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ABSTRACT

Surgical simulators provide hands-on training and learning of
the necessary psychomotor skills. Automated skill evalua-
tion of the trainee doctors based on the video of a task be-
ing performed by them is an important key step for the op-
timal utilization of such simulators. However, current skill
evaluation techniques require accurate tracking information
of the instruments which restricts their applicability to robot
assisted surgeries only. In this paper, we propose a novel neu-
ral network architecture that can perform skill evaluation us-
ing video data alone (and no tracking information). Given
the small dataset available for training such a system, the net-
work trained using ℓ2 regression loss easily overfits the train-
ing data. We propose a novel rank loss to help learn robust
representation, leading to 5% improvement for skill score pre-
diction on the benchmark JIGSAWS dataset. To demonstrate
the applicability of our method on non-robotic surgeries, we
contribute a new neuro-endoscopic technical skills (NETS)
training dataset comprising of 100 short videos of 12 subjects.
Our method achieved 27% improvement over the state of the
art on the NETS dataset. Project page with source code, and
data is available at nets-iitd.github.io/nets-v1.

Index Terms— Representation learning, rank loss, surgi-
cal skill evaluation, neurosurgery, action quality assessment

1. INTRODUCTION

Different surgical techniques demand deliberate and specific
training for hand-eye coordination and hands-on skills [1].
Simulators designed to provide feedback on the level of skills
and evaluate the skills acquisition are considered appropriate
due to ethical concerns. However, existing training methods
rely on subjective evaluation and demands the presence of an
expert evaluator to provide the feedback to the trainee. The
objective evaluation using scoring scales are burdensome for
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Fig. 1: Block diagram of a general automated surgical skills
assessment system. The top, and bottom rows show samples
from JIGSAWS, and NETS dataset respectively.

the evaluator. Further, there are very less professional evalua-
tors to meet the demand of expertise, time and energy required
for domain-specific skills assessment. There exists inter-rater
variability between different experts on the same input data
and evaluation criteria [2, 3]. All these factors demand for an
automated skills assessment system.

The surgical skills are specific for surgical procedures,
and specialised training modules and assessment methods
have been developed to address various domains. There are
automated skills assessment methods available for robotic
assisted minimally-invasive surgery (R-MIS) [4, 5, 6, 7, 8,
9, 10, 11], fundamental laparoscopic surgery (FLS) [3, 12],
general surgery (GS) [2, 13, 14] but are very limited for neu-
rosurgery [15]. In neurosurgery, the evaluation is furthermore
important due to constraint in anatomy, low margin of error,
and high risk of neurological issues in case of any error dur-
ing surgery. The methods for various surgical branches are
customized for the input data, feature extraction module and
surgical skills evaluation module.

Fig. 1 shows the fundamental components of a general
automated surgical skills assessment system. The majority of
the studies address the skills evaluation of R-MIS with the
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help of publicly available JIGSAWS dataset [16]. The stud-
ies use either the video data [9, 8], or a combination of video
and kinematic data [17, 11]. The other surgical skills assess-
ment methods use private datasets with video [3, 2], kinematic
data [18] or inertial measurement unit or accelerometer data
[14]. On the other hand, most real surgical scenarios [19] and
majority of the simulation methods produce only video data.
To perform skill evaluation in such scenarios, the feature ex-
tractors used in literature have evolved from hand-picked fea-
tures like path length, time, video spatiotemporal descriptors,
discrete cosine transform (DCT), discrete fourier transform
(DFT) [3, 2, 13, 20] to data-driven features to deep learning
based models [9, 21, 8, 10, 11]. The skills evaluation com-
ponent has also evolved from posing the skills evaluation as a
classification problem [17, 22] to a more detailed regression
problem [9, 10, 11].

