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Abstract

A large proportion of videos captured today are first per-
son videos shot from wearable cameras. Similar to other
computer vision tasks, Deep Neural Networks (DNNs) are
the workhorse for most state-of-the-art (SOTA) egocentric
vision techniques. On the other hand DNNs are known to
be susceptible to Adversarial Attacks (AAs) which add im-
perceptible noise to the input. Both black-box, as well as
white-box attacks on image as well as video analysis tasks
have been shown. We observe that most AA techniques ba-
sically add intensity perturbation to an image. Even for
videos, the same process is essentially repeated for each
frame independently. We note that definition of impercep-
tibility used for images may not be applicable for videos,
where a small intensity change happening randomly in two
consecutive frames may still be perceptible. In this paper
we make a key novel suggestion to use perturbation in opti-
cal flow to carry out AAs on a video analysis system. Such
perturbation is especially useful for egocentric videos, be-
cause there is lot of shake in the egocentric videos anyways,
and adding a little more, keeps it highly imperceptible. In
general our idea can be seen as adding structured, para-
metric noise as the adversarial perturbation. Our imple-
mentation of the idea by adding 3D rotations to the frames,
reveal that using our technique, one can mount a black-box
AA on an egocentric activity detection system in one-third
of the queries compared to the SOTA AA technique.

1. Introduction
Despite achieving superior performance on a variety of

computer vision tasks [3,11,12,33], Deep Neural Networks
(DNNs) remain remarkably susceptible to imperceptible ad-
versarial perturbations [37]. The goal of an adversarial at-
tack (AA) is, given a clean image, I , create an adversar-
ial perturbation (P ), which when added to the clean image,
generates an adversarial sample Iadv = I + P , which tricks
a DNN model into producing an incorrect prediction. Since
the purpose is to attack a system, the perturbation should be
imperceptible to the humans.
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Figure 1. A brief pipeline for the proposed system. SR denote
Success Rate, and ANQ denotes Average Number of Queries. Suc-
cessful Attack demands high SR and low ANQ. For a given in-
put video of size T × H × W × C, where T is the number of
frames, and H , W , and C are height, width, and channel respec-
tively of each frame, an intensity based attack needs to predict
T ×H ×W × C parameters. Whereas, our proposed parametric
perturbation attack, using rotation based transformation, predicts
only T × 3 parameters. This reduces the query budget to predict
the parameters. Geometric transformations are natural perturba-
tions and do not disturb semantic integrity of an image or a video.

The simplest setting to mount such an AA is when the
adversary gets full access to the model (M ), including
input(X)/output(Y ), and the exact gradients (G). One can,
then, simply backpropagate the loss corresponding to the
desired (incorrect) output, and use it guide the perturbation
in the input [16, 25, 37]. The setting is called white box at-
tacks, but is usually impractical in real life, due to unavail-
ability of the full access to the model. The alternate setting
is the black box setting when an adversary has access to X ,
and Y , but not G. In this formulation the primary challenge
becomes estimating the gradient at the input without hav-
ing access to G [6, 16, 17]. The quality of an AA technique
is usually determined by how imperceptible the P is, and
additionally in case of black box attacks, how many (X ,Y )
pairs a technique needs to find a P corresponding to a par-
ticular I .



Researchers have shown both white box and black box
attacks for a variety of DNN models across range of tasks
[37]. Further, relevant to our context, the attacks have been
shown when the input to the model is an image [16,17], or a
video [20,49]. Our focus in this paper is on mounting black
box adversarial attacks on video analysis (VA) systems .

We note that most of the techniques for AA on a VA sys-
tem trivially extends the black box pipeline from images
to videos. The videos are broken down into frames, and
adversarial examples are created by adding random pertur-
bations in the pixel intensities [20, 49]. For a successful
attack, these methods require a large number of queries on
the target model. For example [20] requires 23K queries
on an average for generating a single adversarial sample.
We would like to emphasize that a frame-wise attack, using
intensity-based noise, do not coordinate the adversarial per-
turbations between consecutive frames. While a change in
intensity level of a few individual pixels may be impercep-
tible in an individual frame, when played as a video, such
random flashes are easily detected by a human being.

