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Generalized Flows for Optimal Inference in
Higher Order MRF-MAP
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Abstract—Use of higher order clique potentials in MRF-MAP problems has been limited primarily because of the inefficiencies
of the existing algorithmic schemes. We propose a new combinatorial algorithm for computing optimal solutions to 2 label MRF-
MAP problems with higher order clique potentials. The algorithm runs in time O(2kn3) in the worst case (k is size of clique and
n is the number of pixels). A special gadget is introduced to model flows in a higher order clique and a technique for building a
flow graph is specified. Based on the primal dual structure of the optimization problem, the notions of the capacity of an edge
and a cut are generalized to define a flow problem. We show that in this flow graph, when the clique potentials are submodular,
the max flow is equal to the min cut, which also is the optimal solution to the problem. We show experimentally that our algorithm
provides significantly better solutions in practice and is hundreds of times faster than solution schemes like Dual Decomposition
[1], TRWS [2] and Reduction [3], [4], [5]. The framework represents a significant advance in handling higher order problems
making optimal inference practical for medium sized cliques.

Index Terms—Markov Random Field (MRF), Maximum a posteriori (MAP), Higher Order Cliques, Optimal Inference
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1 INTRODUCTION

MANY problems in computer vision, statistical
mechanics, natural language processing, pro-

tein chain placements etc. can be formulated as com-
putation of minimum energy configurations. Histori-
cally, the first formulation of the energy minimization
in the context of labeling problems in computer vi-
sion is due to Geman and Geman [6]. Assuming the
labeling to be a Markov Random Field (MRF), finding
a labeling configuration with Maximum a Posteriori
Probability (MAP) can be formulated as:

E(lP) = min
lP

∑
p∈P

Dp(lp) +
∑
c∈C

Wc(lc)

 , (1)

where lp denotes the label at pixel p. A clique, defined
as the set of pixels whose labels are contextually
dependent on each other, is denoted as c. lc denotes
a labeling configuration on clique c. C denotes the
set of all cliques c. The first term, Dp(lp), also called
the data energy or the data term, measures the cost of
assigning label lp to p. The term measures how good
is the labeling with respect to the observed data. The
second term, Wc(lc), called the prior energy, measures
the cost of the labeling configuration lc of a clique
c depending on how consistent the labeling is with
respect to the prior knowledge. The penalty function,
Wc(·), is also called the clique potential function. The
formulation as described in Eq. 1 is often referred to
as MRF-MAP.

Over the last two decades computer vision re-
searchers have focused on both MRF-MAP based
modeling and algorithms for optimizing the resultant
energy functions. Vision problems that have been

formulated in the MRF-MAP framework have ranged
from image restoration [6], segmentation of images
[7], super resolution [8], stereo matching [9] to ob-
ject detection [10]. Research in algorithmic techniques
has been influenced largely by the observation that
while the general MRF-MAP optimization problem is
NP-Hard, for 2-label 2-clique submodular potentials,
the optimization problems have strongly polynomial
time optimal algorithms [11]. This has initiated a
new research area in which the focus has been to
extend the class of energy functions for which either
there are efficient optimal solutions or there are sub-
optimal solutions with well defined approximation
guarantees. Submodular potentials are of particular
interest because while real life problems involve non-
submodular potentials, combinatorial techniques for
handling non-submodularity so far have involved
making some form of submodular approximation.

Our focus in this paper is on MRF-MAP labeling
problems with 2-label and cliques of size more than
2. There have been essentially two lines of approach
to deal with such problems.

• Message Passing or Decomposition Approaches:
These techniques combine ideas from gradient
based optimization [12], [13], belief propagation
[14] or primal-dual based methodology of dual
decomposition [15], [12], [16]. While convergence
can in some cases be guaranteed for algorithms
based on these ideas, it is only in the limit (if
the algorithm is run for arbitrarily long time until
convergence) and is not necessarily to the optimal
solution.

• Reduction Based Approaches: These algorithms
reduce the original problem to a sequence of 2-
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label 2-clique problems which are solved in an
iterative manner by direct combinatorial algo-
rithms. Reduction to 2-clique was first proposed
by Kolmogorov and Zabih [17]. Since then the
idea has attracted considerable attention [3], [4],
[5], [18], [19], [20], [21]. Since reductions do not
in general preserve submodularity, use of QPBO
algorithm [22] has been advocated to provide a
submodular approximation to the reduced prob-
lem.

The main problems with the reduction and decom-
position based approaches are:

• Performance: Reduction based algorithms are in-
efficient because of the exponential number of
terms that are added and the additional conver-
sion time required to transform from the cost per
labeling format to the polynomial form required
for reduction. In decomposition based algorithms
the cost of calculating messages increases expo-
nentially with clique size and there is no fast
definitive convergence towards agreement be-
tween the solutions of the decomposed problems.

• Quality: Reduction approaches may leave some
or all nodes unlabeled depending upon prob-
lem specification. In the decomposition based
approaches, even if the decomposed problems are
solved optimally, the problem of how to combine
the solutions to solve the original primal is not
trivial.

• Approximation Factor: Neither reduction nor de-
composition based approaches guarantee any
bound on the approximation factor in a fixed
number of steps. This is true even when the
potential function is submodular for which algo-
rithms for finding optimal solutions are known.

There have been several attempts to address the
above drawbacks. Rother et al. [18] exploit sparsity of
preferred labelings by creating submodular deviation
functions for which, in some situations, the reduc-
tion algorithm creates compact but non-submodular
quadratic forms. Trying to come up with novel reduc-
tion techniques which reduce the additional auxiliary
variables introduced is another line of research that
is being followed [4], [20]. There have also been
attempts to generalize techniques like roof duality for
submodular relaxations to higher order terms [5], [23].
While for cubic potentials generalized roof duality
approximations can be obtained by solving a series
of LP problems [5], for quartic potentials this gets
limited to using only a subset of quartic submodular
functions as not all submodular quartic polynomials
can be reduced to an equivalent quadratic form.

The work reported here has been influenced by
the realization that it has been known for a decade
that submodular set functions can be minimized in
strongly polynomial time [24], [25] and that MRF-
MAP energy function minimization problem, when

clique potentials are submodular, is essentially mini-
mizing a sum of a set of submodular functions. How-
ever, the most efficient algorithm for minimizing a
submodular function has O(n6) time complexity [24].
This makes direct use of these algorithms impractical
for computer vision problems where n, which repre-
sents the number of pixels, can easily reach millions.
Kolmogorov [26] has reported a scaling based scheme
for minimizing sum of submodular functions using
[27]. The algorithm is essentially of only theoretical
interest as implementation overheads are very high.
Development of efficient practical polynomial time
algorithms for solving energy minimization problems
involving higher order cliques with submodular po-
tentials therefore is an important open problem. The
problem is also important because, as mentioned
earlier, non-submodular function energy optimization
problems are solved by computing submodular ap-
proximations.

We report here an optimal algorithm for 2-label
multi-clique energy minimization problems with sub-
modular potentials which runs in O(n|C|2k32k) steps,
where n is the number of pixels, |C| is the number
of cliques and k is the size of the maximal clique.
As in the 2-clique version of the problem in which
the energy minimization (the primal problem) can be
viewed as a min cut and the dual as a max flow prob-
lem, we show that these concepts can be extended to
higher order cliques (k > 2) also. The dual framework
has resulted in a novel flow problem in which both the
capacity of an edge and the cost of a cut have new but
natural generalizations. We show that the proposed
gadget based flow graph solves a relaxed form of
the submodular higher-order MAP-MRF problem, in
which flow augmentation is used to iteratively tighten
the relaxation and guarantee that the optimal solution
can be obtained in polynomial time. We call our
algorithm Generic Cuts (GC). Compared to the Dual
Decomposition based algorithms [15], and TRWS [2],
GC is hundreds of times faster. Also, like the max flow
based graph cut optimizer for second order potentials,
the optimal solution provided by our algorithm is
integral which LP based algorithms like [12] do not
guarantee.

An earlier version of the work has appeared in
[28]. The current paper contains a more compre-
hensive treatment with additional experiments and
comparison with newer methods like [4], [5] that have
appeared since then.

The organization of the paper is as follows. In
Section 2 and 3 we develop the basic primal dual
framework and the gadget which is used to model
a clique in the flow graph. Section 4 and 5 describe
important theoretical properties of the framework. In
Section 6 we give the formal algorithm along with
its complexity and convergence guarantees. Section
7 contains the experiments conducted for comparing
the performance of our algorithm with the current
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state of the art. We conclude the paper with indica-
tions of future directions in Section 8.

