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Abstract. We propose a new algorithm called Generic Cuts for com-
puting optimal solutions to 2 label MRF-MAP problems with higher
order clique potentials satisfying submodularity. The algorithm runs in
time O(2kn3) in the worst case (k is clique order and n is the number
of pixels). A special gadget is introduced to model flows in a high order
clique and a technique for building a flow graph is specified. Based on
the primal dual structure of the optimization problem the notions of ca-
pacity of an edge and cut are generalized to define a flow problem. We
show that in this flow graph max flow is equal to min cut which also
is the optimal solution to the problem when potentials are submodular.
This is in contrast to all prevalent techniques of optimizing Boolean en-
ergy functions involving higher order potentials including those based on
reductions to quadratic potential functions which provide only approxi-
mate solutions even for submodular functions. We show experimentally
that our implementation of the Generic Cuts algorithm is more than an
order of magnitude faster than all algorithms including reduction based
whose outputs on submodular potentials are near optimal.

Key words: Higher Order MRF-MAP, Submodular Function Minimiza-
tion, Optimal Algorithm

1 Introduction

Many computer vision problems such as image segmentation, stereo matching,
image restoration can be naturally modeled as labeling problems. Formulat-
ing such labeling problems as MRF-MAP problems converts them to a discrete
optimization problem. Many optimization schemes based upon combinatorial
optimization or linear programming [1–3] have been proposed for solving these
problems, however most of the methods can handle unary and pairwise poten-
tials only. It has been adequately shown by various authors [4–9] that encoding
various structural and complex dependencies between pixels using higher order
clique greatly improves the solution quality.

Techniques proposed for optimizing higher order potentials have ranged from
Iterated Condition Modes [10] to Message Passing [11], to Dual Decomposition
[9]. All output approximate solutions with slow convergence rates. Reduction of
higher order problems to quadratic forms and then solve them using standard



2 Optimal Inference in Higher Order MRF-MAP

optimization techniques of graph cut if the resulting function is submodular,
or use the QPBO [12] algorithm which is applicable for both non-submodular
and submodular functions has recently attracted considerable attention [4, 7,
13–16]. Reduction is attractive as the higher order problem is reduced to the
case where potentials are at most pairwise for which direct network flow based
algorithms output optimal solutions when potentials are submodular. Reduction
based approaches and algorithms derived from them, however, suffer from some
drawbacks:

– It is known that a quadratic pseudo Boolean function can be optimized in
polynomial time if it satisfies the submodularity constraint [16, 17]. However,
not only reduction techniques do not preserve submodularity, not all higher
order submodular functions can be reduced to quadratic submodular forms
[18].

– Ishikawa [4] has noted that reduction of the higher order polynomial form to
quadratic, for a k-clique, adds 2k auxiliary variables per clique making this
approach virtually unusable even for moderate sized cliques.

– QPBO algorithm when applied to reduced quadratic forms leaves many
nodes unlabeled. This can happen even if the original pseudo Boolean func-
tion is submodular.

There have been attempts at addressing the above drawbacks. Rother et
al. [7] exploit sparsity of preferred labelings by creating a submodular devia-
tion function around them for which in some situations the reduction algorithm
creates compact but non-submodular quadratic forms. There have also been at-
tempts to take submodular relaxations directly to higher order terms [13, 19].
While for cubic potentials, generalized roof duality approximations can be ob-
tained by solving a series of LP problems [13], for quartic potentials this gets
limited to using only a subset of quartic submodular functions as not all sub-
modular quartic polynomials can be reduced to equivalent quadratic form.

There is, therefore, a need to develop direct efficient algorithmic frameworks
for optimizing MRF-MAP problems with higher order clique potentials. This
is more so because submodular function optimization is known to be a poly-
nomial time problem [20, 21], but the algorithms are effectively not usable (the
most efficient polynomial time algorithm takes O(n5) steps [20]). Efficient direct
optimal algorithms for higher order submodular potentials are important they
can also be the basis of efficient direct approximation algorithms for MRF MAP
optimization with non-submodular higher order clique potentials.

