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ABSTRACT

Attention-based models such as transformers have shown
outstanding performance on dense prediction tasks, such
as semantic segmentation, owing to their capability of cap-
turing long-range dependency in an image. However, the
benefit of transformers for monocular depth prediction has
seldom been explored so far. This paper benchmarks var-
ious transformer-based models for the depth estimation
task on an indoor NYUV2 dataset and an outdoor KITTI
dataset. We propose a novel attention-based architecture,
Depthformer for monocular depth estimation that uses
multi-head self-attention to produce the multiscale feature
maps, which are effectively combined by our proposed de-
coder network. We also propose a Transbins module that
divides the depth range into bins whose center value is es-
timated adaptively per image. The final depth estimated is
a linear combination of bin centers for each pixel. Trans-
bins module takes advantage of the global receptive field
using the transformer module in the encoding stage. Ex-
perimental results on NYUV2 and KITTI depth estimation
benchmark demonstrate that our proposed method improves
the state-of-the-art by 3.3%, and 3.3% respectively in terms
of Root Mean Squared Error (RMSE). Code is available at
https://github.com/ashutosh1807/Depthformer.git.

Index Terms— depth estimation, transformer, attention,
adaptive bins

1. INTRODUCTION

Depth estimation from a single image is fundamental for
many applications, from virtual reality to low-cost autonomous
driving. Almost all of the current techniques to estimate
depth from a single image are based on convolutional neural
networks (CNN) with a U-Net-based encoder-decoder archi-
tecture [1, 2, 3, 4, 5, 6, 7, 8, 9]. The encoder is typically an
image classification network trained on Imagenet [10], and
the decoder aggregates multiscale features to produce final
dense depth. As earlier works have pointed out, the features
extracted from a CNN have a local receptive field [11, 12].
For dense prediction tasks such as semantic segmentation and
depth estimation, a pixel must have a global receptive field
about the scene along with the local information for a more

accurate estimation.
The recent success of transformers in Natural Language

Processing tasks has created considerable interest among
researchers to introduce them in computer vision tasks ow-
ing to their capability of capturing long-range dependencies.
However, earlier works in Transformer based vision architec-
tures mainly focused on Classification and Object Detection
[13, 14]. With the advent of Multiscale Vision Transformers
(MVTs), researchers have also started using transformer-based
architectures as encoders for dense prediction tasks like se-
mantic segmentation [12, 15, 11, 16, 17]. Most of the works
using MVTs showcase their dense prediction performance for
semantic segmentation. On the contrary, depth estimation
is even more difficult for two reasons: (1) It is a continuous
prediction task, and (2) It is an ill-posed problem owing to the
inherent scale ambiguity. To the best of our knowledge [18] is
the only work that proposes to use vision transformer (VIT)
during the encoding stage. However, it applies VIT only on
feature maps with 1/16th scale extracted using a CNN archi-
tecture. Motivated by these observations, we propose a novel
transformer-based encoder for depth estimation that uses mul-
tiheaded self-attention to produce hierarchical feature maps.
We also benchmark the performance of recently proposed
vision transformers (VITs) for semantic segmentation on the
monocular depth estimation task.

Using a transformer-based encoder increases the receptive
field of the network, but for the dense prediction task, pix-
els also must understand local information. For example, a
pixel must know that it lies on a boundary of an object or that
it belongs to a group of pixels on a co-planar surface. Pre-
vious works that use MVTs [11] as encoders have a decoder
design in which they upscale the encoded features of vary-
ing resolutions to a fixed resolution and fuse them using MLP
layers. However, directly upsampling to a higher resolution
and fusion results in a loss in local information. Motivated
by this, we propose a novel decoder that iteratively upsam-
ples feature maps and fuses them with the encoder features,
starting from the lowest resolution and moving towards the
high resolution. Iterative upsampling and fusion helps prop-
agate global information to high-resolution local information
preserving features.