2 PRIMAL DUAL SCHEMA AND FLOW IN-
TERPRETATION OF THE DUAL

The LP formulation for MRF-MAP labeling problem
given below follows [29], [30]. Any pixel can take a
label l from the set L = {a, b} of possible labels. lc,p,l is
a labeling configuration on clique c in which the label
of pixel p is l. Note that there can be many such la-
belings (corresponding to the same clique or the other
cliques containing p), and the set of all such labelings
is denoted as {lc}p,l. We introduce binary variables
X l

p for all combinations of pixels and labels. X l
p takes

value 1 whenever pixel p is assigned label l and is 0
otherwise. Similarly, binary variables Y lc

c take value 1
whenever clique c is assigned labeling configuration
lc and is 0 otherwise. Let Wc : Lk → R be the clique
potential function giving the penalty of labeling pixels
of clique c by lc. The MRF-MAP equation (1) can be
equivalently written as the following integer program:

min
Xl

p,Y
lc
c

∑
p∈P

∑
l∈L

Dp(l)X
l
p +

∑
c∈C

∑
lc∈Lk

Wc(lc)Y
lc
c (2)

subject to ∑
l∈L

X l
p = 1, p ∈ P, (3)

∑
z∈{lc}p,l

Y z
c = X l

p, p ∈ P, l ∈ L, (4)

X l
p ∈ {0, 1} , Y lc

c ∈ {0, 1}. (5)

Equation (3) ensures that each pixel is assigned ex-
actly one label, and (4) enforces consistency between
pixel and clique labelings. Replacing (5) by (6) we get
a relaxed LP formulation of the optimization problem.

X l
p ≥ 0 , Y lc

c ≥ 0. (6)

The Lagrangian dual of the relaxed LP can be written
as:

max
U

∑
p∈P

Up (7)

subject to

Up ≤ hlp, p ∈ P, l ∈ L, (8)

where
hlp = Dp(l) +

∑
c:p∈c

Vc,p,l, (9)

and ∑
p∈c

Vc,p,lpc ≤Wc(lc), c ∈ C, lc ∈ Lk, (10)

where lpc denote the label of pixel p in labeling lc. Note
that lpc ∈ L. Complimentary slackness conditions can
be written as

X l
p > 0 ⇒ Up = hlp, (11)

and

Y lc
c > 0 ⇒

∑
p∈c

Vc,p,lpc =Wc(lc). (12)

We assume that the cost of assigning uniform labeling
(all a’s or all b’s) to a clique is zero. The constraints
to model this are∑

p∈c
Vc,p,l = 0, c ∈ C, l ∈ L. (13)

This assumption is not restrictive as we show later
that when costs are submodular, uniform label-
ing costs in a clique can be normalized through
reparametrization to an equivalent state where they
are zero.

Primal and dual solutions are called feasible if they
satisfy equations (3,4,6) and (8,10) respectively. A pri-
mal solution is called integral if it satisfies equation (5)
as well. The primal dual framework guarantees that
any feasible primal and dual solution which satisfies
all complimentary slackness conditions (11,12,13) is
optimal. In what follows we propose a framework for
higher order clique MRF-MAP problems which main-
tains, at all stages, feasible primal and dual solutions.
When clique potential functions are submodular, we
show that at termination all complimentary slackness
conditions are satisfied thereby guaranteeing the op-
timality of the solution. The algorithm maintains an
integral primal at all stages ensuring that the solution
is optimal for the original integer program version of
the primal.

The primal-dual framework developed here is very
similar to the one introduced by Komodakis and
Tziritas [31]. We use their model of balls and wells
to motivate flow interpretation of the dual. Let us
assume a well corresponding to every pixel in which
balls representing labels a and b float. The ball a in
the well corresponding to pixel p (or simply well p)
is represented by pa and it floats at height hap in the
well. Since the dual is a maximization problem and
Up has to be less than both hap and hbp (see equation
(8)), it can be set equal to the height of the lower
of the two balls in the well. If Up is equal to, say,
hap in the well corresponding to p, then setting the
primal variable Xa

p to 1 (i.e. pixel p is assigned label
a) keeps all complementary slackness conditions of
type (11) satisfied. We call the ball a as active in the
well p in such a scenario. In other words any dual
optimization strategy which chooses the lower ball
as active keeps equations (8) and (11) satisfied. Any
change in the value of variable Vc,p,a impacts the
height of the ball a in the well p and may change the
ball with minimum height, thereby forcing a change
in Up (equal to the height of minimum ball). The
above strategy of increasing the value of variables
U essentially ensures that variables V can be treated
as the only free variables in the dual optimization
problem.
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Consider a clique c1 in which the labeling asso-
ciated with its pixels satisfies the uniform labeling
constraint given in equation (13). Let p and q be two
wells in c1. Consider the operation on dual variables
in which the ball pa decreases its height by reducing
the variable Vc1,p,a by δ without affecting the relative
ordering of the balls in the well p (i.e. lower ball stays
lower than the higher ball). To continue satisfying
the constraint given in equation (13) requires increase
in the value(s) of other V variables associated with
clique c1. One possibility is to increase the variable
Vc1,q,a corresponding to qa by the same amount. In
effect the height of pa decreases and that of qa in-
creases. We may view this change in heights of pa

and qa as a consequence of sending δ flow from pa

to qa in clique c1. Note that while decreasing the
value of variable Vc1,p,a fixes the well of flow origin in
clique c1, the destination well could have been any of
the other wells in clique c1. Consider another clique
c2 containing wells q and r. If we further decrease
the variable Vc2,q,a and increase Vc2,r,a by δ, then the
combined effect will be that qa remains at the same
height while the height of pa decreases by δ and that
of ra increases by δ. We can view this operation as a
flow corresponding to ball a of amount δ originating
at well p and ending at well r along a path consisting
of “edges” in cliques c1 and c2 passing through well
q.

The dual objective function requires maximization
of the sum of Up over all pixels. The above discussion
suggests that this would involve raising the heights
of active balls in the wells. This can be achieved by
sending flow to an active ball (in the destination well)
from a non active ball (in the source well) with the
same label. The non active ball in the source well
comes down by an amount equal to the flow sent
and the active ball in the destination well increases its
height by the same amount. All other balls on the path
from the source to the destination well maintain their
height. How much flow can be sent is a function of the
relative heights of the balls in the source and destina-
tion wells in question, and the constraints defined by
equation (10) containing V variables associated with
edges on the flow path. In the destination well, the
active ball should not float at a height higher than
the non active ball (of the same well) when the flow
is sent. Whereas in the source well, the height of the
non active ball should not become less than that of
the active ball (of the same well). This ensures that
the active ball configuration remains feasible. Changes
in the value of V variables associated with the edges
along the path should ensure that no constraint given
by equation (10) becomes infeasible.

Note that the algorithmic move in terms of flow
pushing is constrained by both primal and dual opti-
mization problems. Flow impacts the dual, and what
balls are active at any time is controlled by the primal.
Since this flow move can be between any two a balls

or b balls it would seem that the equivalent flow graph
should allow for both types of flows. We show in
the next section that when potentials are submodular
then the equivalent flow graph on which the max flow
problem has to be solved needs to cater for flows in
between balls of only one label. This simplifies the
optimization problem significantly.

3 FLOW GRAPH CONSTRUCTION

The primary problem in generalizing the flow graph
construction used to solve a 2-label 2-clique problem
to a 2-label multi-clique case lies in modeling of flow
edges along which flow would take place between
pairs of wells in a clique. Introducing explicit flow
edges between all pairs of vertices in a clique is prob-
lematic because there is no one to one correspondence
between the V variables associated with a pixel and
such edges in a clique. We solve this problem by
modeling a clique by a gadget whose construction we
now describe.

3.1 Gadget
We model the flow carrying edges in a clique of size
k by a gadget consisting of k + 2 nodes1. The gadget
consists of k pixel nodes p, q, . . . , r corresponding to
the k pixels, and two auxiliary nodes n and m. We
introduce directed edges called conjugate edges from,
i) the node n to all pixel nodes, ii) from all pixel
nodes to the node m. We also introduce a directed
edge m → n from the node m to the node n. The
gadget corresponding to a clique of size 4 is shown
in Figure 1. Flow from pixel p to pixel q in the 4
clique is routed along the path p → m → n → q
in the gadget (see Figure 1). The cliques, in general,
can be overlapping with a node belonging to many
cliques. Correspondingly a pixel node can participate
in multiple gadgets. Figure 2 shows a gadget based
flow graph corresponding to three 4 cliques. The flow
path from p to r (see Figure 2 ) is an example of
routing through multiple gadgets.

p

m

n

q r

Fig. 1. A gadget for 4-clique

3.2 Conjugate Edges, Dual Feasibility
Constraints (DFCs) and Terminal Edges
We assume that the flow graph models the movement
of ball a and that all dual variables Vc,p,b are initially

1Since there is one to one correspondence between a clique and
the gadget of the flow graph, we use these terms interchangeably
in the following discussion
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p q r