One of the key ideas of this paper is to parameterize the
perturbation. The parameterization has two advantages, (1)
it is easier to regularize within, and across the frames, and
(2) one can perturb a large number of pixels, by estimating
only a few parameters, thus reducing the query budget, an
important consideration in a black box attack. While, the
idea of parametric perturbation is generic and can be used
in variety of settings, given our focus to videos, we consider
it for attack on VA systems, and even more specifically, on
egocentric VA systems.

We observe that one of the simplest ways to perform co-
ordinated change in intensity levels of large number of pix-
els, across frames of a video, is by geometrically transform-
ing each frame. The transformation will cause change in the
optical flow, which is an important cue for many VA tasks.
At the same time, performing frame-wise geometric trans-
formation maintains semantic integrity of frame contents,
keeping it imperceptible to human beings.

Contributions: The key contributions of this work are:

1. We propose to add novel parametric perturbations to
mount an AA attack against a computer vision system.

2. For a VA system, we suggest use of geometric transfor-
mations to implement such parametric perturbations.

3. We propose a novel DNN architecture for predicting a
mix of intensity, and geometric perturbations which can
successfully fool a VA system to carry out black box AA
attack.

4. Our exhaustive experiments on multitude of benchmark
datasets, and VA tasks for egocentric, and third person
videos show that our proposed architecture outperforms
SOTA techniques, managing to fool a DNN in one-third
of the queries as needed by the SOTA.

2. Related Work

Adversarial Attacks: Szegedy et al. [37] have shown that
by computing a small noise on the original image, one can
create an adversarial example. Papernot et al. [25] have
shown that a black box attack can be carried out on a target
model by transferring the adversarial examples of a local
trained network. However, such a technique still requires
knowledge of the dataset and training procedure of the tar-
get model. Natural Evolutionary Strategies have been ex-
tended in [16] to perform gradient estimation. Ilyas et al.
[17] have shown that time and data-dependent priors can
reduce the number of queries in black box attacks. The
meta-based method has been proposed by Du et al. [6] for
black box attacks on image analysis models. However, lit-
tle work has been done on attacking DNNs for VA. Further,
to the best of our knowledge, there is no AA proposed for
egocentric VA models.

Adversarial Attacks on Video Analysis Models: For
third-person videos, Wei et al. [44] have investigated the
sparsity and propagation of adversarial perturbations across
videos for creating a white-box attack. Li et al. [22]
have proposed Generative Adversarial Networks to synthe-
size adversarial examples for a video classification DNN.
Inkawhich et al. [18] have proposed an FGSM [10] style of
attacks for attacking a two-stream video classifier. Chen
et al. [4] added a few fake frames to attack video classifi-
cation DNNs. The first black-box video attack is proposed
by Jiang et al. [20], where they have used an ImageNet
pre-trained model to create a gradient for each video frame
and refined them by using natural-evolution-strategies [16].
More recently, [45, 47] perturb only a few selected frames
rather than the whole video. In [49] a motion based sampler
for perturbing every frame in the video has been proposed.

Third-person Video Analysis: Recent methods for third-
person video action recognition utilize 3D CNNs [2, 7, 19,
40, 43, 50]. 3D CNNs extend 2D filters in temporal dimen-
sions to extract spatio-temporal features from videos. Since
early 3D models [19, 40] are hard to train, many follow-up
works have been proposed [2, 7, 31, 41]. Two-stream meth-
ods proposed in [34] combine a spatial network using RGB
images and a temporal network taking optical flow input.
Optical flow information has also been found beneficial in
few-shot video classification [51].