Contribution: We present in this paper an optimal algorithm based on primal
dual frame work for two label higher order MRF-MAP problem with submodular
costs. As in the two clique version of the problem in which such a primal can
be viewed as a min cut and the dual as a max flow problem, we show that
these concepts can be generalized for higher order clique problems. The dual
framework has resulted in a novel flow problem in which both the capacity of
an edge and the cost of a cut have a new but natural generalizations. We give
an algorithm for optimizing two label higher order MRF-MAP problems with
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submodular costs based on solving a max flow problem in O(n|C|2k22k) steps,
where n is the number of pixels, |C| number of cliques and k the size of a clique.
On an image of size 500 × 500 with clique size 4 the direct algorithm reported
here is 30 times faster than QPBO using Ishikawa’s reduction. Also, like the max
flow based graph cut optimizer for second order potentials the optimal solution
outputted by our algorithm are integral which LP and other non combinatorial
optimization theory based algorithms cannot guarantee.

In Section 2 we develop the basic primal dual frame work and the gadget
which is used to model a clique in the flow graph created to work with the dual
of the problem. Section 2.3 contains the algorithm which we call Generic-Cut.
Section 3 reports comparison of performance with Ishikawa’s reduction technique
[4] using QPBO [12].

2 Primal Dual Schema

We denote the set of pixels in an image by P, and the set of higher order cliques
on the pixel set by C. The label of a pixel p is denoted by lp, the labeling
configuration of clique c by lc, and lpc denotes the label of pixel p in clique
c with labeling configuration lc. Finding a labeling with maximum a posteriori
probability (MAP) assuming labeling to be a MRF can be shown to be equivalent
to minimizing energy of following kind:

E(lf ) =
∑
p∈P

Dp(lp) + λ
∑
c∈C

Wc(lc)), (1)

where Dp(lp), called the unary potential, is the cost of assigning label lp to p.
Wc(lc), called the clique potential, is the penalty/cost of any labeling configura-
tion lc on clique c.

The LP formulation for MRF-MAP given below follows Kleinberg and Tardos
[2]. Any pixel can take a label from the set L = {a, b} of possible labels, and
lc,p,a is a labeling in the labeling configurations of clique c in which the label
of pixel p is a. We introduce a binary variable Xa

p whose value is 1/0 whenever

pixel p is assigned label a/b respectively. Similarly the binary variable Y lc
c takes

value 1 whenever clique c is assigned label configuration lc and is 0 otherwise.
Let Wc : Lk → R be the clique potential function giving the penalty of labeling
pixels of clique c by lc. The MRF-MAP equation (1) can be equivalently written
as the following relaxed linear program:

min
Xa

p ,Y
lc
c

∑
p∈P

∑
a∈L

Ca
pX

a
p +

∑
c∈C

∑
lc∈Lk

Wc(lc)Y lc
c (2)

subject to ∑
a∈L

Xa
p = 1, p ∈ P,

∑
∀lc,p,a

Y
lc,p,a
c = Xa

p , c ∈ C, p ∈ c, a ∈ L,
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Xa
p ≥ 0 , Y lc

c ≥ 0.

The dual of the above can be shown to be [22]

max
U,V

∑
p∈P

Up (3)

subject to
Up ≤ hap, p ∈ P, a ∈ L, (4)

where
hap = Ca

p +
∑

∀c s.t. p∈c

Vc,p,a, (5)

and ∑
p∈c

Vc,p,lpc ≤Wc(lc), c ∈ C, lc ∈ Lk. (6)

Complimentary slackness conditions can be written as

Xa
p > 0 ⇒ Up = hap, (7)

and
Y lc
c > 0 ⇒

∑
p∈c

Vc,p,lpc = Wc(lc). (8)

Assuming the cost of assigning uniform labeling (all a’s or all b’s) to clique as
zero gives us the following constraint∑

p∈c

Vc,p,a = 0, c ∈ C, a ∈ L. (9)

This assumption is not restrictive. It can be shown [22] that when costs are
submodular, they can be normalized through reparametrization to an equivalent
state where uniform labeling costs in a clique are zero.

