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Figure 1: The above figure shows cutting (first two rows) and washing (last two rows) activities performed by two different
subjects, as seen from the head-mounted egocentric cameras. The thesis of this paper is that egocentric cameras are able to
capture wearer identifying hand gesture signatures, merely by looking at various activities being performed by the wearers.
While it may be difficult for the reader to visually, our deep neural network-based model correctly identifies that activities in
rows 1 and 3 have been performed by the same wearer, whereas the other subject has performed activities in rows 2, 4.

ABSTRACT
Wearable egocentric cameras are typically harnessed to a wearer’s
head, giving them the unique advantage of capturing their points
of view. This characteristic has led to the concerns about egocentric
cameras leakingwearer’s privacy. Hoshen and Peleg [9] have shown
that egocentric cameras indirectly capture the wearer’s gait, which
can be used to identify a wearer based on their egocentric videos.
The authors have shown a wearer recognition accuracy of up to
77% over 32 subjects. However, an important limitation of their
work is that such gait features can be extracted only from walking
sequences of a wearer. In this work, we take the privacy threat a
notch higher and show that even the wearer’s hand gestures, as
seen through an egocentric video, leak wearer’s identity. We have
designed amodel to extract andmatch hand gesture signatures from
egocentric videos. We demonstrate the threat on the EPIC kitchen
dataset containing 55 hours of the egocentric videos acquired from
32 subjects doing various activities. We show that: (1) Our model
can recognize a wearer with an accuracy of up to 73% based on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413654

the same activity, i.e., the model has seen ‘cut’ activity by a wearer
in the train set, and recognizes the wearer based on another ‘cut’
activity by him/her while testing. (2) The hand gesture signatures
transfer across activities, i.e., even if our model does not see ‘cut’
activity of a wearer at the train time, but sees other activities such
as ‘wash’, ‘mix’ etc., the model can still recognize a wearer with an
accuracy of up to 60%, by matching hand gesture signatures of ‘cut’
at test time with train time signatures of ‘wash’ or ‘mix’. (3) The
hand gesture features even transfer across subjects, i.e., even if the
model has not seen any activity by some subject, one can still verify
a wearer (open-set), and predict that the samewearer has performed
both activities with an Equal Error Rate of 15.21%. The code, trained
models are available at https://egocentricbiometric.github.io/
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1 INTRODUCTION
Unlike point and shoot, hand held cameras that capture only when
a user explicitly gives a command, egocentric cameras, due to their
always-on nature, can potentially capture wearer’s intimate private
details as well. Hence, the video contributors and the research
community have been careful in sharing egocentric videos captured
in sterile environments such as kitchen, vacation tours, outdoor
activities only. However, there is a massive oversight regarding
other ways in which such videos can allow the wearer’s privacy
breach.

It has been shown by Hoshen and Peleg[9], that it is possible
to recognize a wearer from his/her egocentric videos. The result
is significant since the wearer is usually never seen in his/her ego-
centric videos. However, a first person camera, by virtue of being
tied to a wearer’s head, also captures his/her gait profile, which
is a well known biometric signature of a person. For finding the
gait style Hoshen and Peleg have computed the optical flow from
an egocentric video and simply trained a Convolutional Neural
Network classifier to identify the wearer. They have demonstrated
their attack by showing an accuracy of 77% for recognizing a wearer
in a dataset containing 32 subjects.

The attack proposed by Hoshen and Peleg has one significant
restrictive assumption. It requires an attacker to capture many
egocentric videos of the wearer while walking. Hence, a cursory
look at the finding may suggest that there is no implication on
the EPIC kitchens dataset. There are no walking activities in the
dataset, and the creators have made sure that there are no reflective
surfaces present in the scene, which may help others to identify the
wearers. However, a more in-depth look reveals that even in this
case, the egocentric videos still capture the wearer’s hands and the
way the person handles objects, or how he/she executes a particular
action.

The focus of this paper is on exploring, if hand gestures visible
in an egocentric video may also reveal any wearer identifying infor-
mation. Our work aims to answer the following specific questions:
(1) Given egocentric videos of various people, performing a specific
activity, can we identify (1 : 𝑁 matching) the camera wearer using
only their hand gestures? (2) Given two anonymous videos picked
from the public video-sharing dataset performing a specific activity,
can we verify (1 : 1 matching) the claim that both the videos belong
to the same camera wearer or not? Further, we would like to un-
derstand both of the above objectives in two sub-settings, (a) when
we have the same activity as the query activity, but maybe in a
different context or background, performed by the wearer available
in the gallery, or (b) when we do not have the same but some other
activity performed by the wearer in the gallery.