First-person Video Analysis: Some notable works in
general egocentric video analysis include camera wearer’s
activity and action recognition [1, 21, 28–30, 35, 36, 42],
wearer gaze estimation [15], temporal segmentation [24],
and video summarization [32, 46]. Another uniquely ego-
centric video task is recognizing the wearer capturing the
video. The task has attracted lot of attention in recent years
[7, 8, 13, 14, 23, 26, 27, 30, 38, 39].
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Figure 2. Overview of our framework for black-box video attack. The steps in the iterations are numbered.i) Compute Gradient estimation
for intensity-based noise; ii) Compute Gradient estimation for camera rotational noise; iii) Composing the gradients utilizing DifferenceNet
(Extracts semantic difference between I and Iadv); iv) Use the estimated gradient to perform iterative projected gradient descent (PGD)
optimization on the video.

3. Proposed Methodology
3.1. Gradient Estimation

We consider a DNN model f , which has been pre-trained
for some VA task. The model takes as input a video
V ∈ RT×H×W×C , where T , H , W , and C represent
video length, height, width, and number of channels (in
each frame) respectively. Assuming a video classification
model, the output of f is a label y ∈ {1, . . .K}, where K is
the number of classes. The goal of an adversarial attack is,
given an input video V , generate an adversarial video Vadv
which minimises the loss function:

L = max(ly −max
k ̸=y

(lk), 0). (1)

Here l is the logit vector corresponding to input Vadv, and li
is the value of ith element (corresponding to class i) of the
vector. Minimizing L confuses the model with the second
most confident class prediction for the untargeted adversar-
ial attack. For the targeted attack maxk ̸=y(lk) can be re-
placed by the logit of the corresponding class. To simplify

the notation, in the rest of the paper we simply use L(V, y)
instead of L(f(V ), y). The adversarial video Vadv is chosen
as:

argmin
Vadv

L(f(Vadv), y)

s.t. dist(Vadv, V ) ≤ max dist,
and #queries ≤ Q.

(2)

We can model Vadv using any perturbation parameterized
by θ ∈ RT×d, where d is the dimension of θ, s.t. Vadv =
Pert(V, θ). Here, the function Pert(V, θ) applies the pertur-
bation parameterized by θ on the video V . The function
Pert will be dependent upon the type of perturbation and
is defined in detail in Sec. 3.2. To generate an adversarial
video Vadv, we need to find an optimal perturbation θ∗ s.t.:

θ∗ =argmin
θ

L(Pert(V, θ), y)

s.t. ∥θ∥2 ≤ k,

and #queries ≤ Q.

(3)

Here k is the maximum perturbation allowed. We have used
ℓ2 norm for constraining the θ, but any other suitable con-



straint on the θ could have been used. The above perturba-
tion framework allows us to generalize the adversarial at-
tacks additive, multiplicative, or even some complex non-
differentiable perturbations. Moreover, it allows us to de-
sign a parametric perturbation of a very low dimension d
which is easier to compute in limited query budget.

The key challenge in black-box adversarial attacks is to
estimate the gradient of a model. It is because for this set-
ting, the model is not accessible (beyond input, output),
and the gradient ∇θL(Pert(V, θ), y), required for generat-
ing Vadv cannot be directly computed. Hence, we adopt an
iterative optimization strategy suggested in [49] for estimat-
ing ∇θL(Pert(V, θ), y).

It is important to note that for an iterative optimization,
we are only interested in the direction of ∇θL(Pert(V, θ), y)
rather than its exact value which also includes the magni-
tude. Hence, we learn a vector g ∈ RT×d whose direction
( g
∥g∥ ) aligns with ∇θL(Pert(V, θ), y). In order to estimate

such a g, we use the following loss function [17]:

l(g) = −⟨∇θL(Pert(V, θ), y),
g

∥g∥
⟩, (4)

which is the inverse of directional derivative of L, in the
direction of the vector g. The inverse direction of direc-
tional derivative provides the direction of g’s movement
to optimize l(g) and get closer to the desired gradient
∇θL(Pert(V, θ), y) as:

g∗ = argmin
g

(l(g)). (5)

