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Abstract

This paper addresses the data assignment problem in
multi frame multi object tracking in video sequences.
Traditional methods employing maximum weight bipar-
tite matching offer limited temporal modeling. It has re-
cently been shown [6, 8, 24] that incorporating higher or-
der temporal constraints improves the assignment solution.
Finding maximum weight matching with higher order con-
straints is however NP-hard and the solutions proposed un-
til now have either been greedy [8] or rely on greedy round-
ing of the solution obtained from spectral techniques [15].
We propose a novel algorithm to find the approximate solu-
tion to data assignment problem with higher order temporal
constraints using the method of dual decomposition and the
MPLP message passing algorithm [21]. We compare the
proposed algorithm with an implementation of [8] and [15]
and show that proposed technique provides better solution
with a bound on approximation factor for each inferred so-
lution.

1. Introduction
Popularity of tracking by detection approaches [2] has

led to a renewed interest in the data assignment problem
in computer vision. In tracking by detection, a detection
algorithm is first applied independently to find objects of
interest in all frames. In the second step various detections
across frames are associated with each other. This is typ-
ically done by associating a score with each such assign-
ment, and finding the assignment with a maximum score.
A good score function should capture the plausibility of
an assignment. For example, low scores may be given to
matching pairs which are visually dissimilar or are detected
far from each other. In a crowded scenario such scores fail
to disambiguate the correct assignment from other possible
assignments. In these cases, one requires more complex
scores. For example, scores which consider the velocity
vectors implied by a matching, and constrain those to be
physically valid are recommended for such cases. These
are the scores we focus on in the current paper.

Figure 1: Higher Order Matching (campus sequence [2]).

Whatever the score function, one needs an algorithm for
finding the optimal assignment. If the scores factor as a
sum over individual assignments, then the problem can be
solved via network flow algorithms [4, 25] or as a sum of
bipartite matchings [23] defined over set of every two con-
secutive frames. However, such scores are not sufficiently
descriptive, as they do not enforce more global properties
of valid assignments, such as roughly constant velocity. To
model such velocity constraints, one needs to consider pairs
of assignments (i.e., a score which depends on three frames
simultaneously), and the maximization problem becomes
NP hard. We refer to such assignment problems with con-
straints involving more than 2 frames as higher order as-
signment/matching problems.

Several approximate maximization algorithms have re-
cently been proposed to address NP hardness of higher or-
der assignment problems [6–8, 15]. Leordeanu and Hebert
[15] relax the integrality and matching constraints (a de-
tection in one frame must be assigned to exactly one de-
tection each in previous and next frame). They show that
an optimal solution to the relaxed problem corresponds to
the eigenvector with largest eigenvalue of suitably created
symmetric matrix. Since the solution obtained may not be
feasible, they employ a greedy rounding scheme which iter-
atively removes the conflicting variables to generate a fea-
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sible assignment solution.
Collins [8] proposed a block ICM based technique for as-

signment problems with constraints involving two or more
frames. Unlike [15], his method maintains a feasible solu-
tion at every step, and converges to a local minimum. It is
similar to the iterated conditional modes (ICM) algorithm,
but is applied at each step to a block of variables represent-
ing possible associations between two consecutive frames.
The block-optimal conditional mode at each step is calcu-
lated as the solution to a bipartite matching problem.

Butt and Collins [6] have proposed to solve a series of
independent higher order matching problems over frame
triplets which are then merged into longer trajectories. The
approach does not have the ability to revisit and correct a
trajectory. Their method is designed specifically for frame
triplets. Additionally there is no bound on approximation
factor of the solution available with any of the discussed
approaches [6, 8, 15].

The problem of matching in a arbitrarily long sequence
with constraints involving 3 frames can also be formulated
as 3-matching problem defined over a T -partite graph (T
is the overall number of frames). A nice introduction on
equivalent formulations can be found in [8]. 3-matching has
been a popular problem in algorithmic community where
the problem is shown to be APX-complete, that is, it is hard
to approximate it within some constant factor [3].

Duchi et al. [10] have suggested a method called COM-
POSE for optimizing matching problems with additional
scores on pairs of edges. Their approach works by itera-
tively solving matching and mincut problems. It is in fact an
implementation of the max-product algorithm for this par-
ticular setting. However, applying it to our problem with T
frames would require minimizing cuts over graphs of size
O(T ) which can be costly for large T . The approach we
propose here scales only linearly in T for each update.