We propose the following approach to mount a hand gesture
based wearer recognition attack in this paper. We compute the
dense optical flow from the egocentric videos and use it for the
wearer recognition. Optical flow choice is important so that the
proposed model does not over-fit any appearance-based similarity
from the background, handled objects, or the wearer’s hands. For
the first objective of wearer recognition, we formulate the problem
as a multi-class classification problem. The training data available
in the publicly available egocentric datasets are small and leads to
severe over-fitting when training a deep neural networkmodel from

scratch. Hence, we propose a 2-stream model using 3D-CNN mod-
els (C3D[26] or I3D [2]) pre-trained over huge sports-1M dataset
[12] and LSTM [8] or BiLSTM [20], and fine-tune the model using
optical flow computed from egocentric videos. We also utilize the
hand masks extracted from input video frames. These act as atten-
tion regularization for learning the behavioral pattern from optical
flows.

For the second objective of wearer verification, we formulate
the problem as learning a distance metric using triplet loss. This
maps a video to a point in the embedding space as defined by the
network. The training process ensures that the embedding distance
between the videos from the same subject is closer as compared to a
video from a different wearer. The training utilizes online semi-hard
negative mining with a dynamic adaptive margin. To avoid over-
fitting, we first fine-tune the proposed network for the classification
as described above, and then train the network for distance metric
in an end-to-end fashion.

We have used EPIC kitchens dataset [3] for training as well as
demonstrating the proposed attack. Figure 1, shows two activi-
ties performed by two different wearers from the dataset. It can
be observed that there is a vast amount of background variation
both in inter as well as intra-subject activities. However, the pro-
posed network successfully recovers the wearer specific behavioral
characteristics and correctly identifies the actual wearers.

Contributions: The key findings and the specific contributions of
this paper are as follows:
(1) To the best of our knowledge, ours is the first work demon-

strating that hand gestures based behavioral features can be
extracted from the optical flow in an egocentric video. We be-
lieve that the results of our study hold important implications
for the safe public sharing of egocentric videos.

(2) For the closed-set settings, when the camera wearers are known
at the training time, we report an accuracy of 70% in recognizing
a wearer from a set of 28 subjects in the EPIC kitchens dataset.

(3) We show that hand gestures are unique across the activities. We
train the proposed model leaving a particular activity, and then
try to recognize a wearer using the left activity at the test time.
We achieve an equal error rate of up to 18.72% in this scenario.

(4) Taking the threat level a step higher, we demonstrate that it is
possible to recognize an uncooperating or anonymous wearer.
In the open-set settings, when we do not have any video of a
wearer available at the train time, our model can still verify that
the two videos are coming from the same wearer with an equal
error rate of 15.28%. We demonstrate this by using videos from
14 subjects in EPIC kitchens dataset for training and then using
the remaining 14 subjects for the verification test.

2 RELATEDWORK
First Person Recognition from Third Person Camera: There
have been techniques that assume the presence of another third-
person camera (wearable or static) present simultaneously to the
egocentric camera and aims to identify the camera wearer in the
third person view. In [4], the authors exploit multiple wearable
cameras sharing fields-of-view to measure visual similarity and
identify the target subject. Whereas, in [1], the common scene
observed by the wearer and a surveillance camera has been used



to identify the wearer. Other works compute the location of the
wearer directly [7, 15] or indirectly (using gaze, social interactions,
etc.) [16, 17], which is then used to identify the wearer. Poleg et
al. [18] identifies the wearer based upon the similarity in head
motion established from first person optical flow and tracking the
subject’s head in the third person video. They have observed that
the head motion gets embedded in the scene captured from the
egocentric camera. They suggested sharing the averaged out optical
flow of the egocentric videos to be used as a wearer’s signature.
They assume that the averaged out optical flow signatures does
not reveal any identifying information about the camera wearer.
Yonetani et al. [28] used the similar signatures as Peleg et al. to iden-
tify the wearer based upon the motion correlation over supervoxel
hierarchies in head motion established from first person optical
flow and tracking a subject’s head in the third person video. Yagi et
al. [27] has used the egocentric videos for predicting the future
location of target people visible in the egocentric videos based on
pose and scale of the person.

First PersonRecognition fromWearable Sensors: Tao et al. [24]
have shown that the gait features could also be captured from wear-
able sensors like accelerometer and gyroscope. As these sensors
capture the movement of the body, which is caused by the move-
ment of the legs, one indirectly captures the gait signature. Our
work hypothesizes that similar to gait pattern while walking, hand
gestures of a person while performing a particular activity also fol-
low a behavioral pattern like gait. Since these gestures are visible in
egocentric videos, they can be used to identify the camera wearer.