𝒎𝟏 𝒎𝟐 𝒎𝟑

𝒏𝟏 𝒏𝟐 𝒏𝟑

Fig. 2. Flow graph corresponding to three overlapping
4 cliques and a flow path in it

set to zero and remain so throughout the running of
the algorithm2. Therefore, (10) simplifies to∑

p∈c:lpc=a

Vc,p,a ≤Wc(lc), c ∈ C, lc ∈ Lk. (14)

Flow in the two conjugate edges, incident at and
emanating from a pixel node p in the gadget cor-
responding to clique c, is denoted by fcnp and fcpm
respectively. The effect of flow in the edge n → p
(p→ m) can be looked upon as increasing (decreasing)
the height of the ball a in well p by amount fcnp (fcpm).
The relationship between the dual variable Vc,p,a and
the flow in the conjugate edges associated with node
p is, therefore, defined by

Vc,p,a = fcnp − fcpm. (15)

Equation (15) implies that in the corresponding flow
graph the constraints defined by (14) take the form∑
p∈c:lpc=a

(fcnp−fcpm) ≤Wc(lc), c ∈ C, lc ∈ Lk. (16)

If we look upon fcnp − fcpm as the effective flow in
a pair of conjugate edges, then an inequality of the
form (16) essentially implies that for a labeling lc, the
sum of effective flows in the collection of conjugate
edges corresponding to pixels labeled a in a clique c
in the flow graph can not exceed Wc(lc). We refer to
a constraint of type (16) corresponding to a labeling
lc on clique c as a dual feasibility constraint (or simply
DFC). Wc(lc) is also referred to as the cost of the DFC.
The pixels of c which are assigned label a in lc, the
conjugate edges, and the V variables corresponding
to these pixels are said to be participating in the DFC.
Conversely, a DFC is said to cover or contain all nodes,
edges, and V variables participating in it. The quantity

Wc(lc)−
∑

p∈c:lpc=a

(fcnp − fcpm) (17)

is referred to as the slack in the DFC.
For example, consider a 3-clique containing nodes

p, q and r. There will be 8 DFCs corresponding to
the 8 labeling configurations on the clique. The DFC
corresponding to labeling {a, a, b} covers pixels p, q
and their conjugate edges. The DFC corresponding to

2We show later that this has no effect on optimization problem
if the potentials are submodular

labeling {a, b, a} covers pixels p, r and their conjugate
edges.

A DFC is said to be violated or become infeasible if
its slack becomes negative. A DFC with slack of 0 is
referred to as tight. All conjugate edges covered by a
tight DFC are referred to as tight under/in that DFC or
simply tight or saturated edges.

The slack of a DFC can be interpreted as the extent
to which any pair of conjugate edges participating in it
can have flow increased without violating it. In effect,
the flow can be increased in a pair of conjugate edges
as long as the DFCs covering them are not violated,
i.e., it cannot exceed the minimum of the slacks of
all the DFCs covering that pair of conjugate edges.
This minimum value for a pair of conjugate edges can
be considered as its capacity. We define the residual
capacity in a pair of conjugate edges to be equal to
the minimum of the slacks of all DFCs in which it
participates, excluding those corresponding to uni-
form labeling. The DFCs corresponding to uniform
labeling are excluded because the flow conservation
constraints imply that for a clique c∑
p∈c

fcpm =
∑
p∈c

fcnp ⇒
∑
p∈c

fcnp−
∑
p∈c

fcpm =
∑
p∈c

Vc,p,a = 0,

(18)
In effect the slack in a DFC corresponding to uni-
form labeling is always 0. At the same time any
flow pushing through the gadget never violates the
DFC corresponding to uniform labeling. Hence, the
uniform labeling constraints can be skipped in the
residual capacity calculations.

The flow graph for the dual optimization problem
is created as follows: The set of nodes consists of two
distinguished nodes source (s) and sink (t), a pixel
node corresponding to each pixel, and two auxiliary
nodes for each clique. The pixels and the auxiliary
nodes corresponding to a clique are connected by the
gadget edges. Other than these there are edges from
the node s to a pixel node and from a pixel node to
the node t. We refer to the nodes s and t as terminal
nodes, and the edges between the terminal nodes and
the pixel nodes as terminal edges. The capacity of the
terminal edges depends upon whether the flow graph
models ball a’s flow or ball b’s flow. If flow is being
modeled for the movement of ball a then there is a
directed edge from s to each pixel node in whose well
the ball pa is above the ball pb. The capacity of the
edge is equal to the difference between the heights of
the two balls. Similarly there is a directed edge from
the pixel node, in whose well ball a is lower, to the
node t and the capacity of the edge is the difference
in height between the two balls. Setting capacities of
terminal edges in this way ensures that any non-active
ball (connected to the source) can never go below its
active ball. Similarly, the sink terminal edge capacities
ensure that an active ball never goes above the non-
active ball in its well. This maintains the invariance
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that an active ball is always below the non active
ball in a well and equations (8) and (11) are always
satisfied. The capacities of all m → n edges are set
to infinity (infinity here implies a value much higher
than the maximum clique potential value or highest
unary cost).

3.3 Flow Redistribution

We make the implications of our definitions clear
by an example. As mentioned earlier flow pushing
in the flow graph simulates the movement of balls
in the two wells of a clique. If in a clique c, the
ball a in the well p comes down by amount δ and
the ball a of the well q in the same clique goes up
by the same amount, then in the flow graph this is
simulated by pushing δ flow in the path fragment
p→ m→ n→ q of the gadget corresponding to clique
c. The effect of this flow push is to reduce the value
of dual variable Vc,p,a by δ and increase the value of
Vc,q,a by δ. Note that these changes in the values of the
dual variables do not affect the DFCs in which either
both Vc,p,a and Vc,q,a participate or both Vc,p,a and
Vc,q,a do not participate. However, the slack of those
DFCs in which only Vc,p,a participates increases by δ
and those in which only Vc,q,a participates decreases
by δ. Clearly the value of δ should not be allowed
to increase by an amount which makes the slack of a
DFC negative, i.e., “restrictions on residual capacity
only need to take into account those DFCs which
can become infeasible by pushing flow”. Now let us
consider a situation in which the residual capacity for
the pair of conjugate edges for node q in clique c is 0.
This implies that at least one DFC which covers the
dual variable Vc,q,a is tight. It will still be possible
for the node p to send flow to q provided all the
tight DFCs that cover Vc,q,a also cover Vc,p,a. This is
because any increase in Vc,q,a is counter balanced by
corresponding decrease in Vc,p,a (path from p to q is
p→ m→ n→ q) and the DFCs that were tight prior to
pushing of flow continue to remain tight. Flow from
p to q is therefore limited by the slack in DFCs which
cover only Vc,q,a (and do not cover Vc,p,a).

3.4 Residual Graph

The fact that the capacity constraints are on the ef-
fective flow in a pair of conjugate edges incident at a
pixel node in a gadget, rather than on the flow on each
individual conjugate edge, is dealt with by requiring
that flow is non zero in only one of the edges in the
conjugate pair. This gets taken care of by the rules
used for creating the residual graph in presence of
some valid flow. When there is non zero flow in a
conjugate edge pair, the conjugate edge with zero flow
is not included in the residual graph. The capacity
constraint associated with the pair is associated with
the edge with non zero flow. Three cases arise:

1) The conjugate edge with non zero flow emanates from
an n type auxiliary node: In this case the residual
graph has two edges. The edge from the auxil-
iary node (n type) to a pixel node has capacity
equal to the residual capacity of the conjugate
edge pair, and the edge from the pixel node to
the auxiliary node (n type) has capacity equal
to the flow in the conjugate edge pair. There are
no edges in the residual graph between the pixel
node and the auxiliary node of type m.

2) The conjugate edge with non zero flow emanates
from a pixel node to the m type auxiliary node: In
this case, the capacity of the residual edge from
the pixel node to the auxiliary node (m type)
is infinity, and the reverse direction edge has a
capacity equal to the flow towards the auxiliary
node (m type) in the conjugate edge pair under
consideration.

3) When there is no flow in either of the edges of
a conjugate pair: The residual graph has two
edges corresponding to the two conjugate edges.
The one emanating from the auxiliary node (n
type) to the pixel node has capacity equal to the
capacity of the conjugate edge pair. Capacity of
the other, from the pixel node to the m type
auxiliary node, is infinity. The requirement that
only one of the conjugate edges has zero flow
at any time is ensured by restricting the flow
augmenting paths from s to t in the residual
graph to include only one of the edges of a
conjugate pair.

The rules for setting the residual capacities listed
above enable a variable Vc,p,a that participates in a
DFC as given in equation (14) to have both positive
and negative values. The value will be positive if fcnp
is positive and will be negative if fcpm is positive.
Note that even when a DFC becomes tight because of
pushing of additional flow in an edge and the residual
capacity of that edge becomes zero, there may still
exist the possibility of the edge being involved in an
augmenting path as explained in the previous section.

