σ1, ...σκ} is given
by

N̂κ =

∑
j=1..κ

sj×nj∑
j=1..κ

nj
×Nκ ,

where Nκ is the total number of image documents in⋃
j=1..κ σj . The estimated recall when Sκ is selected for

retrieval is given by rκ = N̂κ/N̂ , where the denominator
denotes the estimated number of relevant documents in
the set of all qualifying image categories.

7 Vertical extension: semantic interpretation of
query

A user is usually interested in a semantic category of
images, for example, images depicting medieval monu-
ments or snow peaks, rather than low-level image fea-
tures like color and texture. A concept is an abstract
entity and cannot be directly “observed” in an image.
However, it leads to some definite patterns in the image
forms, recognition of which leads to the belief in the pres-
ence of the object, with some underlying assumptions.
For example, a medieval monument can be identified in
an image by recognizing a combination of media objects
representing its domes, minaret and the facade, assum-
ing that the image depicts a place of tourist interest
(other assumptions are also possible). A combination of
media objects that can be used to identify a concept is
called its observation model. The recognition of the me-
dia objects often requires specialized pattern recognition
algorithms, called the recognition functions. Experience
gained through many observations of the concept allows
the association of a number of alternative observation
models to a concept in a specific domain. A feature-based
retrieval system requires the user to specify a few image
features, which is an oversimplification of an observation
model and hence, rarely produces good results. Semantic
classification of an image requires the combination of evi-
dences from a number of media features and some domain
specific assumptions.

Knowledge-assisted interpretation of image docu-
ments has been attempted in specific domains [6, 25].
However, the knowledge representations in these systems
are tightly coupled with the underlying data model of
the repositories. In an “open” architecture, it is possible
to interpret a query by an independent agent to a set
of alternative observation models, comprising some stan-
dard, possibly qualified, image patterns. For example, the
media object “dome” can be represented as a set of al-

ternative blobs, each characterized by a specific sample
shape. Since the query refinement is undertaken by an
independent agent, it is not guaranteed that all the spec-
ified image properties will be supported at any particular
repository. Once the observation models are available,
the SCA negotiates with the other agents (see Sect. 3) to
identify teams of CAs and SAs, which can participate in
the retrieval.

In ImAge, a concept is interpreted by an autonomous
agent, called a Thematic Agent (TA) having the requi-
site domain knowledge. A TA is designed to operate in
a closed domain of knowledge. It associates a finite num-
ber of concepts in the domain with some property values
that can be observed in image documents. It captures
the specialization and containment relationships between
the concepts that imply property inheritance. A TA can
generate the observation model for a concept using its en-
coded knowledge.

The process of query refinement by a TA results in the
selection of a set of observation models from a specified
conceptual query. A query intends to express one or more
concepts using some descriptors (e.g., keywords). The de-
scriptors are viewed as special observation models which
are observed in a query. The concepts and the observation
models have a many-to-many relationship. Therefore, it is
not possible to uniquely identify a concept using a set of
descriptors. We have modeled the relationship as a cause-
effect relationship, where (the intention of) a concept
can cause a descriptor in the query with some non-zero
probability. Similarly, a concept can cause an observation
model to materialize in an image. The probability values
are associated to the cause-effect relationship with the
experience of numerous actual observations by a domain
expert. The TA constructs a belief network [16] with the
states of the root node representing the set of concepts in
its knowledge domain, and the descriptors and the obser-
vation models as the leaf nodes. Without any assumption
about the user behavior, the states of the root node (con-
cepts) are initialized with equal a priori probabilities. The
observation of the descriptors in a query provides virtual
evidences for the nodes. These evidences are propagated
in the belief network, and the set of observation models
that provides the most probable explanation to the obser-
vation set are selected for retrieval.