Given the above, our goal was to develop better approxi-
mation algorithms for the higher order assignment problem.
It turns out that the dual decomposition (DD) framework
(see below) is a perfect fit for this problem, and provides
several desirable properties. First, it is scalable and each
iteration is linear in the number of frames. Second, it of-
fers both upper and lower bounds on the optimal scores,
which can be used to obtain optimality certificates in some
cases. Third, it can be naturally extended to other higher
order scores involving three or more frames. Finally, it out-
performs all previous methods considered for this task.

The DD approach (see [5] Sec. 6.4 for a general overview
and [14, 21] for applications to inference) is conceptually
simple: it takes a complex score function and breaks it down
into a sum of scores that can be efficiently optimized. These
problems are then modified using messages such that the
sum of the separate maximizations yields an upper bound
on the true max. Finally, the messages are optimized such

that the bound is as tight as possible. Many algorithms for
optimizing the messages exist, and typically involve simple
local updates. Here we use the MPLP approach [21] which
works out nicely for our setup.

Poore [19] and Deb et al. [9] have suggested a La-
grangian relaxation scheme that is related to dual decom-
position [20]. However, their objective is more involved
and the message passing scheme we suggest is considerably
simpler than their algorithm. Recently, Butt and Collins
[7] applied Lagrangian relaxation to an objective similar
to the one we use here. However, the resulting algorithm
is different from ours, since it needs to solve a complete
flow problem in each iteration, and uses subgradient up-
dates which typically converge more slowly than coordinate
descent [e.g., see 16].

The paper is structured as follows: we first present the
higher order assignment problem in Section 2 followed by
a brief review of the DD approach in Section 3. Next,
in Section 4 we show how to apply the DD approach to
our problem, and describe the resulting MPLP algorithm
in Section 5, with its exactness results in Section 6. Fi-
nally, in Section 7 we provide experiments that demonstrate
the utility of our approach. Specifically, we show that the
proposed algorithm outperforms state of the art approaches
[8, 15], yielding higher scoring assignments on various pub-
licly available datasets [1, 2, 11], while also providing upper
and lower bounds on the optimal score.

2. Problem Setup

We begin by formulating the score maximization prob-
lem. Denote the frames by 1, . . . , T . To simplify presen-
tation, we assume that at each frame we have D detections
indexed by 1, . . . , D. To these, we add a dummy detection
at index 0 which handles partial trajectories. The goal is to
find a set of paths from detections in the first frame to those
in the last frame. Each such path corresponds to a single
moving object.

Following [8], we note that a set of trajectories may be
encoded via the union of all edges in the paths. We represent
these paths via a set of boolean variables Xt,i,j ∈ {0, 1}
(with t ∈ {1, . . . , T − 1} and i, j ∈ {0, . . . , D}) where
Xt,i,j = 1 iff there is an edge between detection i in frame
t and detection j in frame t+ 1. See Figure 1.

Since the X variables correspond to a set of disjoint
paths, they must satisfy the constraint that each detection
in frame t is assigned to a single detection in frame t + 1,
and vice versa. This constraint need not hold for the dummy
detection 0, which is meant to absorb partial paths. Thus the
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X should satisfy:

D∑
i=0

Xt,i,j = 1 ∀t ∈ {1, . . . , T − 1}, j ∈ {1, . . . , D}

D∑
j=0

Xt,i,j = 1 ∀t ∈ {1, . . . , T − 1}, i ∈ {1, . . . , D}.

The set of X that satisfy the above constraints will be de-
noted byM.

Next, we wish to construct a score function that maps
each X to a number indicating how likely the proposed as-
signment is.1

The first element in the cost function considers each vari-
able Xt,i,j separately. Assume we have a weight W̄t,i,j that
is high if Xt,i,j is a likely edge. The corresponding contri-
bution to the score function is W̄t,i,jXt,i,j .

Such local score functions are useful, but do not repre-
sent more global properties of the assignment. For exam-
ple, since we know that objects tend to move in straight
lines, it makes sense to give higher scores toX assignments
that correspond to such trajectories, as suggested in [8]. To
evaluate a change in movement direction, three frames are
needed. Thus, we add the element W̄t,i,j,kXt,i,jXt+1,j,k

where W̄t,i,j,k is high if detections i, j, k in frames t, t +
1, t+ 2 approximately lie on a line.