Recently Liu et al. [11] proposed a multi-path framework
with surgical tool usage, event patterns, and other skill prox-
ies as the input. This enables a single network to be used for
cross-domain surgical skills assessment. We tested this net-
work with a new dataset generated by neurosurgery physical
simulator in our lab for neuro-endoscopic skills evaluation.
We call this dataset neuroendoscopic technical skills (NETS)
training dataset. Our experiments showed that the method
does not generalize well on our dataset. Hence, in this paper
we suggest focusing on representation learning of the simu-
lator videos. Instead of fixed-value learning (fvl) approach
of the regression, we propose a dynamic variant of rank-loss
for contrastive learning of video representation along with the
MSE loss. This enables the network to learn the discriminative
features that predict the relative rank of the skills for pairs and
thereby better correlates with the expert surgeon’s ranking.
Contributions: The specific contributions of our works are:
• We propose representation learning using rank-loss for

cross-domain surgical skills assessment and robust correla-
tion with the expert’s ranking.

• We propose a one of its kind dataset for evaluation of neuro-
endoscopic surgical skills. The dataset contains 100 short
videos obtained from tasks performed by 6 experts and 6
trainees having experiences of > 10 and < 1 man years re-
spectively. For each video, we also release evaluation score
given by an expert surgeon with over 20 years of the expe-
rience performing neurosurgery.

• We show that our proposed method generalizes well on
the JIGSAWS dataset for R-MIS, as well our neuro-
endoscopic NETS dataset, showing an improvement of
5% and 27 % respectively over the SOTA method [11].

2. PROPOSED METHODOLOGY

We extend the work on unified framework for skill evalua-
tion [11] with the concepts from representation learning using
rank-loss. This allows our model to generalise well even with

relatively small, real-world datasets, as well as without using
difficult procedures to obtain tracking data. In this section,
we first start with a description of the model architecture for
the overall evaluation framework, and then describe our rank
loss that allows us to learn a better representation space.

2.1. Unified Skill Evaluation

The framework uses separate computation paths to explicitly
model different skills aspects relevant for evaluating a surgi-
cal activity. Each of these paths expect different input fea-
tures specific to the respective skill aspect, and the individual
scores predicted by each of these paths are combined together
to obtain a unified skill score. The rich inter-dependency of
the different skill aspects at different stages of the surgical
activity is explicitly modelled by a path dependency module
while combining individual scores.

In [11], 4 paths are used to model 4 important aspects
of a surgical activity, namely visual, proxy, tracking, and
events. The visual path expects features extracted from the
video frames, the proxy path expects a proxy performance
measure like time taken for the activity, while tracking and
events paths expect kinematics and event-level features re-
spectively. While the visual features are readily available
in most datasets, the last two are often hard to obtain. The
majority of works use R-MIS datasets like JIGSAWS, which
contains the video, robotic kinematic data and manual anno-
tations for skills score and events[16]. For our analysis on
the JIGSAWS dataset, we use all the available features corre-
sponding to four paths, while we use only the visual path for
the proposed NETS dataset.

Each computation path in the framework consists of
TCN [23] as a feature encoder, followed by scoring func-
tions. The path dependency module takes aggregated features
from all the paths to provide temporal importance weights,
and the scores from each path are combined together to ob-
tained a unified score. Denoting the encoder for the ith path
as Fi, the scoring function as Si, the path dependency module
as Wi and the input features as Xi, the final score predicted
by the model is given by:

ŷ =

4∑
i=0

∑
t

σt(W
t
i (Eall))S

t
i (Fi(Xi)) (1)

where σt is a softmax over time, Eall is a feature vector formed
by concatenating the features from all paths, and the suffix t
is used to indicate the features at a particular time instant in
the surgical video. An overview of this architecture can be
seen in Fig. 2.