The open architecture has several advantages for con-
ceptual retrieval. The existing SAs can be reused in
the context of conceptual retrieval. Thus, the researcher
of a semantic recognition algorithm can focus on the
knowledge domain and does not have to worry about
the feature recognition algorithms. The separation of
the semantic knowledge and the media knowledge al-
lows mixed mode queries, where a concept can be qual-
ified by one or more media features. For example, in
a query like “white medieval monument”, the semantic
entity “medieval monument” requires a knowledge-based
approach. The media feature “white” can be detected by
a histogram evaluation method. Thus, such a query can



H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval 247

be evaluated in a repository like the Blobworld9 with the
support of suitable TAs and SAs.

Contemporary semantic databases are restricted to
a specific knowledge domain. The open architecture of
ImAge allows several semantic classification engines, each
specializing in one (possibly overlapping) knowledge do-
main, to co-exist in the system and to allow retrieval from
a common set of repositories. New agents, encoding new
descriptions of knowledge domains, can be dynamically
added to the system. The knowledge of an individual TA
may be limited to a tiny domain and be hand-coded by
some domain experts. Many such agents collectively pro-
vide a scalable and non-trivial knowledge base. This fea-
ture is particularly useful when the same image can be
interpreted from multiple semantic perspectives, for ex-
ample a photograph of a festival has sociological, cultural,
as well as tourism-related implications.

The extension to the ImAge architecture for process-
ing a conceptual query is depicted in Fig. 5. The UIA
interacts with a TA for query refinement before submit-

9 Assuming that it has been designed with an open architecture
and can export its data model.

Interface

Search
Coordinator

Thematic
Agent

Thematic

User

Agent

Registrar

...

Fig. 5. Extension of agent architecture for conceptual query

Fig. 6. A snow peak and the Lotus Temple: violation of closed domain assumption

ting the feature-based query to the SCA. The several TAs
that may co-exist in the system register themselves with
the RAs specifying their domain of expertise. The UIA
selects one or more of the TAs for query refinement de-
pending on the domain of the user’s interest.

The decomposition of a conceptual entity into alter-
native observation models has another advantage. Even
if any particular observation model can be realized at
a few repositories only, the retrieval can be supported on
a larger set of repositories, since several alternatives exist.

We have extended the query language to incorporate
specification of the conceptual entities. The simplest rep-
resentation of a concept in our system is through one or
more concept descriptors. We have used simple keywords,
e.g., monument, as the concept descriptors. Visual de-
scriptors are more expressive and can be incorporated at
the cost of added computational complexity. More com-
plex concepts can be represented by associating concept
modifiers with a concept descriptor. We envisage different
types of concept modifiers.

1. A concept descriptor may be modified by another
to represent a specialization of the concept, for ex-
ample, monument.medieval represents a special type
of monument.

2. A concept may also be specialized by associating some
property attributes with it. For example, 〈monument,
[color = white]〉. This construct represents a mixed
mode query, where conceptual specifications are com-
plemented with feature specifications.

3. A third type of concept modifier associates two con-
cepts with a connective to indicate a set of new con-
cepts, for example, of(hills, India) indicates a set of
mountain ranges, e.g., {Himalayas, Bindhyas, Nilgiri,
... }.
The concept specification can have a combination of

modifiers, for example, 〈monument.medieval, [color =
white]〉. The concept specification in the query is comple-
mented with a specification for the knowledge domain. It



248 H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval

is necessary, because the same descriptor can have differ-
ent semantic connotations in different domains. For ex-
ample, the keyword monument has different connotations
in the domains of architecture and tourism. The selection
of the TA is guided by this domain specification.

Content-based retrieval for conceptual queries are
based on some assumptions about the domain. For ex-
ample, a white object of triangular shape can be inter-
preted as a snow-peak assuming that the images being
analyzed pertain to natural scenery. The existence of
an image like that of the Lotus-Temple violates its as-
sumptions and will produce unsatisfactory results (see
Fig. 6). The TA associates some descriptors (e.g., key-
words) with a concept domain, which are used to select
a subset of image classes (see Sect. 6) for retrieval. We
implicitly assume that the underlying assumptions for
the content-based assumption are satisfied in the selected
image classes.