The overall score function is then:

S(X) =
∑
t,i,j

W̄t,i,jXt,i,j +
∑
t,i,j,k

W̄t,i,j,kXt,i,jXt+1,j,k.

(1)
This can be simplified, by absorbing the local scores into
the pairwise ones. Define:

Wt,i,j,k = W̄t,i,j,k +
1

2

[
W̄t,i,j + W̄t+1,j,k

]
. (2)

Since every pairwise score includes exactly one edge from
previous and next layers the two formulations are equiva-
lent. The score can then be rewritten as:

S(X) =
∑
t,i,j,k

Wt,i,j,kXt,i,jXt+1,j,k. (3)

The overall optimization problem is:

max
X∈M

S(X). (4)

As mentioned earlier, the problem is equivalent to what
is better known in the theory community as the 3-matching
problem. Problems of the above form are known to be NP
hard. In fact, the 3-matching problem belongs to the Karp’s
list of 21 NP-complete problems [13]. When W̄t,i,j,k = 0

1We do not construct a probabilistic model here, but it is possible to
do so, as in [25].

and only local costs are considered, then the problem be-
comes easy since it can be separated into T separate bipar-
tite matching constraints. However, introducing the higher
order scores makes the problem considerably more compli-
cated, requiring approximate solution approaches. In what
follows we describe a simple and effective scheme for pair-
wise scores, which can be generalized to other higher order
score functions as well.

3. Dual Decomposition
Dual decomposition (DD) is a powerful method for ap-

proximating discrete optimization problems. We present a
brief review of DD that largely follows [21]. Consider a set
of discrete variables X = X1, . . . , Xn. Assume we have a
set of functions θf (X). The functions typically depend on
only a subset of the variables X (e.g., θf (X) may depend
only on X2, X3). We denote the scope of each θf by Sf
(e.g., Sf = {2, 3} in the previous example). For notational
convenience we write θf (X) instead of θf (XSf

).
We are interested in maximizing the sum of all these

functions, namely we wish to maximize θ(X) defined as:

θ(X) =
∑
f

θf (X). (5)

We denote the above maximum value by θ∗.
DD is meant to address cases where maximizing the

above sum is a hard problem (e.g., NP hard) but maximizing
each θf (X) (or similarly structured functions) individually
is easy. The idea is to construct a bound on the max value
and tighten this bound. Specifically, we define a set of dual
variables δfi(Xi) for each factor f , each variable i ∈ Sf
and each value Xi (e.g., in the example above we have
δf2(X2), δf3(X3)). These dual variables may be thought of
as a message from factor f to variable i, indicating a prior
on the value Xi.

For a given δ we define a new set of factor functions
(often known as reparameterizations):

θδf (X) = θf (X)−
∑
i

δfi(Xi), (6)

and a new set of singleton factor functions:2

θδi (Xi) =
∑
f

δfi(Xi). (7)

Next, define the following dual function L(δ):

L(δ) =
∑
i

max
Xi

θδi (X) +
∑
f

max
X

θδf (X). (8)

It is easy to see that L(δ) upper bounds the θ∗ value for all
values of δ. It is thus sensible to minimize L(δ) w.r.t. δ,
which is precisely what the DD framework proposes.

2Note that in the original θ(X) we did not have singleton factors.
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The function L(δ) may be minimized using a variety of
approaches. One that is particularly simple and effective is
to use block coordinate descent on the δ variables. There
are many schemes for doing this. Here we use the MPLP
algorithm [21] which fixes all messages except those from
a particular f to all variables i. The non-fixed messages are
then updated to the value minimizing L(δ), which can be
done in closed form. The updates are given by:

δfi(Xi) = −δ−fi (Xi)+
1

|f |
max
X\Xi

θf (Xf ) +
∑
i∈f

δ−fi (Xi)

 ,
(9)

where |f | denotes the number of variables in the factor θf ,
and we used δ−fi (Xi) to denote the sum of messages into i
that are not from f . Namely:

δ−fi (Xi) =
∑
f̄ 6=f

δf̄ i(xi). (10)