Notwithstanding these complications, there does
exist a flow value that is maximal for the flow graph.
We show that, in general, this value is less than or
equal to the “minimum capacity” (S, T ) cut (also
called min (S, T ) cut) on the flow graph with a suit-
ably generalized notion of cut capacity3. We show that
when the clique potential is submodular, the capacity
of the min (S, T ) cut in the gadget based flow graph
equals max flow in the flow graph. We also show how
the optimal labeling for the primal problem can be
inferred from the min cut in the flow graph when max
flow state has been reached. It must be noted that if
the clique potential is non-submodular, then this one

3An (S, T ) cut is given by a partition of the nodes of the flow
graph into two sets S and T with s ∈ S and t ∈ T and consists of
edges from S to T
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Labeling
Slack/Input

Potential
Slack After
Flow Send Labeling

Slack/Input
Potential

Slack After
Flow Send

bbbb 0 0 bbba 71 71
abbb 101 101 abba 160 160
babb 71 40 baba 71 40
aabb 31 0 aaba 101 70
bbab 71 102 bbaa 71 102
abab 101 132 abaa 101 132
baab 130 130 baaa 71 71
aaab 101 101 aaaa 0 0

TABLE 1
Example clique potential

Node E(a) E(b)

x1 50 30
x2 0 200
x3 100 0
x4 100 0

TABLE 2
Unary potential

Conj. edge Residual cap
n→ x1 0
n→ x2 0
n→ x3 71
n→ x4 71

TABLE 3
Revised residual cap.

to one correspondence between optimal primal and
optimal dual does not hold. The value of the optimal
primal may be larger than the value of the optimal
dual.

3.5 Example
To further clarify we show how flow is pushed in the
gadget based flow graph corresponding to an MRF-
MAP problem.

Consider a problem having single clique of size 4.
The clique potential penalizes a labeling as given by
the first column of Table 1. It can be verified that the
clique potential is submodular. The unary costs are
as given by Table 2. Note that initially (i.e., zero flow)
the input potential values are also the slack values for
the corresponding DFCs.

The flow graph with terminal and conjugate edge
capacities created from potentials given in Tables 1
and 2 when flow is initially zero in all edges is as
shown in Figure 3(a). Since the height of a and b balls
in the well x1 are 50 and 30 respectively, the source
is connected to x1 by a terminal edge with capacity
equal to 50− 30 = 20, the difference in heights of the
balls. Similarly the source is connected to x3 and x4
by terminal edges of capacity 100. There is a terminal
edge from x2 to sink of capacity 200 (ball b is 200
above ball a in well x2). When flow in all edges is
0 then the slacks of all DFCs (there are 16 of them)
are equal to the values in the column corresponding
to ‘Input Potential’ in Table 1. We now show how the
residual capacities of conjugate edges are calculated
by working out the details for the pair of conjugate
edges corresponding to the node x1 (edges n → x1
and x1 → m). We know that the residual capacity of
a pair of conjugate edges is the minimum of the slack

20

100 100

200

∞ ∞ ∞
∞

31
31

71 71

∞ 𝑥1 𝑥2 𝑥3 𝑥4

𝑛

𝑚
source

sink

(a) Initial Flow Graph

20

69 100

169

∞ ∞
∞

0 31
71

∞ 𝑥1 𝑥2 𝑥3 𝑥4

𝑛

𝑚
source

sink

0

31

(b) Revised Residual Flow Graph

Fig. 3. Example Flow Graph

of DFCs (excluding the uniform labeling one) that
cover it. In this case the DFCs that cover correspond
to labelings abbb, aabb, abab, aaab, abba, aaba, and
abaa and have slacks 101, 31, 101, 101, 160, 101, and
101 respectively. The residual capacity of x1’s pair of
conjugate edges is therefore 31. This value is initially
associated with the edge n → x1. The capacity of
the other edge (x1 → m) is infinity (flow in it only
increases the slack).

Flow is first pushed along the path source→ x3 →
m → n → x2 → sink. As per the residual capacities
flow pushed that can be pushed is 31. This makes the
DFC for labeling aabb (or simply DFC aabb) tight (i.e.,
its slack becomes 0). Table 1 (column 3) contains the
revised slacks of all the DFCs after this flow push.
The revised residual capacities of the conjugate edges
emanating from auxiliary node n are given in Table
3 and the residual graph with the residual capacities
on individual edges is given in Figure 3(b). Note that
the edges in the residual graph are as per the cases
discussed in Section 3.4.

The tightness of the DFC aabb still allows flow
through path source → x1 → m → n → x2 → sink
since both the nodes x1 and x2 participate in the DFC
aabb. Sending flow from x1 → x2 does not affect the
slack in the DFC aabb. The capacity of the path frag-
ment from x1 to x2 is contextually constrained at 40
due to the slack in the DFCs babb and baba. However,
because of the constraints posed by terminal edge
capacities, flow of only 20 can be sent from the source
to sinkas that saturates the edge source → x1. No
more flow can be sent in the flow graph and the total
flow sent (also the value of the maximum flow) is
31 + 20 = 51.
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4 MAX FLOW MIN CUT RELATIONSHIP

Consider any (S, T ) cut in a gadget based flow graph.
The edges from S to T are either terminal edges, or
are between auxiliary nodes, or are conjugate edges.
Note that only one of a pair of conjugate edges can be
from an S side node to a T side node. The capacity of
an (S, T ) cut is traditionally the sum of the capacities
of the edges from nodes in S to nodes in T . For a
gadget based flow graph we need the notion of cover
given below to define the capacity of an (S, T ) cut.

Definition 4.1. Every DFC is a cover of all pairs of
conjugate edges that participate in it.

Definition 4.2. A set of DFCs that covers all the conjugate
edges of an (S, T ) cut is called a cut cover. The cost or
capacity of a cut cover is defined to be the sum of the costs
of DFCs constituting the cut cover.

In the (S, T ) cut corresponding to Figure 4 there are
4 edge covers EC1, . . . , EC4. There are two cut covers
possible, one including EC1 and EC4 and the other
including EC1, EC2 and EC3. The capacity of the
(S, T ) cut corresponds to one of the two cut covers
and is given by:

Definition 4.3. The cost or capacity of an (S, T ) cut is
equal to the value of the smallest cost cut cover among
all the cut covers covering the conjugate edges in the
(S, T ) cut plus the capacities of all the terminal edges in
the cut.

S T

EC
1

EC
2

EC
3EC

4

Fig. 4. (S, T ) cut with 4 edge covers, EC1, . . . , EC4.

The definitions lead to the following relationship
between cost of any (S, T ) cut and the flow in the
gadget based flow graph:

Lemma 4.4. Flow in a gadget based flow graph cannot
exceed the capacity of any (S, T ) cut.

The proof of the lemma as well as all following
lemmas can be found in the Supplementary material
[42].

Consider the scenario when the flow is equal to the
maximum value flow in the gadget based flow graph.
Since the flow can not be incremented any further, no
path can exist between s and t in the residual graph.
Let S be the set of nodes reachable4 from s in this
residual graph and let T be the rest of the nodes of the
flow graph. Effective flow across a cut from S to T is

4A node p is said to be reachable from q, if it is possible to send
flow from q to p, without violating any DFC

equal to the sum of flow in the flow graph edges from
S to T minus the sum of flow in the flow graph edges
from T to S. A gadget is said to be ‘on’ an (S, T ) cut
if some of the gadget nodes are in S and others in T .
Lemma 4.5 describes some properties of gadgets on
an (S, T ) cut when max flow state has been reached.

Lemma 4.5. For a gadget on an (S, T ) cut when max
flow state has been reached

1) Both auxiliary nodes m and n are in S.
2) fpm = 0,∀p ∈ T .
3) f =

∑
i∈S

∑
j∈T fij .

Inherent in the reasoning that has led us to the pre-
ceding results is the notion that flow can be increased
provided there exists a path from s to t in a residual
graph. However, it does not follow that flow is maxi-
mum if no s to t path exists in a residual graph. Con-
sider, for example, the flow graph of Figure 5(a). The
numbers written adjacent to an edge is the flow in the
edge and the covering DFCs are marked by dashed
edges (double dashed edges shows tight DFCs). All
edges in this case have zero residual capacity because
the two DFCs, D1 covering edges corresponding to
x1, x2, x3, and D2 covering edges corresponding to
x3, x4, x5 are tight and together cover all the edges.
Suppose, it is possible to redistribute the flow by
increasing the flow in the conjugate edge incident at
x1 to 6 and decreasing the flow in the conjugate edge
incident at x3 to 1. The total flow out of s remains
the same but D2 (marked by single dashed edge in
Figure 5(b)) now has a slack of 2. Conjugate edges
corresponding to x4 and x5 may now have residual
capacities of 2 each and there may now be a s to t path
in the residual graph passing through these edges.
The possibility of creating slack through redistribution
is the reason for this max flow problem to be NP hard
in general.