First Person Recognition from Egocentric Videos: There have
been relatively fewer works on recognizing the camera wearer or
his/her attributes from egocentric videos. Hoshen and Peleg [9]
have shown that the identity of the camera viewer can be extracted
from his/her egocentric video. They computed block-wise optical
flows from the given egocentric video and trained a small CNN for
camera wearer classification. Finocchiaro et al. [6] estimated the
height of the camera from the ground using only the egocentric
video without any intrinsic camera information. They have used a 2-
stream CNN based regression model, which regresses the height of
the camera wearer from the given input RGB video and its derived
optical flows. The authors have achieved a mean average error of
14.04 cms over a range of 103 cms of data.

Other Related First Person Video Analysis Tasks: In other re-
lated works, which do not target wearer recognition, Jian and
Graumann [10], have proposed to infer the wearer’s pose from
the egocentric camera. They have given a dynamic programming
and learning-based approach that gives the full body 3D joint po-
sitions of the wearer in each frame. The technique uses both the
optical flow as well as static scene structures to reveal the viewpoint
(e.g., sitting vs. standing). Moreover, many works have proposed
the use of hand gestures captured in egocentric videos for vari-
ous computer vision tasks. Singh et al. [22] extracted trajectory
aligned features for extracting salient hand gestures features for
activity recognition in egocentric videos. Sun et al. [23] has used
the hand gestures and object detection for predicting the actions

that the camera wearer might perform in the next few frames. Ka-
pidis et al. [11] have used the hand gestures and gaze estimation
for multi-task learning of the action recognition task.

3 PROPOSED METHODOLOGY
As described in the introduction, we use optical flow, as observed
in the egocentric videos, to train our proposed wearer recognition
model. We have trained our model for the two tasks: wearer classi-
fication, and open set wearer recognition. Below we describe the
architecture of our model as well as the details of the proposed
training routine.

3.1 Pre-processing
The first step in the proposed methodology is to pre-process the
videos. The videos have been sub-sampled into segments of 1 second
each. Each video segment is converted to a frame rate of 15 frames
per second. We also resize each frame to a size of 128 × 128 × 3.

Optical Flow: We compute dense optical flow between each con-
secutive frame using Gunner Farneback’s algorithm [5]. Hence, for
each frame, we get 128 × 128 × 3 dimensional optical flow matrix,
where the first two channels depict the flow at each pixel in 𝑥 and
𝑦 directions. We pre-compute the magnitude of flow at each pixel
and store it as the third channel in the optical flow matrix.

Hand Mask: Since the egocentric videos contain various chal-
lenges like rapid changes in illuminations, significant camera mo-
tion, and complex hand-object manipulations, there is a need to
assist the proposed model in looking at the right areas and features.
We compute hand masks from the egocentric videos and use them
to regularize the network learning by using them as an attention
mask. Li and Kitani [13] have proposed a hand mask extraction
module using a collection of regressors indexed by a global color
histogram. We follow their approach and use a bank of 48 Gabor
filters (eight orientations, three scales, both real and imaginary
components) to capture local textures. The posterior distribution
of a pixel 𝑥 given local appearance feature 𝑙 , and global appearance
feature 𝑔, is computed by marginalizing over different scenes 𝑐 . The
posterior distribution and can be approximated as:

P (𝑥 | 𝑙, 𝑔) =
∑
𝑐

P (𝑥 | 𝑙, 𝑐) P (𝑐 | 𝑔) , (1)

where P(𝑥 | 𝑙, 𝑐) is the output of discriminative global appearance-
specific regressor and P(𝑐 | 𝑔) is the conditional distribution of a
scene 𝑐 given global appearance features 𝑔. We use the pre-trained
discriminative global appearance-specific regressor [21] for com-
puting P(𝑥 | 𝑙, 𝑐) and the conditional P(𝑐 | 𝑔) is approximated using
a uniform distribution over the five nearest global features as com-
puted in [21]. The distribution P(𝑥 | 𝑙, 𝑔) provides the probability
of each pixel in a given image, whether it belongs to hand. Since
the input frame is of the size 128 × 128 × 3, we get a probability
matrix of 128 × 128. We quantize the output probabilities to {0, 1}
to create a hand mask. To make it compatible with the pre-trained
networks, we have replicated each image’s mask three times in the
channels. Hence for each frame, we get a 128 × 128 × 3 mask input.

Since each video segment consists of 15 frames, hence, for each
video segment we get a optical flow input of size 15× 128× 128× 3
and mask input of size 15 × 128 × 128 × 3.
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Figure 2: Proposed network architecture. Each 3D convolutional and fully connected layer is followed by a ReLU (except the
final layer). The final layer has softmax activation for classification task, and 𝐿2 normalization for the metric learning.

3.2 Network Architecture
As discussed above, the proposed model consists of 2 streams: opti-
cal flow and hand masks. Each stream gets a 15×128×128×3 input,
and produces an output feature vector of 𝑛 × 512, where 𝑛 is 5 or
10 depending upon the two experimented configurations described
later in the section. Both the streams have identical architecture,
called EgoHandNet hereon, as shown in Figure 2. Note that though
the architecture is identical, the weights in the two streams are not
tied.