The update in Eq. (9) is performed simultaneously for all
messages from f to its variables. This is guaranteed to
monotonically decrease the objective L(δ) [21]. Since
L(δ) is not strictly-convex this scheme is not guaranteed
to reach a global optimum [see 5, for discussion of conver-
gence for coordinate descent]. However, this is often not
an issue, and can be rectified via smoothing if needed [16]
(smoothing is also helpful for accelerating sub gradient de-
scent approaches, as proposed in [18] and applied to DD in
[12, 17]).3

Eventually, we are interested in an assignment for X .
This is typically done by taking the arg max of θδi (Xi). Any
such decoded assignmentX provides a natural lower bound
on θ∗, namely θ(X). Thus, if the upper bound L(δ) and the
lower bound coincide, we know we have found the θ∗ value
and maximizing assignment.

4. Dual Decomposition for Higher Order (HO)
Matching

We begin by rewriting Eq. (4) as a sum of relatively sim-
ple functions. Our functions will combine the matching
constraints with the score elements from S(X).

For convenience, we define a function st,i(X) that con-
tains the pairwise scores 4 corresponding to the ith detection
in the tth frame:

st,i(X) =
∑
j,k

Wt−1,j,i,kXt−1,j,iXt,i,k, (11)

so that:
S(X) =

∑
t,i

st,i(X). (12)

3The smoothing approach is easily applicable in our case. We do not
pursue it here since the non-smoothed version already performs well.

4Pairwise score in the formulation refers to the score corresponding to
matching a triplet in three adjacent frames.

Next, define a function θt,i(X) that has a value of −∞
if the ith detection in the tth frame violates the matching
constraint.5 Otherwise θt,i(X) has the value corresponding
to the score S(X) for this detection. Namely:

θt,i(X) =

{
st,i(X)

∑
j Xt−1,j,i = 1,

∑
j Xt,i,j = 1

−∞ Otherwise.
(13)

Finally, define:

θ(X) =
∑
t,i

θt,i(X) (14)

Then it’s easy to see that Eq. (4) is equivalent to:

max
X

θ(X). (15)

We have thus turned Eq. (4) into a maximization of a sum
of functions, as in the DD objective of Eq. (5), where f in
Eq. (5) corresponds to a pair of indices (t, i) in Eq. (14). We
next show how DD and the MPLP algorithm can be applied
to this decomposition.

5. MPLP for Higher Order (HO) Matching

Figure 2: Factor for MPLP based HO Matching

To write the DD objective for Eq. (14), we introduce
dual variables for messages between each factor (t, i) and
the variables that participate in this factor. Recall that the
factor (t, i) depends on the variables Xt,i,j (i.e, matchings
between frame t and t+1) andXt−1,j,i (i.e., matchings be-
tween frame t − 1 and frame t). To reduce notational clut-
ter we denote the message between factor (t, i) and Xt,i,j

by δt,i↑j(Xt,i,j) and the message between factor (t, i) and
Xt−1,j,i by δt,i↓j(Xt−1,j,i) (see figure 2).

Now define the reparameterized functions (see Eq. (6)
and Eq. (7)):

θδt,i(X) = θt,i(X)−
∑
j

δt,i↑j(Xt,i,j)−
∑
j

δt,i↓j(Xt−1,j,i),

(16)
5The ith detection in tth frame must be matched with exactly 1 de-

tection in (t− 1)th and (t+ 1)th frames.
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and:

θδt,i,j(Xt,i,j) = δt,i↑j(Xt,i,j) + δt+1,j↓i(Xt,i,j). (17)

The dual L(δ) is therefore:

θ(X) =
∑
t,i

max
X

θδt,i(X) +
∑
t,i,j

max
Xt,i,j

θδt,i,j(Xt,i,j). (18)

We now turn to the MPLP updates in Eq. (9). The
max operation in these updates involves all variables in θt,i,
namely 2D variables (assuming D matching pairs in each
two consecutive frames). The cost of maximizing over all
their assignments thus seems exponential at first. However,
we note that θt,i is non-infinite only forO(D2) assignments
satisfying the matching constraints, making the MPLP up-
dates tractable. We first defineW ′t,k,i,j to be the value inside
the brackets of Eq. (9) for the case Xt−1,k,i = Xt,i,j = 1,
and all other variables of type Xt−1,·,i and Xt,i,· as zero.6