2.1 Flow Interpretation of Dual

The above primal dual framework is very similar to the one derived by Ko-
madakis and Tziritas [3]. We use their model of ball and wells to motivate flow
interpretation of the dual. Corresponding to every pixel there is a well in which
balls representing labels a and b float. The ball a in the well representing pixel
p is represented by pa and it floats at height hap in the well. Since the dual is a

maximization problem and Up has to be less than both hap and hbp (see equation
(4)), it can be set equal to the height of the lower of the two balls in the well. If
Up is equal to, say, hap in well p, complementary slackness condition (7) implies

that primal variable Xa
p has to be set to 1 (since if Xb

p is set to 1 and given

hbp > hap = Up, the complimentary slackness will not be satisfied). That is, in
any feasible labeling configuration pixel p is assigned label a. We call the ball
a as active in well p in such a scenario. In other words any dual optimization
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strategy which chooses the lower ball as active keeps equations (4) and (7) sat-
isfied. Since any change in the value of variable Vc,p,a impacts the height of ball
a in well p and may change the ball with minimum height, therefore equation
(4) essentially ensures the view that variables Vc,p,a are the only free variables
in the dual optimization problem.

Consider a clique c1 in which the labeling associated with pixels involved
satisfies the uniform labeling constraint given in equation (9). Let p and q be
two wells/pixels in c1. Consider the operation on dual variables in which ball
pa decreases its height by reducing variable Vc1,p,a by δ without affecting the
relative ordering of balls in well p. To continue satisfying the constraint given in
equation (9) will require increase in the value(s) of other V variables associated
with clique c1. One possibility is to increase variable Vc1,q,a of qa by the same
amount. In effect the height of pa decreases and that of qa increases. We may
view this change in heights of pa and qa as a consequence of sending δ flow from
pa to qa in clique c1. Note that while decreasing the value of variable Vc1,p,a fixes
the well of flow origin in clique c1 the destination well could have been any of the
other wells in clique c1. Consider another clique c2 containing wells/pixels q and
r. If we further decrease variable Vc2,q,a of qa and increase Vc2,r,a, the combined
effect will be that qa remains at same height while height of pa decreases by δ
and ra increases by δ. We can view this operation as if flow corresponding to
ball a of amount δ originating at pixel p and ending at pixel r passing through
pixel q as the intermediate node using edges in clique c1 and clique c2.

The dual objective function requires maximization of the sum of Up over all
pixels. The above discussion suggests that this would involve raising the heights
of active balls in the pixel wells which can be achieved by sending flow to an
active ball along a path from a non active ball with the same label. The non
active ball comes down by an amount equal to the flow sent and the active ball
increases its height by the same amount. How much flow can be sent is a function
of the relative heights of balls in the two wells in question and the V variables
associated with the edges along the path. The active ball should not float at a
height higher than the non active ball when the flow is sent and the height of
the non active ball should not become less than the active ball. This ensures
that active ball configuration remains feasible. The changes in the values of V
variables along the path should be such that no dual feasibility constraint of the
type (6) becomes infeasible. Since this flow move can be between any two a balls
or b balls it would seem that the equivalent flow graph should allow for both
types of flows. We show that this is not necessary. If costs are submodular then
the equivalent flow graph on which the max flow problem has to be solved needs
to cater for flows in between balls of only one label. In the rest of our discussion
we assume that flows of only balls of type a are taking place.

2.2 Flowgraph Construction

We model the flow carrying edges in a clique of size k by a gadget consisting of
k + 2 nodes. There are k nodes p, q, · · · , r corresponding to the k pixels called
pixel nodes and two auxiliary nodes n and m. There are directed edges called
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(a) Gadget corresponding to a 4
clique

(b) Flow in a single gadget

(c) Flow through multiple gadgets

Fig. 1

conjugate edges from n to all pixel nodes, and from all pixel nodes to node m and
a directed edge m→ n from node m to n. The gadget corresponding to a clique
of size 4 is given in Figure 1(a). Suppose pixel p sends δ flow to pixel q in the
clique. This flow gets modeled by sending δ flow along the path p→ m→ n→ q
in the corresponding gadget as shown in Figure 1(b). We denote the flow in
edge, say, p → m in the gadget corresponding to clique c by fcpm. We can look
upon the affect of this flow as bringing down ball a in well p by amount fcpm and
pushing up ball a in well q by the same amount. Seen in this way the relationship
between the dual variables and flow is defined by