In order to compute g∗, we compute the gradient ∇gl(g),
denoted as ∆. We perform a two-query estimation to the
expectation and apply the authentic sampling [17] to get:

∆ =

[
l(g + δr)− l(g − δr)

δ

]
r, (6)

where r ∈ RT×d ∈ N (0, 1
dI) is the Gaussian noise, and δ

is a small number scaling the magnitude of loss variation.
In two-query estimation, r vector acts as a directional can-
didate for the update of g. We query in the direction of r
and in its opposite direction. This gives us a scalar indicat-
ing of how good the candidate r is. We scale r accordingly
to form our update of g.

Finally, Eq. (4) can be approximated as [17]:

l(g) = −⟨∇θL(Pert(V, θ), y),
g

||g||
⟩

≈ −L(Pert(V, θ + ϵg), y)− L(Pert(V, θ), y)
ϵ

,

(7)

where ϵ is a small approximation constant. Substituting

Eq. (7) into Eq. (6), we get GE(V, y, θ, g) as:

∆ = GE(V, y, θ, g)

=

[
L(Pert(V, θ + ϵg+), y)− L(Pert(V, θ + ϵg−), y)

ϵδ

]
r,

(8)
where g+ = g + δr and g− = g − δr.

3.2. Parametric Noise

It can be observed from Eq. (8), that in order to esti-
mate the gradient, we have utilized a random noise (r). For
intensity-based noise, rin ∈ RT×H×W×C is used for esti-
mating the gradient gin ∈ RT×H×W×C [49]. This requires
one to estimate T×H×W×C parameters for the adversar-
ial attack, which may lead to a high number of queries [49],
making such attacks unrealistic in practice.

To overcome these limitations, we have proposed a para-
metric noise (camera rotational noise rcr) which can suit-
ably alter the geometrical properties of a video for an at-
tack. Since, rotation of the camera can be represented as a
3D vector in Euler space, the proposed noise rcr ∈ RT×3,
requires only T × 3 parameters to be predicted for an ad-
versarial attack. This significantly reduces the number of
queries required to predict it in comparison to an intensity-
based noise.

We estimate the camera rotational gradient gcr ∈ RT×3

from rcr using gradient estimation, as discussed in the pre-
vious section. This allows us to find a new perturbation
vector θ, with θi ∈ R3 for each frame. Recall, that θi cor-
responds to a 3D rotation for the frame. We compute an
Homography using the 3D rotation as Hi = K · θiK−1,
where K is the camera internal matrix (assumed identity in
our case). The perturbation can be applied on the video as:

Pertcr(V, θ) = ∀i(Hi ∗ Vi), (9)

where, Vi is the ith frame in the video V and ∗ denotes the
geometric transformation of each frame using the Homog-
raphy Hi. To ensure that the perturbations are small, we
have clipped the magnitude of rcr to 0.18 radians.

We observe that in our experiments the number of
queries required to render a successful black-box attack gets
substantially reduced by using parametric noise, but at the
expense of success rate (refer Sec. 4.2). Hence, we propose
to mix it with intensity based perturbation, using a learnable
composition parameter, as described in the next section.

3.3. Gradient Composition

In order to address the issue of low success rate using
parametric noise, we propose a novel learnable gradient
composition framework which suitably combines intensity-
based, and parametric perturbations. Such fusion exploits
spatio-temporal properties of a particular segment in a video



to dynamically adjust the weights of two kinds of pertur-
bation, and achieve lower queries. For example, if there
is very small motion between two frames, intensity based
noise can be more effective. However, in the case of large
temporal movements of objects or camera, the rotational
noise can be useful. We propose a Siamese network based
architecture , named DifferenceNet, to predict the weight of
each perturbation for a frame.