This turns out to be:

W ′t,k,i,j = Wt−1,k,i,j − δt+1,j↓i(1)− δt−1,k↑i(1)

−
∑
k′ 6=k

δt−1,k′↑i(0)−
∑
j′ 6=j

δt+1,j′↓i(0) (19)

Next, we note that the argmax in the MPLP update must
correspond to such a case (namely that exactly two variables
are 1). Thus we conclude:

δt,i↑j(1) = −δt+1,j↓i(1) +
1

2D
max
k

W ′t,k,i,j

δt,i↑j(0) = −δt+1,j↓i(0) +
1

2D
max
k,j′ 6=j

W ′t,k,i,j′ (20)

Similarly:

δt,i↓j(1) = −δt−1,j↑i(1) +
1

2D
max
k

W ′t,j,i,k

δt,i↓j(0) = −δt−1,j↑i(0) +
1

2D
max
k,j′ 6=j

W ′t,j′,i,k (21)

The above MPLP updates monotonically decrease L(δ),
providing an upper bound on the MAP. To obtain an assign-
ment from δ we consider the singleton scores θδt,i,j(Xt,i,j)
and return a matching that maximizes these. Namely, we
solve:7

arg max
X∈M

∑
t,i,j

θδt,i,j(Xt,i,j) (22)

This can be solved efficiently by solving a maximum
weight bipartite matching independently for each consec-
utive frames t and t + 1. The overall algorithm is provided
in Algorithm 1.

6This corresponds to a matching between k and i in frames t − 1, t
respectively, and between i and j in the frames t, t+ 1 respectively.

7Note that the simple MPLP decoding scheme will not add the con-
straint X ∈ M. However, maximizing explicitly overM as in Eq. (22)
makes sense, since the optimal X is constrained to be inM.

6. Exactness for Local Scores
As with any approximation scheme, it is interesting to

ask when our method will provide an exact answer. In what
follows, we show that when the scores are only local, our
method is exact. In other words, we consider the case that
W̄t,i,j,k = 0 (see Section 2 for notation). As mentioned
earlier, in this case, the maximization of S(X) simply turns
into T separate bipartite matching problems and can there-
fore be solved efficiently. However, it is not immediately
clear that our DD scheme returns an exact solution in this
setting. We show this below.

Recall that in the above case we have that Wt,i,j,k is
given by (ignoring the 0.5 factor):

Wt,i,j,k = W̄t,i,j + W̄t+1,j,k (23)

We next simplify the DD objective in Eq. (18) for this
parameter setting. The maximization maxX θ

δ
t,i(X) here

is particularly simple since it breaks down into two sepa-
rate maximizations (for the previous and next frames). So
maxX θ

δ
t,i(X) turns out to be:

max
j

[
W̄t−1,j,i − δt,i↓j(1) + δt,i↓j(0)

]
−
∑
j

δt,i↓j(0) +

max
j

[
W̄t,i,j − δt,i↑j(1) + δt,i↑j(0)

]
−
∑
j

δt,i↑j(0)

Given this simplified form, we can now take the dual
of the minimization in Eq. (18). To obtain a dual, we first
turn the minimization into a constrained problem by adding
variables ξt,i↑, ξt,i↓ and constraints:

ξt,i↓ ≥ W̄t−1,j,i − δt,i↓j(1) + δt,i↓j(0) ∀j
ξt,i↑ ≥ W̄t,i,j − δt,i↑j(1) + δt,i↑j(0) ∀j
ξt,i,j ≥ δt,i↑j(Xt,i,j) + δt+1,j↓i(Xt,i,j) ∀Xt,i,j

The DD objective is then to minimize:∑
t,i

[ξt,i↓ + ξt,i↑]−
∑
t,i,j

δt,i↑j(0)−
∑
t,i,j

δt,i↓j(0) +
∑
t,i,j

ξt,i,j

(24)
subject to the constraints above. We now take the dual of
this LP. Introduce dual variables µt,i↓j , µt,i↑j , µt,i,j for the
three sets of constraints above.8 In deriving the dual we
actually obtain that µt,i↑j = µt+1,j↓i = µt,i,j , namely only
the µt,i,j variables are needed. The dual then simplifies to
(up to factor 2):

max
∑
t,i,j W̄t,i,jµt,i,j

s.t.
∑
j µt,i,j = 1 ,

∑
j µt,j,i = 1, µ ≥ 0

(25)