Vc,p,a = fcnp − fcpm. (10)

The flow graph for the dual optimization problem using the gadget is created
as follows: The set of nodes consists of two distinguished nodes s and t, a pixel
node corresponding to each pixel, and two auxiliary nodes for each clique. The
pixels and the auxiliary nodes corresponding to a clique are connected by the
gadget edges.The edges from node s and to node t depend upon whether the
flow graph models ball a’s flow or ball b’s flow. If flow is being modeled for the
movement of ball a then there is a directed edge from s to each pixel node p in
whose well the non-active ball is a and is above the active ball. Similarly there
is a directed edge from each pixel node p in whose well ball a is active to node t.
Figure 1(c) shows the flow path in a more general setting of flow pushing from
pixel p to pixel r through pixel q of three different 4 cliques where the cliques
have some pixels in common.

Since flow in conjugate edges controls the value of dual variables (equation
(10)) and the value of dual variables impacts dual feasibility constraints, capacity
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constraints on flow graph edges should be so chosen that under all legal flows all
dual feasibility constraints are satisfied. The capacity of the s→ p or the p→ t
edge, as the case may be, is set equal to the difference between the heights of the
two balls in the well corresponding to pixel p because setting of source and sink
edge capacities in this way ensures that an active ball can never go above the
non active ball in its well. The dual feasibility constraints defined by equation
(4) are always satisfied. The capacity of m → n edges is set to infinity as dual
variable values are independent of flow in these edges.

Since the flow graph models movement of ball a we can assume that all dual
variables Vc,p,b are set to 0, and every instance of equation 6 simplifies to∑

p∈c:lpc=a

Vc,p,a ≤Wc(lc), c ∈ C, lc ∈ Lk. (11)

Equation (10) implies that in the corresponding flow graph the constraints
defined by (11) take the form∑

p∈c:lpc=a

(fcnp − fcpm) ≤Wc(lc), c ∈ C, lc ∈ Lk. (12)

We can interpret the above constraints as capacity constraints on the conju-
gate edges. It should be noted that the capacity constraints are no more limited
to single edges as in traditional flow formulations. If we look upon fcnp − fcpm as
effective flow in a pair of conjugate edges then an inequality of the form (12)
essentially says that the sum of effective flow in a collection of conjugate edges
can not exceed the cost of the configuration lc in which the pixels corresponding
to the conjugate edges are labeled a. The quantity

Wc(lc)−
∑

p∈c:lpc=a

(fcnp − fcpm) (13)

for a c ∈ C and a lc ∈ Lk is the slack in the corresponding dual feasibility
constraint of type (11). This slack can be interpreted as the extent to which any
pair of conjugate edges that is participating in the dual feasibility constraint
of type (11) can have the flow increased without violating it. The slack can
be looked upon as the allowed capacity of each of the conjugate edge pair by
the corresponding dual feasibility constraint. We define the residual capacity in
a pair of conjugate edges to be equal to the minimum of the slacks of all the
dual feasibility constraints excluding those corresponding to uniform labeling
in which it participates. The uniform labeling constraints are excluded because
flow conservation constraints imply that for a clique c∑

p∈c

fcpm =
∑
p∈c

fcnp,

or ∑
p∈c

fcnp −
∑
p∈c

fcpm = 0,
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or ∑
p∈c

Vc,p,a = 0. (14)

In effect the constraints corresponding to uniform labeling given by equation (9)
are always satisfied regardless of the flow in conjugate edges.