DifferenceNet: The proposed DifferenceNet model is a 3D
CNN model (with I3D [2] pipeline) trained to calculate se-
mantic difference between input video (V ) and adversarial
video (Vadv). The task of DifferenceNet is to provide a low
difference score to videos which are semantically similar
otherwise a high score. This is achieved by training the
network with a dual margin contrastive loss function [48].
The network is trained over positive pairs which have the
camera rotations between the frames corresponding to ac-
tual videos and negative pairs having abrupt rotations be-
tween the frames. To create positive and negative pairs, real
Homographies (Hreal), between the frames from the given
dataset D and random/fake Homographies have been gen-
erated. Application of Hreal,Hrand on a video segment V ,
gives us (V p, V n) constituting a positive and negative pair
as (⟨V, V p⟩), (⟨V, V n⟩) respectively. Finally, the trained
network is utilized for gradient composition as described
below.

Gradient Composition: For a given input V , intensity
based perturbation, and camera based perturbations are
combined as:

V̂ = Pertin(V, αγθin)

Vadv = Pertcr(V̂ , α(1− γ)θcr),
(10)

where, γ ∈ [0, 1]T×1 is the composition parameter and α
is a small constant. Since γ depends on semantic difference
between (V, Vadv), we have utilized DifferenceNet to predict
its value:

d = DifferenceNet(V, Vadv)

γ = γ − σ

(
δd

δγ

)
,

(11)

where σ is a small constant.

3.4. Projected Gradient Descent

Finally, projection gradient descent (PGD) has been uti-
lized to translate gradient estimation and its combination
into an efficient Adversarial Example Optimization (AEO).
We update intensity based perturbation (Pert(V, θin)), cam-
era rotational perturbation (Pert(V, θcr)), and composition
parameter (γ) in every iteration of PGD. The complete pro-
cedure is shown in Algorithm 1.

Algorithm 1: Adversarial Example Optimization
(AEO)

Input: Original video V , its label y, learning rate α
for updating adversarial video.

1 Initialise gin = 0, gcr = 0, θin = 0, θcr = 0 and
γ = 0.5

2 while argmax [f(V )] = y do
3 ∆in = GE(V, y, θin, gin) // Eq 8
4 ∆cr = GE(V, y, θcr, gcr) // Eq 8
5 gin = gin − η∆in // Grad. Update
6 gcr = gcr − η∆cr // Grad. Update
7 θin = θin − gin // Param. Update
8 θcr = θcr − gcr // Param. Update

9 V̂ = Pertin(V, θinγα) // Grad.
Composition

10 Vadv = Pertcr(V̂ , θcr(1− γ)α) // Grad.
Composition

11 d = DifferenceNet(V, Vadv)

12 γ = γ − α× δd
δγ

13 V = Vadv

Output: Vadv

4. Experiments and Results
In this section, we provide the details of the experimental

analysis performed to validate the efficacy of the proposed
method. We start with the details of the experimental setup,
including details about the datasets used, target DNN mod-
els attacked, attack setting, and evaluation metrics. Finally,
we show the comparative analysis and ablation study using
both quantitative and qualitative experiments.

4.1. Dataset and Evaluation

Datasets: We perform video attacks on three video
tasks: third-person action recognition using Kinetics-
400 [2] dataset, first-person activity recognition via Epic-
Kitchens [5] dataset, and first-person wearer recognition
using IITMD-WFP [38] dataset. Kinetics-400 is a large-
scale dataset that has around 300K videos in 400 classes.
Epic-Kitchens is a first-person activity recognition dataset
that consists of 55 hours of egocentric videos from 32 sub-
jects and contains 125 labeled activities performed by the
subjects. IITMD-WFP dataset [38] consists of 3.1 hours of
videos captured from 31 different subjects. The dataset has
been captured under indoor and outdoor scenarios.