2.2. K-Rank loss

The score predicted by the model is a scalar real number, and
so, it is only natural to use the Mean Squared Error (MSE)
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Fig. 2: An overview of the model architecture for skill evaluation. Different features are passed through different paths in the
network followed by a path dependency module. The scores are combined using the dependency module as given by Eq. (1)

loss for training the model. However, there are a few disad-
vantages with this. Firstly, MSE loss tends to allow models to
overfit when the training data is scarce. Thus, the represen-
tation space learned by the model does not generalise well to
unseen test samples. In the absence of sufficient data, con-
trastive losses have proven to be quite effective [8] in fully,
semi as well as self-supervised settings, because of their ten-
dency to drive models towards more structured and robust
representation spaces.

Predicted Scores

True Scores

Good MSE
Poor SROCC

sample2sample1

Fig. 3: An example highlighting differences between MSE
and SROCC. In the given figure, the MSE will be very good
because of small absolute differences. On the other hand,
SROCC will be poor because relative ranking between sam-
ples 1 and 2 is inconsistent.

Secondly, the skill evaluation algorithm is evaluated using
the Spearman’s rank correlation (SROCC) as the metric, and
not MSE loss. There are subtle differences between the na-
tures of these two scores, and minimising MSE may not lead
to a higher SROCC value. An example of such a case can be
seen in Fig. 3, where the predicted scores achieve a very low
(good) MSE value, but the SROCC value is very poor. While
MSE provides a global optimization objective, it alone is not
sufficient to fully capture the expectations of the skill evalua-
tor due to the absence of comparative evaluation with respect

to other trainees.
To this end, we propose the use of ranking loss for gen-

eralized representation learning. While comparing any two
pairs of surgical videos, we penalise the model if the relative
ordering in the two videos’ true and predicted scores are not
consistent. For each video, we maintain the predicted and true
scores of the previous k − 1 videos, and compare its scores
with each of the k−1 previous scores. Looping over the entire
dataset once, this would mean comparing each video with all
videos within a distance of k videos from it. With randomly
shuffled iterations, we expect this to allow us to cover most
such pairs. For each of such pair, we compute the k-rank
loss as follows:

Lk-rank =
1

m

m∑
i=k

i−1∑
j=i−k[

1{y(i) > y(j)}
∥∥ReLU(ŷ(j) − ŷ(i))

∥∥2
+ 1{y(j) ≥ y(i)}

∥∥ReLU(ŷ(i) − ŷ(j))
∥∥2], (2)

where ReLU is the rectified linear unit, y(i) is the actual score
of the ith sample, and ŷ(i) is the predicted score, as described
in Eq. (1). With this loss, the model is pushed to learn a more
robust representation space where the relative ordering of dif-
ferent videos is maintained. Note however, that using the
rank loss alone may allow the model to learn a trivial map-
ping where it predicts the same score for all videos, leading
to a 0 loss. To avoid this, we include both the MSE loss and
k-rank loss. Thus, the overall loss is:

L =
1

m

m∑
i=0

∥y(i) − ŷ(i)∥2 + λLk-rank (3)

where λ is for the trade-off between the two losses. Thus, the
MSE loss provides a global optimization while the k-rank
loss provides local relative optimization leading to an overall
better representation space more suited for skill evaluation.



3. EXPERIMENTS AND RESULTS

JIGSAWS Dataset: We used JHU-ISI gesture and skill as-
sessment working set (JIGSAWS) [16], which is one of the
largest publicly available dataset for R-MIS. It includes three
tasks performed on a bench-top model using da-Vinci system:
knot tying, needle passing and suturing. There are synchro-
nized data available for robot kinematics and video at 30 Hz.
We use 72 videos for knot tying, 78 videos for suturing task,
56 for needle passing for training our network separately for
four-fold cross validation as mentioned in [11].