We make the implications of our definitions clear by an example (c.f. supple-
mentary material for detailed working out). As mentioned earlier flow pushing
in the flow graph simulates the movement of balls in two wells of a clique. If in a
clique c, ball a in well p comes down by amount δ and ball a of well q in the same
clique goes up by the same amount, then in the flow graph this is simulated by
“pushing” δ “flow” in the path fragment p → m → n → q of the gadget corre-
sponding to clique c. The effect of this “flow push” is to reduce the value of dual
variable Vc,p,a by δ and increase the value of Vc,q,a by δ. Note that this change
in the values of the dual variables does not effect the dual feasibility constraints
in which either both Vc,p,a and Vc,q,a participate or do not participate. However,
the slack of those constraints in which only Vc,p,a participates increases by δ
and those in which only Vc,q,a participates decreases by δ. Clearly the value of
δ should not be allowed to increase by an amount which makes the slack of a
constraint negative, i.e. “restrictions on residual capacity therefore only needs to
take into account those dual constraints which can become infeasible by pushing
flow”. Now let us consider a situation in which residual capacity for the pair
of conjugate edges for node q in clique c is 0. This implies that at least one
constraint which contains the dual variable Vc,q,a is tight. It should be noted
that it will still be possible for node p to send flow to q provided all the tight
constraints that contain Vc,q,a also contain Vc,p,a. This is because any increase
in Vc,q,a is counter balanced by corresponding decrease in Vc,p,a (path from p to
q is p → m → n → q) and the constraints that were tight prior to pushing of
flow continue to remain tight. The flow from p to q is therefore limited by the
constraints in which only Vc,q,a is present (and variable Vc,p,a is absent). Lemma
3 makes this more precise.

The fact that capacity constraints are on effective flow in a pair of conjugate
edges rather than on flow on each individual edge is handled by requiring that
flow is non zero in only one of the edges in the conjugate pair and associating
the capacity constraint with the edge with non zero flow. Two cases arise: The
conjugate edge with non zero flow emanates from n type auxiliary node. In this
case the residual graph has two edges. The edge in direction from an auxiliary
node (n type) to a pixel node has capacity equal to the residual capacity of
the conjugate edge pair, and the edge in the direction from a pixel node to
an auxiliary node has capacity equal to the flow in the conjugate edge pair.
In the other case, the capacity of the residual edge from the pixel node to the
auxiliary node (m type) is infinity, and the reverse direction edge has capacity
equal to the flow towards the auxiliary node (m type) in the conjugate edge
pair in question. When there is no flow in either of the edges of a conjugate
pair, then the residual graph has two edges corresponding to the two conjugate
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edges. One emanating from the auxiliary node (n type) has capacity equal to the
capacity of the conjugate edge pair. Capacity of the other is infinity. In this case
the requirement that only one of the conjugate edges has zero flow is ensured
by restricting augmenting flow on paths from s to t that include only one of the
edges of a conjugate pair in the residual graph.

2.3 Max Flow Min Cut Relationship for Submodular Potentials
and the Max Flow Algorithm

We consider a dual feasibility constraint to cover the dual variables (or equiv-
alently pairs of conjugate edges) that are present in its l.h.s. and a set of dual
constraints that covers the conjugate edges of an (S, T ) cut of a flow graph as
their conjugate edge cover. The cost of a conjugate edge cover is defined to be
the sum of the r.h.s. of dual feasibility constraints constituting the conjugate
edge cover. We define the capacity of an (S, T ) cut to be equal to the sum of
the value of the smallest cost conjugate edge cover covering the conjugate edge
in the cut and the capacities of all the other edges in it (from s to nodes in T
and from nodes in S to t). The general relationship between max flow and the
capacity of (S, T ) cuts is given below.

Lemma 1. Let (S, T ) be the cut in which S is the set of nodes reachable from
s in the residual graph when flow is maximal. Value of max flow is equal to the
sum of flow in saturated edges from s to nodes in T , and from nodes in S to t
and flow in conjugate edges from auxiliary nodes in S to nodes in T . Value of
max flow is less than or equal to the capacity of the (S, T ) cut.

It can be shown that [22] when dual feasibility constraints are submodular
then max flow in a flow graph is always equal to the value of the (S, T ) cut of
Lemma 1. The following hold.

Lemma 2. If Wc(lc) is submodular for all c in C, then whenever in the flow
graph there exists a conjugate edge that has residual capacity zero and is covered
by two tight dual feasibility constraints corresponding to pixel sets X and Y of
some clique, the dual feasibility constraint corresponding to pixel set X ∪ Y is
also tight.

Theorem 1. When costs are submodular, in the flow graph corresponding to
the dual optimization problem, max flow is equal to min cut and corresponding
primal and dual solutions are optimal.

Lemma 3. A saturated conjugate edge n → p corresponding to a clique c in
presence of flow f cannot be in an augmenting path if the only tight dual fea-
sibility constraint covering it covers no other edge, or if the intersection of all
tight dual feasibility constraints covering it contains no other edge.