The EgoHandNet itself consists of two modules, spatio-temporal
feature extractor, and long term temporal feature extractor. The
15 frames given as input to the EgoHandNet module are further
divided into five sub-sequences of 3 frames. Thus the size of each
sequence is 3 × 128 × 128 × 3. We apply a 3D CNN based spatio-
temporal feature extractor in order to extract a 512 dimensional
feature for each of the sub-sequence. We have experimented with
pre-trained C3D [26] or I3D [2] architectures for extracting the-
ses spatio-temporal features (denoted as ST in Figure 2). Later, a
long-term temporal feature extractor (LTT) is applied to learn long-
term temporal dependencies between the previously extracted and
five 512 dimensional 𝑆𝑇 features. For this purpose, we have experi-
mented with LSTM and Bi-LSTM network architectures. Both the
configurations have 512-dimensional hidden state representations.
The, long term temporal feature extractor gives us an output of
𝑛 × 512 where 𝑛 = 5 for LSTM, and 10 for Bi-LSTM configuration.

We apply EgoHandNet in both the optical flow and hand mask
streams giving us a feature vector of 𝑛 × 512 from each stream.
We use a Sigmoid layer on the hand mask features, to realize it

as attention that can regularize the network learning. Later, it is
element-wise multiplied with optical flow features. This enables
the hand mask stream to learn suitable attention over the optical
flow stream features, to extract the best possible masked optical
flow features. We average the masked features, channel-wise, and
temporally to give a 512 dimensional feature vector over which the
final fully connected layer is applied.

3.3 Training Routine
For training the proposed network, we first pre-train each stream
individually using the following step-wise training procedure:

(1) Fine-tune only the pre-trained spatio-temporal feature extractor.
We experiment with C3D and I3D backbones.

(2) Freeze all the weights of the spatio-temporal feature extractor
and only train the LSTM/Bi-LSTM for the task (classification or
open-set verification).

(3) Fine-tune each stream individually in an end-to-end fashion for
the task.

(4) Finally, fine-tune both the streams jointly, and the full network
is trained for the task.

3.4 Loss Function for the Classification Task
To train our network for the classification task, we have used a 28
class (corresponding to the number of subjects in the Epic Kitchens
dataset) classification layer as the final layer and have trained the
network using softmax cross-entropy loss function. This loss func-
tion can learn inter-class variability but lacks to enforce intra-class



compactness. Moreover, it requires a lot of training data for each
wearer. These issues can be solved by training the network with
a triplet loss function, as suggested in [19] also. Besides handling
inter-class variability and intra-class compactness, the loss helps
us work with lesser data as well. Given a data having 𝑛 data-points,
when training with triplet loss, we can form

(𝑛
3
)
triplet data points,

thus bypassing the data scarcity problem in the egocentric videos.

3.5 Loss Function for Open Set Verification
Task

To justify our claim of privacy breach more realistically, we propose
an “open-set recognition setting instead”. In the open set formula-
tion, a suitable distance metric needs to be learned (trained only
over the gallery data) that can differentiate between the signatures
obtained from the video sequences of same wearers (genuine) and
different wearer imposter (imposter). During testing, the learned
metric is used to find the nearest gallery video sequence to any
query sequence from our database.

For the open set verification formulation, our model’s final layer
is changed to a fully connected layer with 1024 neurons. This im-
plies that, given a one-second clip of 15 frames, the network pro-
duces a feature embedding of 1024 dimensions. The embedding is
then normalized onto a unit hypersphere centered at the origin.

Triplet Loss: For training the distance metric model, we have used
the triplet loss as described in [19]. For a given video𝑉 , the network
produces an embedding 𝜃 (𝑉 ), such that given two videos𝑉𝑥 and𝑉𝑦 ,
if 𝑉𝑥 and 𝑉𝑦 belong to the same subject, then E(𝜃 (𝑉𝑥 ), 𝜃 (𝑉𝑦)) = 0,
otherwise, E(𝜃 (𝑉𝑥 ), 𝜃 (𝑉𝑦)) ≥ 𝛽 , where 𝛽 is the margin, E(𝑋,𝑌 ) is
the Euclidean distance between embeddings 𝑋 and 𝑌 .