NETS Dataset: We introduce a new dataset for neuro-
endoscopic technical skills (NETS) training obtained from
Neuro-endoscope box trainer, which is a box trainer used for
imparting neuro-endoscopic skills [24, 15, 25]. The activity
performed on the trainer includes transferring 6 rings in a
pre-defined manner using a biopsy forceps and endoscope.
The activity of ring transfer is recorded by an auxiliary cam-
era placed on the top of the trainer at 25 fps. The whole
activity is split into small videos or surgemes containing one
ring transfer per video (approach, grasp, transfer and retract)
and is used for evaluation. The videos were obtained from
6 neuro-endoscopic experts and 6 trainees with experience
of > 10 and < 1 years respectively and were divided into
100 surgemes. All 100 short videos were given for blinded
subjective evaluation by an expert neurosurgeon on a scoring
scale of 1-10 (1-least, 10-highest). 25 videos from this set are
randomly selected as a test set and evaluated again at a later
point in time to find intra-rater correlation. The correlation
between the scores were obtained as 0.92.

3.1. Experimental Setup

For NETS dataset, we use only the vision path and use a
ResNet101 model pretrained on ImageNet with 10 crop aug-
mentation to extract 10 × 2048 dimensional image level fea-
tures for the visual path similar to the feature extraction strat-
egy used in [11]. The features are first encoded into a lower
dimensional embedding sequence, followed by a TCN [23]
module to obtain rich spatio-temporal feature representations
of the video. The dimensions are reduced from 10×2048×T
to 10 × 8 × T in this step. The features are passed through
MLP layers to obtain the score from them. For JIGSAWS, we
directly use all paths features provided by [11].

3.2. Training Hyperparameters

We train on NETS dataset for 950 epochs using Adam opti-
mizer with a learning rate of 0.001 and weight decay of 1e−5.
For JIGSAWS, we use the same training hyperparameters as
in [11]. We use a linearly increasing scheduling strategy for
the trade-off parameter λ in Eq. (3) because rank-loss be-
comes more reliable after some iterations. A high value of
’k’ in rank-loss would require higher memory to store the k-1

Method KT NP SU Average

JRG [7] 0.36 0.54 0.75 0.57
AIM [6] 0.63 0.65 0.82 0.71

VTPE [11] 0.82 0.76 0.83 0.80

(Ours) 2-rank 0.85 0.80 0.86 0.84
(Ours) 3-rank 0.84 0.80 0.85 0.83
(Ours) 4-rank 0.85 0.80 0.80 0.82

Table 1: SROCC values on JIGSAWS for the 4-Fold setting

previous features. Hence, a trade-off is required and we ex-
periment with only up to k=5.

3.3. Results on JIGSAWS Dataset

We compare the performance of our rank aware model with
VTPE [11] on NETS and some other existing methods on
JIGSAWS. We consistently obtain better SROCC perfor-
mance on all tasks for JIGSAWS in the 4-fold cross valida-
tion setting and improve upon SOTA by 5%. The results are
tabulated in Table 1. In each of the three tasks Knot Tying,
Needle Passing and Suturing, we obtained improvements of
3.6%, 5.2% and 3.6% respectively over VTPE [11].

3.4. Results on NETS Dataset

We further evaluate on our NETS dataset and show the gen-
eralisability of our method on a very different dataset. We
compared our performance with VTPE [11] using only the vi-
sual path. We consistently obtain better SROCC performance
for different variants of rank loss as shown in Table 2. For
our train-test split we obtain an improvement of 27% over the
baseline VTPE method.

Method Test SROCC

Only Vision 0.507
(Ours) 2-rank 0.595
(Ours) 3-rank 0.636
(Ours) 4-rank 0.648
(Ours) 5-rank 0.581

Table 2: SROCC values on NETS dataset for test set

4. CONCLUSION AND FUTURE WORK

This paper proposes a general representation learning based
deep learning model to automatically assess surgical skills.
The effectiveness of the proposed method is validated on
benchmark simulated R-MIS dataset. We also contribute a
new neurosurgery dataset for skill evaluation, and use it to
validate generalization of our method. In future, we plan
to explore other feature extractors like I3D and C3D which
can potentially capture rich spatio-temporal features for more
accurate score prediction.
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