We now give details of an augmenting path based max flow algorithm for the
gadget based flow graphs.
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We add “include all saturated conjugate edges in the residual graph to which
Lemma 3 does not apply” as an additional rule for adding edges to the residual
graph. Such a saturated edge of the residual graph can be included in an s − t
augmenting path provided there is an immediately preceding conjugate edge
in the path covered by the same tight dual constraint. The residual capacity
of such a saturated edge is contextually defined. It is equal to the minimum
of the slacks of all dual constraints which cover the saturated edge excluding
those which cover both the saturated edge and the preceding edge. It can be
shown [22] that if flow is not maximum in a flow graph corresponding to the
dual optimization problem with submodular costs, then there will exist an s− t
augmenting path in the residual graph consistent with that flow.

For the purposes of determining flow that can be pushed in an augmenting
path from s to t, we break the part of the augmenting path that excludes nodes
s and t into path fragments. Each path fragment is between two pixel nodes
p and q of a clique and has the form p → n → q or p → m → n → q. Note
that each of these path fragments lies completely in the gadget corresponding
to a clique. For what follows we define the length of an augmenting path to be
the number of path fragments in it. With the augmenting path length defined
as above, the property that the length of the shortest flow augmenting path in
the residual graph is non decreasing, if flow is always augmented on the shortest
length augmenting path, holds [22].

Lemma 4. Let the shortest augmenting path length from s to t after l shortest
augmenting path flow augmentations be denoted by δl(s, t) . Then δl+1(s, t) ≥
δl(s, t).

If we use Edmonds and Karp’s shortest path augmentation strategy [23] then
the complexity of the algorithm, assuming |C| ≈ n, can be shown to be O(2kk2n3)
[22]. The corresponding complexity for reduction bases algorithm can be shown
to be O(25kn3) [22].

3 Experiments and Discussion

All experiments were conducted on a computer with 2.5GHz dual core processor,
2GB of RAM running Windows 7 operating system with 64 bit addressability.
Our algorithm has been implemented in C++. The comparison has been done
using publicly available code of Ishikawa [24] which uses QPBO [25] and codes
from Darwin framework [26] that we could run. These were Iterated Conditional
Modes (ICM) [10], Max Product Inference (MPI) [11], Asynchronous Max Prod-
uct Inference (AMPI) [11], TRWS [27] and Dual Decomposition MAP inference
(DD) [9]. For the purpose of reporting we will refer to our algorithm as GC and
the Ishikawa’s reduction code using QPBO as IQ. It should be noted that GC
gives optimal results for submodular potentials. Experiments, reported here, put
in perspective comparative performance and quality of the prevalent techniques
on 2 label multi clique problems when potentials are submodular. This focus is
important because real life problems are multi label in general and get solved
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either by repeatedly solving of 2 label subproblems or by direct techniques which
generalize the 2 label algorithms. Our algorithmic technique has a natural gener-
alization for handling non-submodular potentials directly. We will be reporting
that algorithm and a comparative study separately later.

3.1 Binary Image Segmentation

Experiments have been conducted on a synthetic image with gaussian noise
added to the image. The terminal weights (unary potential) for black and white
labeling were chosen as difference of pixel intensity from their respective ideal
values (0 and 255). The segmentation problem has been solved using rectangular
cliques of various sizes with a clique anchored on every pixel resulting in number
of cliques in the system equal to the number of pixels in the image. We have

Image

Size

Clique

Potential DD MPI ICM TRWS IQ GC

50 × 50 SQRT 219496 267018 231803 221815 232197 219161

50 × 50 NE 226956 293521 231483 228289 226424 226424

50 × 50 SQR 223668 300197 230690 226258 231101 223298

100 × 100 SQRT 845883 1056459 918196 848071 919249 843056

100 × 100 NE 854019 1131180 916320 858773 851585 851585

100 × 100 SQR 863277 1221611 920385 872259 920809 859448

Table 1: Energy of the solution inferred with various methods for a 4 clique
problem at different image sizes