DNN Video Analysis Models Used for Experiments: For
third-person video action recognition, we follow the exper-
imental setup of [49]. We choose video action recogni-
tion model I3D [2] as our black-box model. For I3D train-
ing on Kinetics-400, we train it from ImageNet initialized
weights. For first-person activity recognition, we choose



Dataset Method ANQ SR%

Kinetics-400
V-Bad [20] 4,047 99.75

ME-Sampler [49] 2,717 99.00
Proposed 1,257 99.33

Epic-Kitchens
V-Bad [20] 8,483 99.71

ME-Sampler [49] 7,326 100.00
Proposed 3,564 100.00

IITMD-FPR
V-Bad [20] 5,480 94.67

ME-Sampler [49] 6,025 92.62
Proposed 3,487 96.33

Table 1. Untargeted attacks on Kinetics-400, Epic-Kitchens, and
IITMD-FPR. The attacked models are I3D, Rolling-Unrolling
LSTM, and EgoGaitNet respectively.

Dataset Method ANQ SR%

Kinetics-400
V-Bad [20] 23,182 92.95

ME-Sampler [49] 11,120 94.67
Proposed 6,234 95.82

Epic-Kitchens
V-Bad [20] 44,326 84.23

ME-Sampler [49] 22,541 89.12
Proposed 15,283 91.56

IITMD-FPR
V-Bad [20] 34,382 82.19

ME-Sampler [49] 18,759 86.67
Proposed 9,910 87.33

Table 2. Targeted attacks on Kinetics-400, Epic-Kitchens, and
IITMD-FPR. The attacked models are I3D, Rolling-Unrolling
LSTM, and EgoGaitNet respectively.

Rolling-Unrolling LSTM [9] as our black-box model. The
pre-trained weights of the model have been provided by
the authors. For first-person wearer recognition, we choose
EgoGaitNet [38] model. We perform the training procedure
as suggested by the authors, and using the code provided.

Attack Setting [49]: We perform both untargeted and tar-
geted attacks under limited queries. An untargeted attack
requires the given video to be mis-classified to any wrong
label, whereas a targeted attack requires classifying it to a
specific label. We randomly select one video from each cat-
egory for each dataset following the setting in [49]. The
target model correctly classifies all selected original videos.
We normalize the pixels between 0-1. We constrain the
maximum intensity perturbation to 0.03, maximum cam-
era rotational perturbation to 0.18 radians, and maximum
queries to Q = 60,000 for untargeted attack. For targeted
attack we choose maximum intensity perturbation to 0.05,
maximum camera rotational perturbation to 0.18 radians,
and maximal queries to Q = 200,000. If a technique is

Dataset Method ANQ SR%

Kinetics-400
Only Intensity 3,569 99.0
Only Rotation 1,067 38.19

Manual Composition 1,884 62.50
Proposed 1,257 99.33

Epic-Kitchens
Only Intensity 8,238 100.00
Only Rotation 3,286 62.81

Manual Composition 4,467 79.67
Proposed 3,564 100.00

IITMD-FPR
Only Intensity 6,356 95.23
Only Rotation 3,286 58.42

Manual Composition 4,019 72.48
Proposed 3,487 96.33

Table 3. Ablation study on Kinetics-400, Epic-Kitchens, and
IITMD-FPR. The attacked models are I3D, Rolling-Unrolling
LSTM, and EgoGaitNet respectively.

not able to find adversarial perturbation within these con-
straints, we record it as having consumed Q queries.

Evaluation Metric [49]: We use the average number of
queries (ANQ) required in generating adversarial examples
and the attack success rate (SR) as the metrics for compari-
son. ANQ measures the average number of queries made in
attacking across all videos, and SR gives the overall success
rate in attacking within a query budget Q. Thus, a smaller
ANQ and higher SR are desirable.

4.2. Quantitative Comparison

Untargeted Attacks: We report the effectiveness of our
proposed method compared to SOTA in Tab. 1. We com-
pare with V-BAD [20], and ME-Sampler [49]. To the best
of our knowledge these are the only two video based ad-
versarial attack models with the source code available. We
see that our technique achieves comparable SR as the SOTA,
while taking a fraction of query budget in comparison. We
also report the comparative performance on top-5 perform-
ing classes of each of the attacked model in Tab. 4.