In alignment with the state-of-the-art (SoTA) [19], we
model the depth estimation task as an ordinal regression
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Fig. 1. The architecture of our proposed method, Depthformer : MVT produces feature maps of multiple resolutions hierarchically fused
by the decoder network to produce output feature map Fout. Fout is fed to the Transbins module predicts the bin widths. Pixel-wise probability
distribution over the bins centers is finally predicted by using a 1× 1 convolution followed by softmax activation.

problem that discretizes the depth range into a number of
intervals or bins adaptively per image. We propose a novel
module Transbins, that takes advantage of fused global
information into the feature maps by an MVT and produces
adaptive bins discretized over the depth range. To demon-
strate the efficacy of our proposed network Depthformer,
we conduct extensive experiments on two canonical depth es-
timation benchmarks, an outdoor driving dataset KITTI [20]
and an indoor dataset NYUV2 [21], achieving SoTA on both.

Contributions: To summarise, our contributions are - (1)
We propose a novel encoder-decoder network that uses
self-attention to predict multiscale feature maps that are
effectively fused by our decoder. (2) We propose a novel
Transbins module that predicts adaptive bins discretized
over the depth range whose centers are used to predict final
depth. (3) We benchmark the performance of earlier pro-
posed multiscale vision transformers (MVTs) on monocular
depth estimation. (4) Our network Depthformer achieves
state-of-the-art performance on both outdoor dataset KITTI
and indoor dataset NYUV2.

2. METHODOLOGY

Problem Definition: Following [19, 2], we model depth es-
timation as an ordinal regression task. Given an input I , our
network predicts: (1) Bin widths, b, that discretize continuous
depth range into a number of intervals, nbins, adaptively per
image. (2) Pixel-wise probability distribution over the adap-
tive bins. The final depth, d, at a pixel is the linear com-
bination of the probability scores at the pixel and per image
depth-bin-centers.

Architecture: This section introduces the architecture for the
encoder and decoder of our proposed Depthformer and the

training loss that we follow. Our encoder produces the feature
maps of varying resolutions using a MVT given an input im-
age. The decoder then fuses these multiscale features to pre-
dict feature map Fout. Next, the proposed Transbins mod-
ule uses Fout as input to predict adaptive bins b discretized
over the depth range. The probability distribution over the
bins is estimated by applying a convolution operation on Fout
followed by the softmax activation. We describe a more de-
tailed architecture below.

Encoder: Given an image I of size H × W × 3, our en-
coder aims to create feature maps at multiple resolutions
using the Transformer framework. Input I is first convolved
with learned C1 kernels of size K1 and a stride of 4 to pro-
duce a feature map of size H

4 × W
4 × C1. This feature map

is flattened to produce a sequence of HW
42 feature vectors,

each of dimension C1 that are fed to the transformer block
T1. Transformer T1 applies n1 self-attention - MLP layers
to produce the output, which is reshaped to a feature map
E1 of size H

4 × W
4 × C1. This process is performed re-

peatedly, with a stride of 2 for the convolution operation in
the following layers. Hence, the encoder produces feature
maps E1, E2, E3, E4 of resolutions { 1

4 ,
1
8 ,

1
16 ,

1
32} respec-

tively with channels [C1, C2, C3, C4] = {64, 128, 320, 512}
respectively, that are then fed to the decoder.

Note that, the self attention in the Transformer Block
(Ti) is optimised by Spatial attention Reduction (SRA) as
suggested in [12]. SRA is implemented via a convolution
layer with kernel size Ri and stride Ri to project the key-
value pairs, hence resulting in n

R2 compressed key-value
pairs where n is the number of input vectors. For the con-
volution operation with kernel size K, stride S and padding
P , we use K1 = 7, S1 = 4, P1 = 3 for the first layer and
Ki = 3, Si = 2, Pi = 1 for i = 2, 3, 4. A kernel size K
greater than the stride S, encourages shared information be-



tween the adjacent feature vectors to produce a smoother
feature maps. The number of self-attention MLP layers
for the four transformer blocks are: [N1, N2, N3, N4] =
{3, 8, 27, 3}. Spatial reduction ratios for the four transform-
ers are: [R1, R2, R3, R4] = {8, 4, 2, 1}. Fig. 1 gives an
overview of our encoder design.