Let (S, T ) be the cut in the flow graph when the
flow is maximum. Using Lemma 4.5 we can say that
the effective flow in the (S, T ) cut is equal to the
sum of the flow in the conjugate edges from the
auxiliary nodes n to nodes in T plus the flow in the
terminal edges from s to nodes in T . Note that each
conjugate edge from S to T has zero residual capacity
and therefore at least one DFC covering it is tight.
In effect there are cut covers, corresponding to the
(S, T ) cut, in which all DFCs are tight. Is max flow
equal to min capacity cut? Consider the smallest cost
cut cover among all cut covers of the (S, T ) cut. If each
conjugate edge in the cut is covered by only one DFC
in the smallest cost cut cover then it follows that max
flow is equal to the capacity of the (S, T ) cut. This
may not hold in general as there can be cases when a
conjugate edge in the cut is covered by two or more
tight DFCs in the smallest cost cut cover. In such cases
the flow in the edge gets counted more than once in
the cost of the cut cover, and max flow may be less
than capacity of the min cost cut cover.
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We now show that when the clique potential func-
tions are submodular then not only is the max flow in
the flow graph always equal to the value of the min
cost cover, but also that the max flow can be obtained
by standard flow algorithms (i.e., redistribution has
no effect when clique potentials are submodular).

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

n

3

D1
Cost=15
Slack=0

m

D2
Cost=16
Slack=0

84 7 6

(a) Before redistribution

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

n

1

D1
Cost=15
Slack=0

m

D2
Cost=16
Slack=2

86 7 6

(b) After redistribution

Fig. 5. Flow state before and after re-distributing flow
in a gadget

For the purposes of the discussion that follows we
specify any labeling of a clique’s pixels by the set of
pixels that are labeled a in the labeling. Since this set
of pixels are also said to be participating in the DFC
that covers them, a DFC can also be looked upon as
being specified by a set. The clique potential Wc(·),
which assigns a cost for every labeling can now be
considered to be a set function.

A clique potential function Wc(·) is considered to
be submodular, if for all l

′

c, l
′′

c ∈ Lk

Wc(l
′

c) +Wc(l
′′

c ) ≥Wc(l
′

c ∪ l
′′

c ) +Wc(l
′

c ∩ l
′′

c ),

where ∪ and ∩ are union and intersection on sets of
a labeled pixels. Recall that Wc(l

′

c) is also referred to
as the cost of DFC corresponding to l

′

c and a DFC is
called tight if it’s slack is zero or equivalently sum
of flows in the conjugate edges participating in it is
equal to DFC’s cost. When potentials are submodular,
tight DFCs exhibit the following property:

Lemma 4.6. If Wc(·) is submodular, then for every two
tight DFCs corresponding to labeling l

′

c and l
′′

c , the DFCs
corresponding to labeling l

′

c ∪ l
′′

c and l
′

c ∩ l
′′

c are also tight.

Lemma 4.6 tells us that no advantage can be gained
by redistribution of flow among the edges of tight
DFCs as the DFC corresponding to the union will
continue to remain tight and will force the residual
capacities of all the edges covered by it to be zero.
Lemma 4.6 also allows us to infer that there exists
a cut cover of an (S, T ) cut such that all the DFCs
in it are tight and every conjugate edge of the cut is
covered only once by the DFCs. This cut cover can be
simply found by starting with any cut cover covering
all edges of the cut (an edge may be covered twice
in such a cut cover) and then replacing the two tight
DFCs in it with the DFC corresponding to their union.
Since all edges are covered only once and all DFCs are
tight, the sum of flow in the edges is exactly equal
to the sum of costs of DFCs in the cut cover. We,
therefore, have:

Theorem 4.7. In the flow graph corresponding to the dual
optimization problem, max flow is equal to min cut under
the assumption that clique potential functions on all cliques
are submodular.

Note that our flow formulation ensures that all com-
plimentary slackness conditions other than equation
(12) are always satisfied. In a maximum flow situation,
equation (16) is satisfied with equality for all cliques
on the cut5. For a clique not on the cut, we uniformly
label all its pixel nodes either by a or b (label all pixels
of cliques totally in S as b and all pixels of cliques
totally in T as a). The DFC corresponding to uniform
labeling is always tight due to flow conservation at
an auxiliary node as shown in equation (18). Since all
complimentary slackness conditions governing primal
and dual solutions in our framework are satisfied and
primal and dual solutions are feasible, the optimality
of primal and dual solutions is guaranteed.

5 UNIFORM LABELING COST AND SUB-
MODULARITY CONSTRAINTS

In the primal-dual framework as derived in Section 2,
as well as for proving the optimality of the primal and
dual solution in the previous section, we assumed that
the cost of assigning uniform labeling (all a’s or all b’s)
to pixels of a clique to be zero. Under this assumption
an additional constraint resulting out of complimen-
tary slackness conditions was given by equation (13).
The gadget used for creating flow graphs ensures that
this complimentary slackness condition continues to
be satisfied by virtue of flow conservation at auxiliary
nodes. Since the gadget does not explicitly capture
equation (13), the flow graph formulation introduced
is valid only for the cases where uniform labeling
costs are zero. We now show that this assumption is
not restrictive when clique potentials are submodular.

Consider the dual optimization problem as devel-
oped in Section 2. Suppose we textually replace all
occurrences of Vc,p,l, the V variable for the label l asso-
ciated with pixel p of clique c, by Vc,p,l+δ in equations
of type (8) and (10). Then, effectively, the only changes
that have occurred in the dual optimization problem
are the following:

1) The r.h.s. of equation (8) which defines the value
of dual variable hlp has an additional term δ, and

2) The l.h.s of all equations of type (10) in which
Vc,p,l occurs, has an additional δ.

It is as if we have increased the unary/data cost
Dp(l) of assigning label l to a pixel p in clique c and
compensated for that increase by decreasing costs in
the clique potential for the labelings in which p was la-
beled l. It is easy to establish that from the perspective
of inference, the cost/energy of the optimal solution
and the assignment of labels in that optimal solution

5Note that equation (16) is nothing but another representation
of equation (12)
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in both versions of the problem remain the same.
Choosing δ such that one of the labeling costs becomes
zero can be looked upon as tightening of a DFC. We
call this process of tightening at least one DFC using
variable Vc,p,l as reparametrization using Vc,p,l. It can
be shown (proof is in the Supplementary material
[42]) that reparametrization preserves submodularity
of clique potentials.

Lemma 5.1. A submodular clique potential Wc, remains
submodular after reparametrization using any Vc,p,a or
Vc,p,b for all pixels p ∈ c.

It can be shown that if the DFCs corresponding to
uniform labeling are not tight, there must exist at least
one V variable which can be reparametrized. Note
that if no V variable can be reparametrized, then each
V variable must be participating in at least one tight
DFC. The union of all such tight DFCs corresponds to
uniform labeling which must be tight as well (follows
from equation (18)). The argument applies for the
DFCs corresponding to uniform labeling a as well as
b. We can summarize the result as follows:

Lemma 5.2. Any 2-label multi-clique inference problem
with submodular clique potential having non-zero uniform
labeling cost can be reparametrized to an equivalent prob-
lem with a new clique potential function which has uniform
labeling costs zero.

For tightening the DFCs corresponding to uniform
labelings a and b for a clique c, at every iteration we
choose any variable Vc,p,l and perform reparametriza-
tion on it if possible6. The process ends when the
DFCs corresponding to the uniform labelings a and
b have been tightened. Note that this may require
reparametrization using variables of type Vc,p,a as
well as Vc,p,b.

6 MAX FLOW ALGORITHM

The proof of the “max flow min cut” theorem for
gadget based flow graphs with submodular clique
potentials is not algorithmic in the sense that how
the max flow state can be arrived at has not been
specified. In this section we give an algorithm to find
maximum flow in a gadget based flow graph.

6.1 Augmenting Path Availability
It is easy to see that any augmenting path in a gadget
based flow graph starts at a pixel node connected to
the source, passes alternately through a pixel and a
auxiliary node and ends at a pixel node connected
to the sink. A path fragment is a consecutive triplet
of pixel, auxiliary and pixel nodes in an augmenting
path. Note that two consecutive path fragments have
a pixel node in common and that all three nodes of

6Note that reparametrization for Vc,p,l is not possible if it
participates in any tight DFC

a path fragment should belong to one clique. The
complete augmenting path can be visualized as a
series of path fragments with a terminal edge at the
start and the end. We refer to the pixel node of the
path fragment closer to the source as the sending node
and the other as the receiving node. The corresponding
conjugate edges are similarly called the sending and
the receiving edges. The amount of flow that can be
sent from the sending node to the receiving node of a
path fragment without violating any DFC covering its
edges is referred to as the residual capacity of the path
fragment. A path fragment with residual capacity zero
is termed to be tight/saturated/blocked. Note that any
flow sent through a path fragment does not effect
the slack of a DFCs which either covers both the
sending and the receiving node or does not cover
any of the two nodes. Any flow sent through a path
fragment increases the slack of all DFCs covering
only the sending node and decreases the slack of all
DFCs covering only the receiving node. The residual
capacity of a path fragment is therefore governed
by the minimum slack of all DFCs which cover the
receiving node and do not cover the sending node.
We can now specify when a conjugate edge can not
be a part of any augmenting path (proofs are in the
Supplementary material [42]).