8 Implementation

We have implemented a prototype system to validate the
architecture. Our emphasis has been on the development
of a set of standard interfaces to achieve separation of the
retrieval functionality and encapsulation of available re-
trieval resources.

A shell for the CAs declares and exports the supported
retrieval capability and the data model of a repository.
A small private collection in the tourism domain has been
encapsulated in this shell. The collection contains about
a 100 image documents. We have also encapsulated an
available retrieval resource on the internet, namely Web-
Seek, to demonstrate reuse capability. In the private col-
lection, the images are referenced by some HTML docu-
ments. The image file names and text in the HTML docu-
ments serve as the annotations to the images. We have
manually categorized the image collections in a few se-
mantic categories based on these annotations from the
perspective of tourist interest and have associated a set of
keywords as descriptors with each of the image categories.
Some of the categories are as follows10:

architecture/fort (fort, quila ...)
/temple (god, mandir ...)
/tomb (chhatri, maqbara ...)

nature /beach (beach, shore ... )
/flora (flower, green ... )
/mountain (hill, snow ... )
/waterfall (fall, jhora ... )
/wildlife (fauna, tiger ...)

The CA caches the image feature extracted by an SA in
the context of a query and thus dynamically augments its
data model (though such increments are not declared to

10 The keywords are enclosed in brackets. Some of the keywords
are synonyms in Indian languages.

the external world). The cached features are utilized in
any future query requiring the same feature description.

In order to encapsulate WebSeek, we have downloaded
its semantic classification scheme and encoded it with as-
sociated thesaurus terms. In response to the keywords
in a query, one or more semantic categories are selected
using the method described in Sect. 6. The CGI com-
mands of WebSeek are emulated and the resultant HTML
files are parsed to find the URL of the images in a seman-
tic category.

We have so far encapsulated five general purpose
image analysis algorithms as SAs. These algorithms in-
clude color matching (using the RGB histogram inter-
section method) [22], chromaticity (using the illumina-
tion invariant YV histogram) [9], Funt and Finalyson’s
method [11], color distribution (correlogram) [13], and
texture matching (using Gabor filter) [23]. We have also
integrated two special agents, employing Eigen-space
based techniques [3, 24], one for recognition of faces and
the other for recognition of emblems and miniature flags.
These two agents use the same code but different training
sets.

A Benchmark Agent (BA) that can benchmark Ge-
neric SAs has been implemented. These SAs operate on
raw image data. The BA maintains a set of images and
some perceptual similarity values (see Sect. 5) for every
pair of image in its collection. It schedules an SA on its
dataset and computes the normalization and perform-
ance parameters for the SA.

A UIA implements Query By Example (QBE). A sam-
ple image sample can be selected from a set maintained
by the UIA for that purpose. The user can also supply an
image sample from a collection external to the system by
providing the URL. The other query parameters include:
(a) a combination of search criteria (e.g., color, texture,
appearance, etc.); (b) a few semantic keywords, which are
used to select the image classes with the CA; and (c) per-
formance criteria (desired recall and precision values).

We have implemented a prototype TA in the tourism
domain for demonstrating the capability of vertical ex-
tension. The TA encodes a handful of concepts of tourist
interest, e.g., historic relics, places with scenic beauties,
etc. The concepts are hand-coded in this TA and are as-
sociated to standard image properties and descriptors.
The prototype can be extended using proper domain
expertise.

To support the distributed system design on hetero-
geneous computing platforms, we considered the use of
Java and CORBA, so that we can focus more on sys-
tem development rather than sorting out the networking
and communication issues. Implementations of Java and
CORBA are available on most of the standard machines.
While the Java distributed environment is language spe-
cific, CORBA allows multi-language development. Use
of multiple programming language and integration with
relational databases is, however, possible in Java archi-
tecture JNI and JDBC. The mobile code for the SAs re-



H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval 249

quired platform independent code which is possible with
Java. The Java IDL for CORBA was yet to be made
available when we started the project and public domain
implementation of CORBA was rather slow compared to
Java RMI. Considering all these factors, we chose Java as
our implementation language and RMI as the distributed
computing infrastructure.