Targeted Attack: We report the results of the targeted at-
tacks in Tab. 2. We also report the results of top-5 perform-
ing classes of each attacked model in Tab. 5. Similar to
untargeted attacks, here also we observe similar SR perfor-
mance and a large improvement in query budget. For exam-
ple, on Epic-Kitchens, our method consumes only 15,283
queries, in comparison to 44,326 by V-BAD and 22,541 by
ME-Sampler, an improvement of almost 3×. Even for Ki-
netics dataset, we outperform V-BAD and ME-Sampler by
saving 16,948 and 4,886 queries, respectively, and achieve
a comparable success rate.



Dataset Method Class 1 Class 2 Class 3 Class 4
ANQ SR% ANQ SR% ANQ SR% ANQ SR%

Kinetics-400
V-Bad [20] 4,618 99.54 4,975 99.57 4,857 99.83 4,573 99.85

ME-Sampler [49] 2,246 99.32 2,554 98.71 2,794 98.68 2,825 99.46
Proposed 1,851 99.35 1,719 99.40 1,548 99.31 1,881 99.24

Epic-Kitchens
V-Bad [20] 8,421 99.61 8,156 99.72 8,195 99.70 8,711 99.86

ME-Sampler [49] 7,672 100.00 7,914 100.00 7,574 100.00 7,057 100.00
Proposed 6,496 100.00 6,944 100.00 6,700 100.00 6,994 100.00

IITMD-FPR
V-Bad [20] 5,836 94.11 5,706 94.51 5,517 93.73 5,225 93.57

ME-Sampler [49] 5,720 92.53 5,661 91.34 6,566 91.77 5,970 91.06
Proposed 3,531 95.97 3,718 96.38 3,304 96.32 3,087 96.20

Table 4. Untargeted attacks on top-4 performing classes of Kinetics-400, Epic-Kitchens, and IITMD-FPR. The attacked models are I3D,
Rolling-Unrolling LSTM, and EgoGaitNet respectively.

Dataset Method Class 1 Class 2 Class 3 Class 4
ANQ SR% ANQ SR% ANQ SR% ANQ SR%

Kinetics-400
V-Bad [20] 23,059 91.74 27,234 93.14 25,735 93.47 20,838 93.15

ME-Sampler [49] 11,217 95.24 11,181 94.62 11,329 95.27 10,959 93.51
Proposed 6,414 95.87 6,037 95.65 6,163 96.03 5,894 95.93

Epic-Kitchens
V-Bad [20] 43,646 82.55 43,436 83.15 46,424 84.92 48,762 85.91

ME-Sampler [49] 22,040 87.96 22,159 88.94 22,494 89.90 22,820 89.65
Proposed 15,037 92.34 15,071 91.49 15,118 91.91 14,988 90.21

IITMD-FPR
V-Bad [20] 30,338 82.01 35,508 81.36 31,781 81.67 34,590 81.95

ME-Sampler [49] 18,553 86.26 18,888 87.11 18,269 87.44 18,493 85.94
Proposed 9,908 87.23 10,471 87.81 10,337 87.92 9,902 86.72

Table 5. Targeted attacks on top-4 performing classes of Kinetics-400, Epic-Kitchens, and IITMD-FPR. The attacked models are I3D,
Rolling-Unrolling LSTM, and EgoGaitNet respectively.

4.3. Qualitative Analysis

The comparative qualitative analysis of the proposed
framework with ME-Sampler [49] is shown in Fig. 3. We
have shown the analysis for three video segments, choosing
the middle frame from each video. For detailed analysis,
please refer to the supplementary material. The first col-
umn shows the original frame, the second column shows
the attacked frame using ME-Sampler [49], and the third
column shows the attacked frame using our proposed tech-
nique. We have also mentioned the number of queries re-
quired for the successful attack for each frame. It is evident
from the figure that our proposed framework, similar to ME-
Sampler, produces imperceptible perturbation to the video
frame. However, our proposed framework requires substan-
tially smaller number of queries for successful attack.