Lemma 6.1. A saturated conjugate edge n → p corre-
sponding to a clique c in presence of flow f cannot be in
an augmenting path as receiving edge of the path fragment
if the intersection of all tight DFCs covering it contains no
other edge 7,8.

We add “include all saturated conjugate edges in
the residual graph to which Lemma 6.1 does not
apply” as an additional rule for adding edges to the
residual graph. Such a saturated edge of the residual
graph can be included in an s − t augmenting path
provided there is an immediately preceding conjugate
edge in the path covered by the same tight DFC.
The residual capacity of such a saturated edge is
contextually defined as the minimum slack of all
DFCs which cover the saturated receiving edge and
does not cover the preceding edge. We can now state
the following (proof is in the Supplementary material
[42]):

Lemma 6.2. If a flow is not maximum in a flow graph
corresponding to the dual optimization problem with sub-
modular clique potential functions, then there will exist an
s − t augmenting path in the residual graph created with
respect to the flow.

7Note that we only talk about saturated conjugate edges of type
n → p. Conjugate edges of type p → m are never saturated since
increase in flow in p → m causes slack of any DFC covering it to
increase.

8If there is only one DFC, the intersection is defined as the DFC
itself
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6.2 Shortest Path

Until now we have been able to generalize most of
the properties defined for max flow in traditional
flow graphs to gadget based flow graphs. We general-
ized the notions of residual capacity and augmenting
paths. We also proved the max flow min cut theo-
rem for gadget based flow graphs. We now show
that the idea of flow augmentation along “shortest
augmenting path” also extends to gadget based flow
graphs and there are algorithms which converge after
polynomial number of such flow augmentation iter-
ations. We define the length of an augmenting path
as the number of path fragments in it. Let δi(s, t)
be length of the shortest path from s to t after i
shortest augmenting path flow augmentations. It can
be shown that (proof is in the Supplementary material
[42]):

Lemma 6.3. If flow augmentation is always done along a
shortest augmenting path, then δi+1(s, t) ≥ δi(s, t).

It should be pointed out that unlike standard max
flow problems for which Edmonds and Karp’s short-
est path based augmentation strategy [34] based on
Lemma 6.3 results in a strongly polynomial max flow
algorithm, the same strategy may not even result in
a terminating algorithm for gadget based max flow
problems.

Consider a scenario when the shortest augmenting
paths from s to t pass through a clique containing
nodes x1, x2, x3 and x4. There are paths from s to
x1 and s to x3 of high residual capacity. These paths
from s to x1 and x3 are of the same length. There are
paths from x2 to t, and x4 to t of the same length of
high residual capacity. Consider the situation where
the DFC covering x1 and x2 is tight, blocking the path
fragment x3 to x2. The augmenting path chosen is s
to x1 → m → n → x4 to t. The flow gets augmented
by ε and the DFC covering x4 and x3 becomes tight
blocking further flow in this path fragment. However
the DFC covering x1 and x2 has non-zero slack now.
This enables ε flow to be sent from s to t along path
s to x3 → m → n → x2 to t. This creates a slack
again in the DFC covering x3 and x4 unblocking path
fragment x1 to x4 enabling the possibility of repeated
augmentations which send very little flow and do not
bring any change in the shortest path structure.

If, however, the shortest augmenting paths were
lexicographically ordered then a path fragment can
not be “unblocked” more than k times (once by each
node) without a change of direction of flow in it.
Therefore, Edmonds and Karp’s shortest path aug-
mentation strategy has to be used along with ordering
of paths of the same length lexicographically to bound
the number of flow augmentation iterations of the
same length. A max flow algorithm based on the
above and its complexity analysis is given below.

6.3 Flow Algorithm and Complexity Analysis

We call our algorithm Generic Cuts (GC). Algorithms
1 and 2 describe the two main components of GC.
Note that flow can be augmented using any heuristic
used in traditional max flow algorithms. The aug-
menting path framework of steps 4 to 6 could even
be replaced by the Push Relabel technique of [33].

Algorithm 1 GC Max Flow Algorithm
1: for All cliques c ∈ C do
2: Reparametrize the clique potential until the

DFCs for uniform labeling become tight;
3: Build the residual graph R;
4: while There exists an s-t augmenting path in
R find the lexicographically shortest augmenting
path; do

5: Augment flow in that path;
6: Build the residual graph R;

Algorithm 2 GC Residual Graph Construction
1: for All cliques c do
2: for All DFCs of c do
3: Calculate the slack in presence of current

flow;
4: Set the residual capacity of a conjugate edge

pair as the minimum of slacks of all DFCs in
which it participates;

5: for All path fragments of type p to q do
6: if Edge corresponding to q have have non

zero residual capacity then
7: Add the path fragment to the residual

graph;
8: Set the residual capacity of the path frag-

ment as the residual capacity of receiving
edge;

9: else
10: if The intersection of the tight DFCs cover-

ing q also cover p then
11: Add the path fragment to the residual

graph;
12: Set the residual capacity of the added

fragment as minimum slack of all DFCs
which cover q and not p;

Since the number of DFCs per clique can be O(2k),
the residual capacity of each edge can be computed
naively in O(2k) steps. Time to find the shortest aug-
menting path and updating the residual capacities of
the edges in the residual graph is O(2k|E|). The total
number of iterations before the path length increases
is bounded by O(k|E|). The total number of itera-
tions is O(k|V ||E|) and the overall time complexity
is O(2kk|V ||E|2). If the set of cliques is denoted by
C, and the number of pixels by n, then |V | and |E|
are O(n+ |C|) and O(k|C|) respectively. Therefore, the
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complexity of the max flow algorithm using Edmonds
and Karp’s shortest path heuristic is O(2kk3n(|C|)2).
Under the assumption that submodular functions for
computer vision problems are locally defined with
n ≈ |C|, the complexity can also be written as
O(2kk3n3).

It should be noted that strongly polynomial algo-
rithms for general submodular function optimization
[24], [25] can be used to recompute the residual ca-
pacities of the conjugate edges of a gadget in which
flow has been augmented. The time complexity of
these algorithms is at least O(n6) and computing
the residual capacities of the k conjugate edges of a
gadget using them will take O(k6) steps. Keeping the
complexity of these algorithms in mind, the use of
brute force O(2k) algorithm is advisable.

The framework developed here also allows to ex-
ploit sparseness in clique potentials. The flow problem
created for higher order cliques needs to keep track of
slack in O(2k) DFCs which gets reflected in the run-
ning time and memory requirements of the algorithm.
In case the problem specification guarantees that some
of the labeling costs are high and the corresponding
DFCs will never be tight, the algorithm can simply
skip tracking slacks in those DFCs. The O(2k) multi-
plicative factor in the time complexity analysis can be
replaced by the number of DFCs which the algorithm
actually needs to track.

So far the technique of choice for MRF-MAP for
binary labels with high order cliques has required
reduction of higher order Boolean functions to second
order and use of QPBO for optimization [3]. This
process involves creation of O(2k) auxiliary nodes per
clique in the reduction phase. Since the resultant flow
graph is dense, the number of edges can be O(22k) per
clique. If C is the set of cliques and n ≈ |C|, the max
flow part of the algorithm’s time complexity will be
O(25kn|C|2) or O(25kn3), assuming that the max flow
algorithm is based on Edmonds and Karp [34]. This
analysis has been done primarily to estimate the type
of speed up one should expect using our algorithm
over algorithms based on the reduction technique. In
the section where we report experimental results we
show that this is indeed the case in practice.

7 EXPERIMENTS AND RESULTS
All experiments were conducted on a computer with
2.5 GHz dual core processor, 2 GB of RAM running
Windows 7 operating system with 64 bit address-
ability. The experiments have focussed on comparing
time taken and errors in labeling observed using GC,
message passing methods like Max Product Inference
(MPI) [35], Dual Decomposition (DD) [15], TRWS [2],
reduction techniques proposed by Ishikawa (IQ) [3],
Fix et al. (FZ) [4] and the Generalized Roof Duality
based algorithm (KS) of [5]. Implementations of IQ, FZ
and KS are from [36], [37], [38] and [39] respectively.
The rest are from the Darwin framework [40].