We have developed a mobile agent framework over
the Java platform that caters to the specific needs of the
retrieval system. At the minimum, the mobile agents re-
quire an environment that supports portability by hiding
the heterogeneity of the physical nodes and a facility for
agent migration. The Java Virtual Machine Environment
(JVM) provides for platform independent executables
and thereby achieves portability. The agent migration is
implemented as a layer over the JVM using a dynamic
class loader and remote method interface (RMI).

We have implemented the UIA with thin client ar-
chitecture, where a back-end (server) module runs con-
tinuously in the system and provides the various user
and query management functionality. It has a persistent
memory to remember the history of usage of the sys-
tem. The human interface is built through a small client
module. Multiple users can use the same server together.
The server is implemented as a Java application, while
the client is implemented as a Java applet. The applet
is downloaded on a browser on the user’s machine when
a user wants to interact with the system.

9 Conclusions

We have developed an open and extensible architecture
for retrieval where the retrieval logic and the data model
are decomposed into well-defined functional components.
Each of the components implements a standard interface,
and thus, can interact with each other. They are encapsu-
lated into autonomous communicating agents. A collab-
oration of these agents realize the retrieval capability of
the system. The architecture proposes a communication
protocol based on social role models of the agents. The
various communication needs of the agents are encoded
using a generic content language that rides over the proto-
col. An existing retrieval resource can be encapsulated in
an autonomous agent conforming to the communication
protocol and be reused in the system. The component
oriented architecture leads to easy extensibility of the sys-
tem. The use of mobile agents leads to economy in use of
the network infrastructure.

A limitation of the architecture is that the reposi-
tories that do not have a public interface compliant to
the defined protocol cannot participate in the retrieval.
Even with a public interface, the participation of a reposi-
tory depends on the query, the capability of the reposi-
tory and the available public image analysis expertise.
ImAge makes the best effort to make the independent sys-
tem components interwork without a guaranteed success.

Whenever possible, retrieval takes place with optimal re-
source utilization.

Currently, there are not enough standards for the
development of reusable system components to support
a full-scale digital library. Some standardization efforts
for multimedia data representation have been initiated in
the MPEG-7 forum. We propose that some interface defi-
nitions be included in a library that serves as the develop-
ment kit for the system builders and that can be extended
with new inclusions. De facto standards will emerge from
such activity.

Though a prototype system has been developed for
image retrieval, the architecture is quite general and can
be easily extended to other media forms and in general
to multimedia documents by the addition of appropri-
ate knowledge-base and pattern-recognition agents. Mul-
timedia retrieval has some specific advantage for concep-
tual query. The domain knowledge can produce obser-
vation models in alternative media forms, which can be
exploited for retrieval. For example, a railway steam en-
gine may be identified either by its body shape and smoke
cloud or by its characteristic whistle and huff-and-puff.
We plan to incorporate textual and audio SAs into the
system and build thematic agents that can produce obser-
vation models in all these media forms. Another area of
research is the global planning and optimization policies
with multimedia search methods which will result in the
overall performance improvement of the system.

References

1. Recommendation X.680 (07/94): Information technology –
abstract syntax notation one (asn.1): Specification of ba-
sic notation. www.itu.int/itudoc/itut/rec/x/x500up/x680_
27252.html, July 1994

2. Atkins, D.E., Birmingham, W.P., Durfee, E.H., Glover, E.J.,
Mullen, T., Rundensteiner, E.A., Soloway, E., Vidal, J.M.,
Wallace, R., Wellman, M.P.: Towards inquiry-based educa-
tion through interacting software agents. IEEE Comput.
29(5):69–76, 1996

3. Carey, S., Diamond, R.: From piecemeal to configurational
representation of faces. Sci. 195:312–313, 1977

4. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld:
Image segmentation using expectation-maximization and its
application to image querying. IEEE Trans. Pattern Anal.
Mach. Intell., submitted