experimented with three clique potentials. They are SQRT which penalizes as per
square root of the number of edges present in the labeling, NE which penalizes a
labeling proportional to number of edges, and SQR which penalizes according to
the square of number of edges. NE and SQRT are submodular for cliques of size
2× 2, while SQR is not. Tables 1 and 2 provide details of energy outputted and
time taken by various algorithms on 4 clique problems of various sizes. It should
be noted that algorithms which output near optimal results take couple of order
of magnitude more time. MPI is only two to three times slower than GC but
has very poor energy output. MPI seems to move into a local minima fast and
does have the ability to move out of it. Performance of AMPI on the potentials
used was very similar to MPI in both energy outputted and time taken. Also,
algorithms like DD and ICM which have good energy convergence started taking
tens of minutes at image size of 150× 150 and simply failed to run when image
size was increased to 200× 200.

Figure 2 shows the output image obtained on running various algorithms
on the noisy image. Note that the quality of the output image is directly pro-
portional to the energy outputted by the algorithms in general. Poor quality of
output image for IQ is because the QBPO algorithm, as mentioned earlier, can
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Image

Size

Clique

Potential DD MPI ICM TRWS IQ GC

50 × 50 SQRT 2084 8 246 7769 86 4

50 × 50 NE 2207 7 244 8228 4 4

50 × 50 SQR 2215 7 247 7823 89 4

100 × 100 SQRT 14202 41 3988 107873 493 14

100 × 100 NE 14123 36 3986 107137 15 15

100 × 100 SQR 16466 40 5976 107483 577 15

Table 2: Inference time in ms for various methods for a 4 clique problem at
different image sizes

(a) Orig (b) Input (c) GC
818763

(d) IQ
912134

(e) ICM
834381

(f) DD
819801

(g) MPI
967039

Fig. 2: Segmentation results from inference methods. Clique potential is SQRT.
Algorithm name is followed by the energy outputted.

leave nodes unlabeled. In this case the grey nodes are those left unlabeled by
QBPO. It is interesting to point out that IQ gives optimal results for NE poten-
tial. This is because for NE the energy function in the polynomial form has no
monomial terms of order larger than two. IQ, in this case, does not introduce
any auxiliary variables and leaves the polynomial form as is. Since for second
order potentials submodularity and regularity are identical IQ terminates with
the optimal solution. For other algorithms, NE and SQR potentials performance
is along the lines for SQRT.

Table compares the algorithms from the perspective of time taken with vary-
ing clique sizes. Time taken by DD seems to be varying in a way similar to GC.
For higher order cliques ICM’s performance seems to be similar to MPI. How-
ever, for IQ time taken has increased at a much rapid rate. This increase is due
to the exponentially large number of nodes added in reduction based algorithms.
Our experiments indicate that for large clique sizes GC is hundreds of time faster
than IQ.

4 Conclusions

We consider GC to be the first step towards development of a truly practical
strongly polynomial algorithm for optimizing submodular higher order energy
functions that arise in problems modeled by MRF-MAP. Its primary limitations
are in the multiplicative factor of 2k that shows up in the time complexity anal-
ysis. While this limits its realistic practical (in terms of time) use on images of
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Image

Size

Clique

Size DD ICM GC IQ

100 × 100 4 15081 6061 14 519

100 × 100 6 36683 9294 103 7398

50 × 50 8 21290 377 159 32604

50 × 50 9 44872 431 435 206756

50 × 50 10 88577 447 1102 DNR

50 × 50 12 400543 535 7125 DNR

Table 3: Time comparison at various clique and image sizes

500 × 500 to at most 9 cliques, the worst case time complexity for this image
size and k = 16 will be less than O(n5) the time complexity of the most ef-
ficient strongly polynomial algorithms known for general submodular function
optimization. The gadget we have introduced for modeling a clique is quite pow-
erful in that it can be generalized to handle non submodular higher order cost
functions also. Of course, practical algorithms for non submodular functions will
only find approximate solutions. We have developed approximate algorithms
based on a generalization of the gadget introduced here. We can show that for
submodular deviation functions introduced by Rother et al. [7] to handle sparse
potentials GC needs to track only one constraint for every preferred labeling
resulting low order strongly polynomial algorithms that are extremely efficient.
These results will be reported in a future paper.
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