Experiments, reported here, put in perspective com-
parative performance and quality of the prevalent
techniques on 2-label multi-clique problems when
potentials are submodular. It should be noted that
non combinatorial direct methods [2], [15], [35]have
been developed primarily to handle non-submodular
potentials. They are computationally intensive in gen-
eral. Our experiments show they are computationally
expensive even when run on submodular potentials.

The first experiment has focussed on the optimality
of GC using a segmentation problem on a synthetic
image with Gaussian noise added as the base. The
terminal weights (unary potential) for black and white
labeling were chosen as difference of pixel intensity
from their respective ideal values (0 and 255). The seg-
mentation problem has been solved using rectangular
cliques of size 4 anchored on all pixels. The number
of cliques in such a system is equal to the number
of pixels in the image. The clique potential chosen
penalizes as per the square root of number of edges
present in the labeling (SQRT). This clique potential
is submodular. That GC outputs optimal energy was
confirmed by comparing the primal and dual values
outputted. Figure 6 shows the results. The numbers
below each figure are the primal energy followed
by time taken in seconds. Note that the solution
outputted by GC is better both in terms of the value of
primal as well the error from the ground truth. Also,
note that the time taken by GC is hundreds of time
faster than that taken by non combinatorial methods
like DD and TRWS.

Tables 4 and 5 provide details of the energy out-
putted and the time taken by various algorithms on
4 clique problems of various sizes. It should be noted
that algorithms which output near optimal results
take couple of order of magnitude more time than
that taken by GC. MPI is only two to three times
slower than GC but has very poor energy output.
MPI seems to move into a local minima fast and does
not have the ability to move out of it. DD which has
good energy convergence took 20 seconds at image
size of 120 × 120 and failed to run when image
size was increased to 160 × 160. In terms of energy
minimization, performance of KS is nearest to that of
GC. For the 160 × 160 image KS has outputted the
same optimal energy as GC (see Table 4). However,
the time taken is larger by a factor of thousands. Table
6 shows relative performance with different clique
sizes. For all practical purposes the upper limit on
clique size is 6 for methods other than GC. On images
of size 100× 100 GC is hundreds of times faster than
non combinatorial methods like DD.

Figure 7 reports the time comparison of IQ and GC
at log scale on a fixed image and varying clique sizes .
The almost linear increase in the ratio with increasing
clique size confirms the exponential divergence in the
running time of the two algorithms that the theoretical
analysis predicts. To put the impact of this exponential
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Input GC
(733155,0.057)

IQ
(836581,0.588)

FZ
(836581,0.362)

DD
(866231,19.2)

TRWS
(868149,110.2)

MPI
(833350,0.885)

KS
(801657,421.1)

Fig. 6. Segmentation: σ of Gaussian noise added is 60. Numbers in parentheses show primal value and time
taken (in seconds) by each algorithm.

Image
Size GC DD TRWS MPI KS IQ FZ

40× 40 126680.0 139724.0 147520.0 143689.0 128518.0 128518.0 128518.0
80× 80 463844.0 567254.0 566877.0 522711.0 490074.0 519967.0 519967.0

120× 120 978232.0 1146288.0 1149290.0 1112566.0 980315.0 1164596.0 1181320.0
160× 160 1674408.0 DNR 1898237.0 1921017.0 1674408.0 1991083.0 2091985.0

TABLE 4
Energy of the inferred solution for a 4 clique problem at different image sizes

Image
Size GC DD TRWS MPI KS IQ FZ

40× 40 0.016 1.153 3.641 0.029 9.328 0.055 0.040
80× 80 0.029 4.765 46.76 0.381 138.1 0.283 0.196

120× 120 0.102 20.05 222.1 1.801 686.5 0.743 0.549
160× 160 0.277 DNR 691.8 5.453 2447 1.395 0.942

TABLE 5
Inference time in seconds for a 4 clique problem

Image
Size

Clique
Size DD GC IQ

100× 100 4 15.081 0.014 0.519
100× 100 6 36.683 0.103 7.398
50× 50 9 44.872 0.435 206.756
50× 50 10 88.577 1.102 DNR
50× 50 12 400.543 7.125 DNR

TABLE 6
Time comp. at various clique sizes

divergence in perspective, note that the run time of IQ
for clique size of 4 is 63 ms. GC takes 25 ms on the
same problem. As clique size increases to 11, IQ starts
to take 235 seconds whereas the time for GC increases
only to 407 ms.
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Fig. 7. GC and IQ comparison at log scale.

8 CONCLUSION

We consider GC to be the first step towards devel-
opment of a truly practical strongly polynomial algo-
rithm for optimizing submodular higher order energy
functions that arise in problems modeled by MRF-
MAP. Its primary limitation is in the multiplicative
factor of 2k that shows up in the time complexity anal-
ysis. While this limits its realistic practical (in terms of
time) use on images of 500×500 to cliques of size 9, the
worst case time complexity will still be less than O(n6)
of [24] for k = 16. On submodular clique potentials
GC gives optimal results and can be the basis for
approximating non-submodular clique potentials for
real life problems with nonzero uniform costs. There

is a generalization of GC’s gadget to handle such
potentials. We have reported preliminary results in
[41] where we have shown that the output not only
is of very good quality without significant increase
in time taken, it also has the desirable property of
persistency.
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SUPPLEMENTARY MATERIAL

Proof of Lemma 4.4

Let f = (fij) be a flow in the flow graph and let
(S, T ) be any cut. Summing up the flow conservation
equations for all nodes i ∈ S we get

v =
∑
i∈S

(
∑
j

fij −
∑
j

fji)

=
∑
i∈S

∑
j∈S

(fij − fji) +
∑
i∈S

∑
j∈T

(fij − fji)

=
∑
i∈S

∑
j∈T

(fij − fji), (19)

where v is the flow entering t. In effect v is the net
flow through any (S, T ) cut. Since fji ≥ 0

v ≤
∑
i∈S

∑
j∈T

fij .

Note that flow in all edges other than conjugate edges
in the (S, T ) cut is less than or equal to their capacities.
Also, since the sum of flows in all the conjugate edges
covered by a DFC is less than or equal to the cost of
DFC, the sum of flows in all the conjugate edges in
the (S, T ) cut is less than or equal to the capacity of
the smallest cost Cut Cover. Therefore, it follows that
flow in the gadget based flow graph is always less
than or equal to the capacity of any (S, T ) cut.

Proof of Lemma 4.5

1) Note that any node, say p, in a gadget can
always send flow to m. In case there is zero flow
in the conjugate edge pair incident at node p or
in the edge n → p, then by definition, there is
infinite capacity in the edge p → m. If there is
non zero flow in n → p, then there is non zero
residual capacity in p → n and n → m at-least
equal to the flow in n→ p, and flow can thus be
sent from p tom through n. Consider a gadget on
the cut. By definition at-least one of the nodes in
it is in S. Since there is always non zero residual
capacity on the edge from any node to m, m
must be in S as well. Also, since the edge m→ n
has infinite capacity by definition, n must also
be in S.

2) Lemma 4.5(1) states that for all such gadgets, m
must be in S. Any flow in p → m for some p
in T results in non zero residual capacity in the
edge m → p and thus creates an st augmenting
path. This violates the assumption that flow is
maximum.

3) Equation (19) states that:

f =
∑
i∈S

∑
j∈T

(fij − fji).

However, Lemma 4.5(2) implies that when the
flow is maximum, there is no flow from any

node in T to a node in S. Therefore:

f =
∑
i∈S

∑
j∈T

(fij).

Proof of Lemma 4.6

Since Wc(·) is submodular, we have:

Wc(l
′

c) +Wc(l
′′

c ) ≥Wc(l
′

c ∪ l
′′

c ) +Wc(l
′

c ∩ l
′′

c ).

For two tight DFCs corresponding to l
′

c and l
′′

c we
have: ∑

e∈l′c

fe =Wc(l
′

c), and
∑
e∈l′′c

fe =Wc(l
′′

c ),

where e refers to a conjugate edge pair and notation
e ∈ l

′

c refers to a conjugate edge pair e participating
in DFC corresponding to l

′

c. fe denotes the effective
flow in conjugate edge pair e. Therefore∑

e∈l′c

fe +
∑
e∈l′′c

fe ≥Wc(l
′

c ∪ l
′′

c ) +Wc(l
′

c ∩ l
′′

c ).

Since cost of a DFC is always greater than or equal to
the sum of flows in the conjugate edges participating
in it,

Wc(l
′

c ∩ l
′′

c ) ≥
∑

e∈(l′c∩l
′′
c )

fe.

Therefore∑
e∈l′c

fe +
∑
e∈l′′c

fe −
∑

e∈(l′c∩l
′′
c )

fe ≥Wc(l
′

c ∪ l
′′

c ).

The l.h.s. of the above is nothing but the sum of
flow in the conjugate edges covered by the DFC
corresponding to l

′

c ∪ l
′′

c .∑
e∈(l′c∪l

′′
c )

fe ≥Wc(l
′

c ∪ l
′′

c ).