5. Chang, S.-F., Smith, J.R., Beigi, M., Benitez, A.: Visual infor-
mation retrieval from large distributed on-line repositories.
Comm. ACM, 40(12), 1997. ftp://ftp.ee.columbia.edu/pub/
CTR-Research/advent/public/ papers97/CACMdec97.pdf

6. Chu, W.W., Hsu, C.-C., Cardenas, A.F., Taira, R.K.: Know-
ledge based image retrieval with spatial and temporal con-
structs. IEEE Trans. Knowl. Data Eng. 10(6):872–888, 1998

7. Vries, A.P., de Blanken, H.M.: Database technology and the
management of multimedia data in Mirror. In: Proc. SPIE,
November 1998, pp. 443–455

8. Downing, T.B.: Java RMI: Remote Method Invocation. IDG
Books Worldwide, 1998

9. Drew, M., Wei, J., Li, Z.N.: Illumination invariant color object
recognition via compressed chromaticity histograms of color
channel normalized images. In: Proc. 6th Int. Conf. on Com-
puter Vision, 1998, pp. 533–540



250 H. Ghosh et al.: ImAge: an extensible agent-based architecture for image retrieval

10. Flicker, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q.,
Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele,
D., Yanker, P.: Query by image and video content: The QBIC
system. IEEE Comp. 28(9):23–32, 1995

11. Funt, B., Finalyson, C.: Color constant color indexing. IEEE
Trans. Pattern Anal. Mach. Intell. 17(5):122–129, 1995

12. Griffioen, J., Yavatkar, R., Adams, R.: A framework for de-
veloping content based retrieval systems. In: Maybury, M.T.
(ed.). Intelligent Multimedia Information Retrieval, AAAI
Press, 1997, pp. 295–311

13. Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.:
Image indexing using color correlogram. In: Proc. Computer
Vision and Pattern Recognition, 1997, pp. 762–768

14. Jennings, N.: Controlling co-operative problem solving in in-
dustrial multi-agent systems using joint intentions. Artif. In-
tell. 75:195–240, 1995

15. Manmatha, R., Croft, W.B.: Word spotting: indexing hand-
written manuscripts. In: Maybury, M.T. (ed.). Intelligent Mul-
timedia Information Retrieval, AAAI Press, 1997, pp. 43–64

16. Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems:
Theory and Algorithms. Wiley, 1990

17. Ortega, M., Rul, Y., Chakrabarti, K., Porkaew, K., Mehro-
tra, S., Huang, T.S.: Supporting ranked Boolean similarity
queries in MARS. IEEE Trans. Knowl. Data Eng. 10(6):905–
925, November–December 1998

18. Ozkarahan, E.: Multimedia document retrieval. Inf. Process.
Manage. 31:113–131, 1995

19. Paepcke, A., Cousins, S.B., Garcia-Molina, H., Hassan, S.W.,
Ketchpel, S.P., Roscheisen, M., Winograd, T.: Using dis-
tributed objects for digital library interoperability. IEEE
Comput. 29(5):61–68, 1996

20. Resource description framework (rdf) model and syntax spe-
cification (rec-rdf-syntax-19990222).: www.w3.org/TR/REC-
rdf-syntax/, February 1999

21. Singh, M.P.: Agent communication languages: Rethinking the
principles. IEEE Comput. 31(12):40–47, 1998

22. Swain, M. Ballard, D.: Color indexing. Int. J. Comput. Vision
7(1):11–32, 1991

23. Swapp, D.: Estimation of Visual Textual Gradient using Ga-
bor Function. PhD thesis, University of Aberdeen, Aberdeen,
UK. www.csd.abdn.ac.uk/publications/theses/swapp.html,
1996

24. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogni.
Neurosci. 3(1):71–86, 1991

25. Yoshitaka, A., Kishida, S., Hirakawa, M., Ichikawa, T.: Know-
ledge-assisted content-based retrieval for multimedia data-
bases. IEEE Multimedia 1(4):12–21, 1994

26. Zhang, A., Chang, W., Sheikholeslami, G.: Netview: Integrat-
ing large-scale distributed visual databases. IEEE Multimedia
7(3):47–59, 1998