To make the embeddings of the videos from same subject similar,
we minimize the following loss:

L𝑝 (𝑥,𝑦) =
1
𝑁

𝑁∑
𝑖=1

(
𝜃𝑖 (𝑉𝑥 ) − 𝜃𝑖 (𝑉𝑦)

)2
, (2)

where𝑁 is the size of an embedding. On the other hand, to make the
embeddings of different class videos as far as possible, we minimize
the hinge loss between the embeddings as shown below:

L𝑛 (𝑥,𝑦) =
1
𝑁

𝑁∑
𝑖=1

max
(
0, 𝛽 −

(
𝜃𝑖 (𝑉𝑥 ) − 𝜃𝑖 (𝑉𝑦)

)2)
. (3)

Since both the tasks are needed to be accomplished simultaneously,
we combine both the losses to form a single triplet loss. It is defined
over a set of three embeddings, 𝜃 (𝑉𝑎): embedding of a anchor video,
𝜃 (𝑉𝑝 ): embedding of a video from the same subject as anchor, and
𝜃 (𝑉𝑛): embedding of a video from some subject, not same as the
one in anchor. The loss is expressed as:

L(𝑎, 𝑝, 𝑛) = 1
𝑁

𝑁∑
𝑖=1

max
(
0,

(𝜃𝑖 (𝑉𝑎) − 𝜃𝑖 (𝑉𝑝 ))2 − (𝜃𝑖 (𝑉𝑎) − 𝜃𝑖 (𝑉𝑛))2 + 𝛽

)
(4)

To efficiently train the network, we have used hard negative min-
ing [19] and dynamic adaptive margin [25], as described.

HardNegativeMining:While forming a triplet for training, choos-
ing a suitable negative pair is a demanding job. Given the enormous

↓Test Genuine Matching Imposter Matching
Train→ cut mix put take wash cut mix put take wash
cut 3.3 2.1 5.1 2.2 2.9 0.52 0.24 1.07 0.45 0.75
mix 1.2 1.6 1.7 0.8 1.2 0.27 0.12 0.56 0.24 0.39
put 5.5 3.2 12.1 4.4 7.1 1.23 0.57 2.47 1.06 1.73
take 2.9 1.2 3.8 3.1 3.1 0.48 0.23 0.99 0.41 0.68
wash 5.1 1.4 8.4 4.3 6.9 1.08 0.52 2.21 0.94 1.53

Table 1: Number of genuine (at the scale of 105) and imposter
matching (at the scale of 107) considered for EPIC kitchens
dataset. One second clip a data input. [The table serves to
indicate the complexity of the proposed recognition task]

amount of negative pairs, choosing them randomly will lead to easy
triplets. The network will easily learn these triplets ignoring the
challenging ones, degrading the network’s performance. To avoid
that, we need to choose the hard triplets and back-propagate losses
only pertaining to them. A triplet is said to be “hard” when the
distance between the embeddings of anchor and negative (𝑑𝑛), and
anchor and positive (𝑑𝑝 ) is lesser than the margin (𝛽). To compute
such triplets, we have to calculate the embeddings of each video
in the dataset before making every batch, which can be a cumber-
some task. Hence, while creating a batch, we randomly choose 1000
triplets, compute 𝑑𝑛 and 𝑑𝑝 for each triplet and only choose those
whose 𝑑𝑛 − 𝑑𝑝 ≤ 𝛽 for batch making.

Dynamic Adaptive Margin: Another training challenge is the
diminishing number of hard triplets as “hardness” is defined w.r.t.
themargin 𝛽 . As the training process progresses, the number of hard
triplets reduces for a fixed margin. This behavior can be accounted
for during the selection process of triplets. As the model trains, the
embeddings of the anchor, positive and negative differ with every
epoch such that 𝑑𝑝 decreases and 𝑑𝑛 increases. A triplet that was
considered “hard” in the initial epochs may not be considered the
same in the later epochs as the distance between their embeddings
varies continuously. To overcome this problem, we need to vary
the margin adaptively, starting from some low value and increasing
it once the “hard” triplet becomes less hard. We have increased our
margin by a step of 0.05 when the number of “hard” triplets mined
is less than a threshold of 50 for 3 consecutive batches.

4 EXPERIMENTS AND RESULTS
In order to justify our hypothesis, we have validated our proposed
approach by performing rigorous experimental analysis. The initial
task is to discover the optimal network architecture systematically.
Hence, we have performed an extensive ablation study over the
architecture of the optical flow stream. Recall that the same archi-
tecture has been used for both streams of the proposed model.

4.1 Dataset Specifications
In this work, we have used the EPIC kitchens dataset [3]. It consists
of 55 hours of egocentric video comprising of 32 subjects. The
dataset has labeled 125 different activities performed by the subjects.
Considering the scope of this work, we have chosen activities that



S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
Subject id

Ac
tiv

ity

A1

A2

A3

A4

A5

Figure 3: Shown 14 subjects performing 5 different activities. Row corresponds to one activity and column represents a subject.