Since cost of a DFC is always greater than or equal to
the sum of flows in the conjugate edges participating
in it: ∑

e∈(l′c∪l
′′
c )

fe =Wc(l
′

c ∪ l
′′

c ).

The DFC corresponding to (l
′

c ∪ l
′′

c ) is therefore tight.
Tightness for DFC corresponding to (l

′

c ∩ l
′′

c ) can be
similarly proved.

Proof of Lemma 5.1

We describe the proof using variable of type Vc,p,a.
The argument for Vc,p,b can be derived symmetrically.

Consider a reparametrization by δ step using vari-
able Vc,p,a corresponding to ball pa. Since, potential
function was submodular prior to this transformation
we had

W (l
′

c) +W (l
′′

c ) ≥W (l
′

c ∪ l
′′

c ) +W (l
′

c ∩ l
′′

c ).
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Note that there is an inequality of the above type for
any two labelings l

′

c and l
′′

c on clique c. The following
cases arise:

1) p was labeled b in both l
′

c and l
′′

c

In this case the value of W (l
′

c), W (l
′′

c ), W (l
′

c ∪
l
′′

c ) and W (l
′

c ∩ l
′′

c ) does not change. Both l.h.s
and r.h.s. remain the same and the inequality
continues to remain satisfied.

2) p was labeled a in only one of l
′

c or l
′′

c

In this case p will be labeled in a in labeling
corresponding to l

′

c ∪ l
′′

c but not in labeling cor-
responding to l

′

c ∩ l
′′

c . Therefore W (l
′

c) or W (l
′′

c )
decreases by δ and W (l

′

c ∪ l
′′

c ) decreases by δ.
Since the l.h.s and r.h.s of the inequality decrease
by the same amount (δ) the inequality continues
to hold.

3) p was labeled a in both l
′

c and l
′′

c

In this case p will be labeled a in labeling corre-
sponding to l

′

c ∪ l
′′

c as well as l
′

c ∩ l
′′

c . Therefore
W (l

′

c), W (l
′′

c ), W (l
′

c∪l
′′

c ) and W (l
′

c∩l
′′

c )) decrease
by amount δ. The l.h.s and r.h.s. of the inequality
decrease by the same amount (2δ) and so the
inequality remains satisfied.

Therefore normalizing any V variable is nothing but
an equivalent energy transformation which maintains
submodularity property. For a clique of size k, there
are 2k DFCs for a clique and time taken for normaliza-
tion per clique will be O(2k). Under the assumption
that the number of cliques is of the same order as n,
the number of pixels, the total normalization time is
O(n2k).

Proof of Lemma 6.1
Suppose the intersection of all tight DFC’s covering
n → p contains at least one more edge. This edge is
either an n type edge n→ q or an m type edge r → m.
If the edge is n → q then path fragment q → n →
p has residual capacity greater than zero. This is so
because all tight DFCs covering receiving edge of the
path fragment also cover the sending node. Therefore
a path from s to t which contains the path fragment
q → n→ p (with all other path fragments in the path
having residual capacities greater than zero) will be an
augmenting path. On the other hand if the intersection
of all tight DFCs covering n → p contains no other
edge, then any path fragment q → n→ p will violate
the tight DFCs covering n→ p and hence can not be
in any augmenting path.

Proof of Lemma 6.2
Suppose flow is not maximum and no augmenting
path exists in the residual graph consistent with that
flow. Let S be the set of nodes reachable 9 from s
at that stage and let T be the rest. Following the

9Recall that a node p is said to be reachable from q, if non zero
flow can be pushed from q to p without violating any DFC

arguments given in Lemma 4.5, it is always possible
to send flow from a pixel node to node m, and from
m to n node. Therefore, the only reason of for no
augmenting path existing is because all conjugate
edges out of n node to nodes in T are saturated.
For all such saturated conjugate edges Lemma 6.1
applies and all tight DFCs covering these edges do not
cover edges in S (otherwise a path fragment from S
node to T would be available), or conversely can only
cover edges of nodes in T . Using arguments given for
proving Theorem 4.7, we can find a cut cover covering
all such edges once. All DFCs of such a cut must be
tight and the sum of flows in the edges covered by
these DFCs must be equal to the cost of cut. that is
flow in the cut will therefore be equal to cost of cut.
Lemma 4.4 states that flow must always be less than
equal to cost of the cut. The flow must therefore be
maximum contradicting the initial assumption.

Proof of Lemma 6.3
For the purposes of the proof we specify the shortest
augmenting path length from s to a node x and from x
to t in clique c after i such iterations by δi(s, c, x) and
δi(t, c, x) respectively. We refer to the path fragment
as belonging to a clique c to which auxiliary node of
the path fragment belongs.

Note that flow in a path fragment can only affect
the slacks of the DFCs corresponding to the clique
to which they belongs. Consider the flow graph after
the ith flow augmentation. If the path fragments in
the shortest augmenting path for the (i + 1)th aug-
mentation are not in the cliques through which the
ith augmenting path passed then that path must have
remained unchanged during ith augmentation and
existed even at ith augmentation. Since we always
augment along a shortest path, δi+1(s, t) ≥ δi(s, t). For
the possibility that the (i + 1)th shortest augmenting
path to be smaller than ith shortest augmenting path it
is necessary that there be at least one clique in which
the ith and (i+1)th paths use different path fragments.
Call these path fragments as ith and (i + 1)th path
fragments. For the (i + 1)th path to be shorter than
ith path, (i + 1)th path fragment must have become
available only after sending flow through ith path
fragment (since if it was shorter and available before,
it should have been used).

We will consider the case when the two paths share
exactly one clique in which the path fragments are
different in the two paths. Let that clique be c and let
the ith path fragment be from x1 to x2 (i.e. with x1
as start node and x2 as end node). One possibility is
that after the ith augmentation the ith path fragment
is saturated and the (i+1)th path fragment is from x2
to x1. In this case since δi+1(s, c, x2) ≥ δi(s, c, x2) and
δi+1(t, c, x1) ≥ δi(t, c, x1), implies δi+1(s, t) ≥ δi(s, t).
Therefore, assume that the (i + 1)th path fragment is
from x3 to x4. There can be 9 possible cases. The first
four cases namely



3

1) δi(s, c, x1) = δi+1(s, c, x3) and δi(t, c, x2) =
δ(i+1)(t, c, x4), or

2) δi(s, c, x1) = δi+1(s, c, x3) and δi(t, c, x2) <
δ(i+1)(t, c, x4)), or

3) δi(s, c, x1) < δi+1(s, c, x3) and δi(t, c, x2) <
δ(i+1)(t, c, x4)), or

4) δi(s, c, x1) < δi+1(s, c, x3) and δi(t, c, x2) =
δ(i+1)(t, c, x4)),

are routine. In these cases δi(s, t) ≤ δi+1(s, t). In cases
5) δi(s, c, x1) > δi+1(s, c, x3) and δi(t, c, x2) >

δ(i+1)(t, c, x4)), or
6) δi(s, c, x1) < δi+1(s, c, x3) and δi(t, c, x2) >

δ(i+1)(t, c, x4)), or
7) δi(s, c, x1) = δi+1(s, c, x3) and δi(t, c, x2) >

δ(i+1)(t, c, x4),
we need to ask why the path fragment from x1 to
x4 was not chosen in the ith iteration as that would
have resulted in a shorter augmenting path from s
to t. This implies that the conjugate edge n → x4
was saturated earlier being covered by some tight
DFC. If flow sent through x1 causes the slack of any
such tight DFC to become non-zero, then x1 must
have been participating in that DFC and by Lemma
6.1, the flow in the path fragment from x1 to x4
would have been possible in the ith iteration also. But
that would contradict the assertion that flow in the
ith iteration was pushed on the shortest path. These
cases, therefore, can not arise.

In cases
8) δi(s, c, x1) > δi+1(s, c, x3) and δi(t, c, x2) =

δ(i+1)(t, c, x4)), or
9) δi(s, c, x1) > δi+1(s, c, x3) and δi(t, c, x2) <

δ(i+1)(t, c, x4)

we need to ask similarly why the path fragment
from x3 to x2 was not used in the ith iteration. The
only reason why this may not be possible is when x2
is covered by a tight DFC not covering x3. This tight
DFC must be covering x1, since x1 to x2 was used
instead. Also, since the x3 to x4 fragment was not used
before and became available in (i+1)th iteration after
sending flow through x1, the implication is that x4
was covered by some tight DFC also covering x1 and
not covering x3. From the submodularity constraint
(Lemma 4.6) we observe that if the DFC covering x1
and x2 and the one covering x1 and x4 are tight then
DFC covering x1, x2, x4 must also be tight. This DFC
must stay tight even after sending flow from x1 to
x2 and will block any flow from x3 to x4 in (i+ 1)th

iteration. These cases, therefore, also can not happen.