4.4. Ablation Study

Intensity based Vs Geoemtric Perturbation: We have
conducted ablation study to understand importance of vari-

ous components of the proposed architecture. Our method
introduces a mix of intensity based and geometric noise. In
Tab. 3 we show the results, when only one of the noise type
is used for perturbation. We see that only intensity based at-
tack causes much more query to generate the perturbation,
whereas rotation based attacks require much lesser queries
but also a much lower success rate. Combining the both as
in the proposed framework, achieves high success rate at a
lower query budget.

Manual Vs Learnt γ: The composition factor to combine
the intensity based and geometric perturbation is automati-
cally learnt by our model using DifferenceNet. In Tab. 3 we
also show the results after setting composition weight man-
ually. One can see that similar to geometric perturbation,
the configuration achieves low success rate, at a low query
budget. Automated learning of composition weight gives
best results, thus validating the need of DifferenceNet.

Distribution of γ: One of the key components of our model



Original Frame Attacked Frame by
ME-Sampler[49]

Attacked Frame by
Proposed Framework

Queries: 6,723 Queries: 2,461

Queries: 5,327 Queries: 2,083

Queries: 5,976 Queries: 2,742

Figure 3. Comparative Qualitative Analysis of the proposed sys-
tem. The detailed analysis is in the supplementary material. The
first column shows the original frame, the second column shows
the attacked frame using ME-Sampler [49], and the third column
shows the attacked frame using our proposed technique.
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Figure 4. Histogram of the learned composition parameter on
Epic-Kitchens dataset. The minimum and maximum values of γ
are 0.07 and 0.96 respectively. Given such a variability of γ, learn-
able gradient composition is required for successful attacks.

is the learnable gradient composition framework, where the
composition parameter γ is learned using DifferenceNet.
Fig. 4 shows the histogram of the learned composition pa-
rameters on Epic-Kitchens dataset. We see that the distribu-
tion of γ parameter is similar to the Gaussian distribution.
We report the mean of the Gaussian as 0.55 and standard
deviation as 0.11. The minimum and maximum values of
γ are 0.07 and 0.96 respectively. Given such a variability

Very Small Movement 
Intensity noise Favoured

Nominal Movement 
Both noise Favoured

Adverse Movement 
Rotational noise Favoured

Figure 5. Videos having low, middle and high γ values. Videos
having small spatio-temporal variation, high γ. Videos having
large spatio-temporal variation, low γ.

of γ (for successful attacks), it is no surprise that manual
gradient composition fails completely as also shown in our
ablation study (see Tab. 3).

Relationship between γ and Video Content: To under-
stand the relationship between γ value and the correspond-
ing video, we chose few videos having low, middle and
high γ values. A few representation frames of these videos
are shown in Fig. 5. We observe that the videos having
small spatio-temporal variation, results in higher γ. Con-
versely, large variations results in smaller γ. This is ex-
pected, since in the videos where spatio-temporal variation
is small, intensity-based noise has more affect rather than
geometric noise. Hence, the proposed framework favors in-
tensity noise by learning a high γ value.

5. Conclusion
Black-Box adversarial attacks on DNNs for videos anal-

ysis have utilized intensity-based noise for adversarial per-
turbation. However, such frameworks, require a large num-
ber of queries for estimating the perturbation. To overcome
that, we propose a parametric noise based adversarial at-
tack. It utilizes both intensity-based noise and camera rota-
tional noise for generating the adversarial video. Gradient
estimation has been done over both noises and are merged
using a learnable novel gradient composition framework.
We have shown the efficacy of the proposed framework on
both first-person and third-person video analysis tasks.
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