↓Tested on [C3D - Pipeline] M1 = C3D, M2 = C3D-LSTM, M3 = C3D-BLSTM
Trained on→ cut mix put take wash

(in%) M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

cut
EER
CRR

14.73
59.07

13.37
62.50

13.11
64.75

19.19
48.99

18.46
52.42

17.79
54.26

18.42
56.33

17.32
59.69

16.56
59.29

16.54
49.17

15.72
53.81

15.61
56.68

16.87
56.26

15.75
56.35

15.14
56.84

mix
EER
CRR

14.04
64.15

12.33
65.45

11.50
68.72

10.43
67.80

10.70
69.76

10.79
73.87

27.29
64.04

24.89
64.73

24.97
66.01

8.07
63.98

7.26
64.42

6.99
62.95

15.71
65.68

14.77
67.73

14.82
71.24

put
EER
CRR

14.78
50.78

14.30
55.34

13.39
59.95

18.84
35.33

17.38
35.39

16.78
39.31

18.69
59.90

18.32
59.99

17.87
62.24

14.09
57.75

12.86
60.33

13.44
63.51

13.18
60.47

13.16
63.85

12.82
64.52

take
EER
CRR

21.57
51.41

20.54
53.13

19.94
55.68

24.15
59.61

22.58
60.50

22.31
62.35

18.73
62.57

18.30
62.86

17.39
63.80

22.51
50.27

21.48
51.09

21.13
51.28

21.56
56.98

20.42
58.37

20.27
59.24

wash
EER
CRR

15.02
52.32

13.15
54.61

12.93
56.76

20.33
52.07

18.47
53.68

17.05
55.41

19.93
54.50

18.90
56.39

18.13
57.36

12.34
57.69

11.71
58.72

10.50
59.88

22.50
55.57

21.69
57.42

21.16
58.67

[I3D - Pipeline] M4 = I3D, M5 = I3D-LSTM, M6 = I3D-BLSTM
M4 M5 M6 M4 M5 M6 M4 M5 M6 M4 M5 M6 M4 M5 M6

cut
EER
CRR

14.02
60.44

12.81
63.71

12.05
64.95

18.16
49.45

18.31
54.89

18.40
54.39

18.23
54.09

16.69
59.56

16.15
61.76

15.20
52.43

15.73
54.84

15.70
53.41

15.84
55.71

14.72
59.50

13.47
59.89

mix
EER
CRR

14.24
66.39

11.42
67.98

11.51
68.85

11.76
67.92

11.01
70.46

10.01
72.50

28.27
61.73

24.55
64.20

24.59
68.41

9.11
62.87

7.13
62.59

6.67
63.43

14.67
65.54

14.60
70.32

14.04
70.66

put
EER
CRR

14.01
51.96

13.74
58.46

13.92
60.31

18.77
36.17

16.44
39.38

16.24
39.47

19.60
60.53

18.21
62.94

17.53
63.82

14.96
56.16

12.62
62.27

12.12
61.57

13.45
60.27

12.87
64.91

12.91
65.17

take
EER
CRR

20.82
52.81

19.48
55.95

19.23
56.14

23.89
59.95

22.02
62.08

21.31
62.47

18.54
62.67

17.72
62.94

16.84
63.93

22.19
50.84

21.01
50.91

20.71
51.87

20.83
57.06

19.76
60.07

19.69
60.21

wash
EER
CRR

14.73
53.55

12.68
56.37

12.67
57.23

19.01
52.91

16.56
55.65

16.52
55.72

19.42
55.23

18.51
56.82

17.69
57.40

12.23
58.28

10.22
60.03

10.09
60.34

21.74
56.41

20.69
58.61

20.22
58.99

Table 2: Ablation study for exploring optimal network architecture selection. Only optical flow stream is trained as Siamese.
For each experimentation, the best results achieved are highlighted in bold font.

follow the following two criteria: (1) Duration of performing the
activity should be greater than a second. This ensures that we have
enough amount of data to extract the behavioral pattern of a person.
(2) Since the activities could be of variable length, at least 60% or 500
instances of the activity must be more than a second. This ensures
that we have enough data points. Based on the above criteria, we
have chosen five activities viz cut, mix, put, take, and wash.

4.2 Training and Testing Protocol
While training the classifier for the closed-set verification and activ-
ity level open-set verification, the first 50% videos for each subject
are selected for training (gallery samples) while the remaining half

are used for testing (probe samples). Similarly, while training for
subject-level open-set verification, all the data of the first half sub-
jects for each activity have been taken for training. The remaining
samples belonging to unseen subjects have been taken for testing
the system. Figure 3 shows examples of frames corresponding to
14 subjects performing the above mentioned five activities, viz cut,
mix, put, take, and wash.

Table 1 shows the data specifications for each of the different ac-
tivities. One can observe that the dataset contains labeled activities
only for 28 subjects. Hence we have used only those subjects. For
the activity mix, out of 28 subjects, data belonging to 12 subjects is



entirely missing. Hence, the number of subjects for mix activity is
only 16.