Decoder: Earlier works using MVT for dense prediction [11]
upsample feature maps at varying resolutions to a resolution
of 1

4 , and reduce their channel dimensions to C using 1 × 1
convolutions. The features are then concatenated and finally
fused to predict the output of size H

4 × W
4 × ncls for the seg-

mentation task, where ncls are the number of classes. The fea-
ture maps are then upsampled using interpolation to H×W×
ncls which helps in producing a smoother estimation. Such a
decoder design suffers from the loss of local information due
to the smoothing effect of interpolation. Earlier works using
CNN have used Feature Pyramid Network (FPN) [22] archi-
tecture design to preserve the local details. We adopt a similar
design and a decoder that iteratively fuses feature maps from
the lowest resolution for MVTs.

Effectively, for encoder feature maps E1, E2, E3, and E4

with resolution { 1
4 ,

1
8 ,

1
16 ,

1
32}, we iteratively perform the fol-

lowing operation

Di = Conv{Concat[Upsample(Di+1), Ei]}
i = 1, 2, 3, 4 (1)

This procedure produces a map feature map Fout of size H
2 ×

W
2 ×C which is fed to the Transbins module as shown in

Fig. 1. We select C = 128 as in [19]. To upsample the feature
maps we have used transposed convolution with kernel size
k = 2 and stride s = 2.

Transbins: Adabins [19] predicts adaptive bins and attentual
maps, and fuse the later with the feature map from decoder
Fout. The motivation is to fuse global information in the at-
tenual maps with the decoder features. We take advantage of
the encoded global information in Fout via our encoder to only
predict bin widths from the full-scale VIT. To predict the dis-
tribution over the bins, we use 1×1 convolution over Fout fol-
lowed by softmax to predict the output of size H

2 × W
2 ×nbins.

The final depth is predicted by linear combination over the
bin centers as in [19], which is then upsampled using bilinear
interpolation to predict the depth at full resolution. The effec-
tiveness of our proposed Transbins approach against Ad-
abins for bin widths prediction can be seen in Table 4 which
reduces the RMSE error by 14.2 %.

Training loss: We train our network on a sum of scaled ver-
sion of the Scale-Invariant (SI) loss introduced by Eigen et al.
[1] LSILog and Chamfer loss LChamfer [19]. LSILog reduces the
difference between the predicted depth map and the ground
truth depth map. LChamfer encourages the bin centers to be
close to the actual ground truth depth values and vice versa.

Ltotal = LSILog + γLChamfer. (2)

Method RMSE ↓ Rel ↓ δ1 ↑ δ2 ↑ δ3 ↑
Eigen et al. [1] 0.641 0.158 0.769 0.95 0.988
DORN [2] 0.509 0.115 0.828 0.965 0.992
Chen et al. [5] 0.514 0.111 0.878 0.977 0.994
VNL [23] 0.416 0.108 0.875 0.976 0.994
BTS [3] 0.392 0.110 0.885 0.978 0.994
DAV [4] 0.412 0.108 0.882 0.980 0.996
DPT-Hybrid [18] 0.357 0.110 0.904 0.988 0.998
Adabins [19] 0.364 0.103 0.903 0.984 0.997
Depthformer (ours) 0.345 0.100 0.911 0.988 0.997

Table 1. Results on NYUV2 Dataset. The best results are
in bold and second best are underlined. Our method outper-
forms the previous SoTA methodsin most of the metrics.

We have used γ = 0.1 as in [19].