8For the third constraint there are actually variables µt,i,j(0) and
µt,i,j(1), but the first can be eliminated, so we denote the latter simply
by µt,i,j .
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Algorithm 1 HO Matching Algorithm
Input: Weights Wt,i,j,k specifying the score for matching detections i, j, k in frames t− 1, t, t+ 1.
Output: A set of binary variables Xt,i,j specifying a valid matching.
Initialize: For all t, i, j,Xt,i,j initialize δt,i↑j(Xt,i,j) = 0 and δt+1,j↓i(Xt,i,j) = 0.

1: while Change in dual is not small enough do
2: for All factors t, i in a random order do
3: Calculate W ′t,k,i,j as in Eq. (19) for all k, j.
4: Update messages δt,i↑j(0), δt,i↑j(1) and δt,i↓j(0), δt,i↓j(1) for all j as in Eq. (20) and Eq. (21).
5: end for
6: end while
7: Return the matching X that solves Eq. (22).

First, note that the above LP can be solved separately for
each t (since there is no interaction between different t).
Second, the LP for each t is in fact precisely the LP for-
mulation of bipartite matchings, which is known to have an
integral solution, and return the maximum bipartite match-
ing (e.g., see Section 2.3 in [22]). Thus we conclude the
minimum of the DD objective has the value of the optimal
matching. Furthermore, it can be shown (see [21] section
1.7.2) that if MPLP converges to this value and the optimal
matching is unique, then our decoding procedure Eq. (22)
will find this optimal matching.

Finally, we emphasize that our procedure will in prac-
tice return the exact matchings in many other cases, where
higher order factors are not zero. In the following empirical
results we indeed observe several such cases.

7. Experiments

We next compare the proposed algorithm with self de-
veloped implementations of block ICM [8] and Spectral
[15]. Since Spectral requires eigenvalue decomposition and
scales quadratically with T as opposed to our method and
block ICM, we evaluate it only on the short toy problem se-
quences. In contrast block ICM as well as our proposed ap-
proach scales well over long sequences which is the subject
of our second experiment. It may be noted that there could
have been algorithms other than MPLP based approach used
for solving the proposed problem formulation in this paper.
We have also tried subgradient descent, and found that it
was substantially slower than our approach, and depended
heavily on initial step size. Accelerated subgradient descent
(for the smoothed objective) [12, 18] is likely to outperform
standard subgradient. However, empirical results in [16]
show that coordinate descent outperforms accelerated gra-
dient (although this is of course problem dependent). The
comparison with subgradient based approach is therefore
not included in our experiments.

Our first evaluation is on simple problems, constituting
the first 3 frames of the publicly available datasets TUD
[2], ETH [11] and PSU [1]. Table 1 shows the compara-

tive results. The local scores have been calculated based
upon the Euclidean distance between the detections. The
pairwise scores are set as the distance between the detec-
tion in the middle frame and the centroid of detections in
the first and third frames of the frame triplet (constant ve-
locity assumption). This is one instance of higher order
scores, and other scores utilizing appearance based cues
could have been used. However, the purpose of experi-
ments is to study the inference capabilities of the various
algorithms with higher order matching constraints when the
appearance based cues are ambiguous. Indicatory scores
consonant with the objective have been used accordingly
without compromising the generality of the algorithmic ap-
proach. Accordingly the quality of solution is measured in
terms of primal value obtained which better indicates the
inference capability of the compared algorithms instead of
more standard mismatch error percentage which may be af-
fected by tuning chosen/given weights.

The result of experiments on the toy problem is shown in
Table 1. Both block ICM and the proposed MPLP perform
much better than the spectral technique. Furthermore, in
5/9 cases, MPLP finds a provably optimal solution (since
the upper and lower bounds coincide).