4.3 Performance Evaluation Metrics
In order to validate the proposed network, we have performed two
types of analysis, (a) classification followed by (b) verification in
closed and open-set scenarios. The standard performance metrics
used for both are described below:

Classification: We report the percentage of correctly classified
data-points (probe samples), i.e., accuracy (%) for each activity.

Verification: The standard metrics viz, Equal Error Rate, and Cor-
rect Recognition Rate have been computed. (1) The Equal Error Rate
(EER) is defined as the percentage error achieved at the matching
threshold, where False Reject Rate and False Acceptance Rate be-
comes equal. Lower EER signifies a better performance. (2) Correct
Recognition Rate (CRR) is defined as the percentage of correctly
identified data-points (probe samples) with respect to the total
number of data-points, which is rank-1 accuracy.

4.4 Ablation Study for Model Selection
We have performed a rigorous ablation study to choose the appro-
priate architecture for our model. We have conducted the study
only on the optical flow stream. Further, verification training has
been done only under a close-set scenario. We have made six dif-
ferent configurations, namely: (1)𝑀1: Model having only C3D [26]
network. (2)𝑀2: Model having C3D and LSTM [8], (3)𝑀3: Model
having C3D and Bi-LSTM [20], (4)𝑀4: Model having only I3D [2]
network, (5)𝑀5: Model having I3D and LSTM, and (6)𝑀6: Model
having I3D and Bi-LSTM. In order to use the hand masks cues in
the ablation study, instead of fusing the hand-mask feature at the
end, as is done for the final model, we mask the optical flow at the
input itself using the hand mask. This has been done only for the
ablation study.

Table 2 presents the results. One can observe that C3D being
the simplest of 3D CNN architectures, forms the baseline for this
task. Whereas I3D extracts multi-scale spatio-temporal optical flow
features, it can boost the performance by 1-2% over C3D. This is
clearly observed from the performance gain in M4 over M1. More-
over, using the LSTM layer over C3D or I3D features gives a major
advantage as neither C3D nor I3D can efficiently capture long term
temporal dependencies essentially required for behavioral pattern
extraction. Bi-LSTM marginally improves performance by captur-
ing long term temporal dependencies in both forward and backward
directions. Finally, model𝑀6 emerges as the best performing model
utilizing I3D as the spatio-temporal feature extractor and Bi-LSTM
as a temporal feature extractor. We use Dual-Stream-𝑀6 (𝐷𝑆 −𝑀6)
model for all further analysis.

4.5 Performance Analysis
Classification: We have analyzed our final 𝐷𝑆 −𝑀6 as a classifi-
cation model for wearer recognition. The classification accuracy
is computed over various activities individually. The comparative
analysis of various activities is given below:
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Figure 4: The t-SNE [14] plots for all 28 subjects of the fea-
ture maps extracted from last layer of proposed 𝐷𝑆 − 𝑀6
model. Same colour denotes feature corresponding to same
subject.

Activity cut mix put take wash

Accuracy (%) 50.61 60.09 52.43 48.21 53.80

It is important to note that since we have 28 subjects, the chance
level accuracy is only 3.57%. One can observe from the table that
except for mix activity, the classification performance for the other
four activities lie in the range of 48% to 53%. Comparing these with
chance level performance, it is evident that the proposed model
can classify the egocentric camera wearer using hand gestures. The
performance formix activity comes out to be better than others, due
to its cyclic periodicity supporting learning better discrimination.

Close-set Verification: To analyze the proposed methodology for
the verification task, all the subjects were used for training and
testing. We have trained our 𝐷𝑆 − 𝑀6 model (as a Siamese) for
verification over each of our five activities simultaneously. While
testing, subject verification has been done by matching wearers
videos performing each activity with every other activity, e.g., find-
ing out the subject id of the nearest sample of wash activity (in the
gallery) to the given probe sample ofmix activity. This generates 25
combinations, as shown in Table 3. We report the equal error rate
(EER) and correct recognition rate (CRR) for each such combination.
One can observe that the verification error of matching activity
with itself (diagonal elements in the table) is low, validating that our
model can verify a subject for a known activity easily. Moreover,
the CRR for self-activity matching is significantly better than the
classification accuracy of the network. This shows that triplet loss
function performs better training when data has a high amount of
intra-class variation and when the data is scarce.

Performance gain (𝐷𝑆 − 𝑀6): One can observe from tables 2
and 3, that training and testing the single-stream𝑀6 model directly
over optical flows provides an average CRR of 55.86% (overall the
subjects performing all activities). It involves a total of 108, 639
testing data points over which the recognition has been done. After
training and testing, the same𝑀6 model over masked optical flows
achieves an average CRR of 61.06% (with a gain of 5%). Finally,
training and testing the end-to-end Dual Stream (𝐷𝑆 −𝑀6) model
supersedes both of them by attaining an average CRR of 62.9% (gain



↓Tested on
Trained on→ (in%) cut mix put take wash

cut
EER
CRR

11.35
65.20

17.69
57.58

16.04
62.50

14.93
53.51

13.09
60.76

mix
EER
CRR

10.72
69.42

9.84
73.35

24.19
69.26

6.25
64.29

13.06
71.38

put
EER
CRR

18.26
57.97

20.52
62.70

16.39
65.32

19.93
52.11

19.47
61.18

take
EER
CRR

11.92
59.31

16.08
56.16

16.74
57.80

9.74
61.59

19.77
60.03

wash
EER
CRR

13.15
62.28

16.07
41.09

17.25
64.69

11.42
62.33

12.88
65.71

Table 3: Close-set verification accuracy. The 𝐷𝑆 − 𝑀6 model
is trained (as Siamese) over each activity simultaneously and
tested by matching it with all other activities.

↓Tested on
Trained on→ (in%) cut mix put take wash

cut
EER
CRR

-
-

25.62
46.40

24.75
51.27

23.53
45.09

23.03
49.60

mix
EER
CRR

19.54
58.61

-
-

31.59
58.84

18.72
56.21

21.75
61.54

put
EER
CRR

25.57
49.28

29.23
52.84

-
-

27.53
45.60

28.35
50.98

take
EER
CRR

19.17
51.47

24.13
48.40

25.25
49.64

-
-

31.66
52.37

wash
EER
CRR

21.01
51.07

24.93
32.26

25.04
53.75

19.20
50.31

-
-

Table 4: Open-set verification: The 𝐷𝑆 −𝑀6 model is trained
by leaving one activity at a time, but matching that activity
with each of the other training activities (leave one activity
out).

of 7% over direct optical flow and 2% over masked optical flow with
7, 605 and 2, 173 more correct classifications respectively).

Activity Level Open-set Verification: This analysis is done to
validate if our model recognizes a person performing some new
activity at the test time. We train our 𝐷𝑆 −𝑀6 model in a leave-one-
out manner at the activity level. That is, the activity on which the
network has to be tested was left out during the training. During
testing, the left-out activity has been matched with all the training
activities to recognize the wearer. The results are shown in Table 4,
reporting the equal error rate (EER), and correct recognition rate
(CRR) for this task. It can be seen that while testing on unseen activ-
ities, the performance drops as compared to close-set verification
by around 10%. This reinforces that the proposed network is not
over-fitting over any activity. Moreover, it strengthens the claim of
a unique personalized behavioral hand gesture pattern.

Subject Level Open-set Verification: We perform this experi-
ment to understand if our model can recognize that the two activi-
ties seen at the test time have been performed by the same subject,
even when none of the activities by this subject were seen at train
time. For this experiment, we have trained our 𝐷𝑆 −𝑀6 model on
first half of the subjects and tested it on the rest half of the subjects.
It is trained (as Siamese model) for verification on each activity and
then tested by matching each activity sample with itself for wearer
recognition. The results of subject-level open-set analysis are:

Activity cut mix put take wash

EER (%) 19.25 16.59 21.17 15.21 20.77
CRR (%) 59.89 66.32 58.10 52.49 57.25

Comparing these with closed set results of Table 3, it is evident that
there is only a minor decrease in performance, proving its gener-
alization over unseen subjects. This further reinforces the claim
of “Privacy Threat” established using hand gestures in egocentric
videos can be scaled to uncooperative and anonymous wearers.

Feature Visualization: As a qualitative analysis of the proposed
model, we have generated the t-SNE [14] plot of the feature vectors
belonging to 28 different subjects performing all five activities and
extracted from the last layer of 𝐷𝑆 − 𝑀6 model. Figure 4 shows
the result. The same color denotes features corresponding to the
same subject. One can observe that despite having vast intra-class
variability for a particular subject, the network achieves intra-class
compactness. Further, even though there is some overlap between
the classes, the inter-class variability is still evident from the plot.

5 CONCLUSION
In this paper, we show that one can identify an egocentric cam-
era wearer (with an accuracy as high as 70%) using only the hand
gestures. This enables us to recognize a camera wearer even when
the wearer is neither visible nor walking and can be considered as
a privacy breach in the publicly available benchmark egocentric
datasets such as EPIC kitchens, FPSI, etc. Our experiments validate
that one can extract behavioral features from the hand gestures
as visible in the egocentric videos. The proposed 2-stream model
(𝐷𝑆 −𝑀6) can learn behavioral patterns using only input optical
flow, whereas second streams provide an attention-based regular-
ization from hand masks extracted from input video frames. We
have demonstrated that such discriminative features can be used
successfully to match a person when performing some specific
activity using their hands. To justify the generalization of these fea-
tures, we perform open-set verification at the subject and activity
level. The obtained results clearly establish the feature robustness
by identifying camera wearer for an unseen activity and unseen
subject (up-to-a accuracy of 66%).
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