Our second set of experiments focused on large problem
sets containing complete sequences from various sources.
Table 2 lists the results. Due to our experience in the toy
problem and the scalability issues with Spectral approach
we compare only to the block ICM approach. The local and
pairwise scores have been set similarly as in toy problem
case. Except for a short sequence (ETH Seq 2) MPLP out-
performs block ICM approach on all tested datasets. One
possible explanation for the results could be that the tech-
nique in [8] iterates through hard assignments as opposed
to the message passing style of our method. It is thus more
likely to get stuck in local minima than ours when the se-
quence is longer or the triplet weight is higher which is
consistent with the observations in Table 1 and 2. Addi-
tionally MPLP is able to certify optimality in certain PSU
sequences.

Figure 3 gives a visual comparison between MPLP and
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Sequence MPLP Primal MPLP Dual Block ICM Primal Spectral Primal
TUD Campus 22505.59 23268.42 22505.59 17226.44
TUD Crossing 20325.02 20325.02 20325.02 6839.90

ETH Seq 1 7036.49 9558.66 6413.70 9513.79
ETH Seq 2 16031.69 23901.19 17011.80 10833.55
ETH Seq 3 25913.67 25913.67 25913.67 13605.31
ETH Seq 4 17730.87 17730.87 17730.87 14035.53
PSU Seq 1 13373.29 13373.29 13373.29 10051.84
PSU Seq 2 47747.79 47747.79 47747.79 35253.92
PSU Seq 3 36481.29 46298.73 25535.66 19679.38

Table 1: Comparison on first 3 frames of various sequences

Sequence Num frames MPLP Primal MPLP Dual Block ICM Primal
TUD Campus 71 915728.84 921786.11 907632.37
TUD Crossing 201 3213609.80 3390158.46 3203062.07
ETH Seq 01 56 490044.79 637833.04 472306.89
ETH Seq 02 9 130782.85 197381.71 148222.87
ETH Seq 03 999 33281471.13 34741881.37 33228228.12
ETH Seq 04 446 6884950.87 7024285.86 6880832.90
PSU Seq 01 61 708549.75 708549.75 708549.75
PSU Seq 02 121 5863545.86 5865261.80 5859410.28
PSU Seq 03 21 621002.00 678703.03 596113.92

Table 2: MPLP and Block ICM comparison on complete sequences

(a) MPLP

(b) Ground Truth

(c) Block ICM

Figure 3: Tracking comparison on PSU Sequence 2

block ICM on a PSU sequence. All trajectories are color-
coded with the matched detections appearing in same color.
The assignment differences between MPLP and block ICM
have been marked with white rectangles. MPLP performs
better than block ICM in the presence of strong matching
ambiguities arising due to multiple close detections.

Figure 4: Change in primal and dual during MPLP itera-
tions on PSU Seq 3

Figure 4 shows an instance of the upper and lower
bounds reported by MPLP. We show primal and dual val-
ues after different outer iterations (an outer iteration pro-
cesses each factor exactly once) of MPLP on a test dataset
(PSU Seq 3). As the iterations proceed, the quality/score of
primal solutions keep increasing while the upper bound on
the optimal primal given by the value of dual keeps tight-
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ening. The approximation factor improves in both the cases
with the number of iterations. In this problem instance, the
bounds do not meet and we cannot conclude that the solu-
tion is optimal. However, in many cases (e.g., Table 1) the
bounds do coincide and we obtain a certificate of optimality.

8. Conclusion
We presented an approach for optimizing higher order

assignment problems that arise in the context of tracking by
detection. Our approach relies on the dual decomposition
framework which breaks the difficult assignment problem
into simpler tractable tasks. We showed the inference ca-
pability of the algorithm in the presence of pairwise match-
ing scores arising from detections in 3 consecutive frames.
Such scores can successfully capture the constant velocity
assumption which is a useful assignment cue in crowded
scene when local scores are ambiguous. The strength of the
algorithm is its simplicity. The algorithm is efficient and
can scale well to long sequences. Our empirical results in-
dicate that the proposed algorithm outperforms the state of
the art compared with two recently introduced baselines.9

The DD message passing framework is very general, and
thus we expect it will be effective for other higher order
factors that are introduced into the tracking problem. For
example, one may consider the problems with constraints
involving 4 or more frames. Such constraints can encode,
for example, acceleration (improving over constant velocity
assumption in this paper) or statistical similarity between
detections.

Finally, the structure of the algorithm is natural for pro-
viding results in an online manner. As new frames arrive,
we can perform a small number of message passes for the
most recent frames, to obtain upper and lower bounds for
the overall sequence.
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