3. EXPERIMENTS

Datasets: NYU Depth v2 [21] contains indoor scenes dataset
with 640 × 480 resolution images and depth maps with the
upper bound of 10 m. We have trained our network on a 24K
subset of dataset with a random crop of 576 × 448. We eval-
uate on the pre-defined center cropping by Eigen et al. [1] on
test set of 654 images.

KITTI [20] is an outdoor scenes dataset containing stereo
images with 1241 × 376 resolution and corresponding 3D
laser scans of outdoor scenes. We train our network on a sub-
set of around 26K images from the left view with a random
crop of size 704 × 352 and test on 697 images. To compare
our performance, we evaluate on a predefined crop by Garg et
al. [24] on 697 test images with a maximum value of 80 m.

Evaluation Metrics: We use the standard five metrics used
in earlier works [1] to compare our method against SoTA.
Given the predicted depth dp, and the ground truth depth d∗p
at a pixel p, and n denoting the total number of pixels in an
image, the error metrics are defined as:

Root mean squared error (RMSE):
√

1
n

∑n
p=1

(
dp − d∗p

)2)
Average relative error (REL): 1

n

∑n
p=1

|dp−d∗
p|

d∗
p

Threshold accuracy (δi) : % of dp such that max
(

dp

d∗
p
,
d∗
p

dp

)
=

δi < Thr, where Thr = 1.25, 1.252, 1.253.

Implementation Details: To train our network, we use the
AdamW optimizer [25] with weight-decay 0.1. We follow
the training methodology prescribed in [26], and use 1-cycle
policy for the learning rate with max lr = 10−4, linear warm-
up from (3/10)max lr to max lr for the first 50% of iterations,
followed by cosine annealing to (3/10)max lr. The network
has been trained on 4 V100 GPUs with a 32GB memory, with
a batch size of 16 for both NYUV2 and KITTI.
Comparison with State of the Art: Table 1 and 2 demon-
strate the performance of our proposed method, Depthformer,
with the previous SoTA methods. We consistently outperform



Fig. 2. Visualisation of predicted Depth map for input image (a) for (b) Adabins [19] (c) DPT-Hybrid [18] (d) Depthformer (Ours). Our
method is able to predict a more accurate depth estimation owing to it’s capabilities of capturing long range information.

Method RMSE ↓ Rel ↓ δ1 ↑ δ2 ↑ δ3 ↑
Eigen et al. [1] 6.307 0.203 0.702 0.898 0.967
Goddard et al. [6] 4.935 0.114 0.861 0.949 0.976
Gan et al. [9] 3.933 0.098 0.890 0.964 0.985
DORN [2] 2.727 0.072 0.932 0.984 0.994
Yin et al. [23] 3.258 0.072 0.938 0.990 0.998
BTS [3] 2.756 0.059 0.956 0.993 0.998
DPT-Hybrid [18] 2.573 0.062 0.959 0.995 0.999
Adabins [19] 2.360 0.058 0.964 0.995 0.999
Depthformer (ours) 2.285 0.058 0.967 0.996 0.999

Table 2. Results on KITTI Dataset. The best results are in
bold and second best are underlined.

Method Reference Param. (M) RMSE ↓ REL ↓
ResNet-50 [27] CVPR’16 23.5 0.510 0.152
PVTv1 [12] ICCV’21 23.9 0.508 0.166
Swin-T [15] ICCV’21 27.5 0.456 0.142
Twins-SVT-S [16] NeurIPS’21 23.5 0.443 0.141
MiT-B2 [11] NeurIPS’21 24.2 0.394 0.118
MPVIT [17] CVPR’22 22.6 0.403 0.120

Table 3. Performance of different state of the art multiscale-
vision transformers for monocular depth estimation on the
benchmark NYUV2 dataset.

across all the metrics for both outdoor scenes dataset KITTI
and indoor dataset NYUV2. Our method reduces the RMSE
by 3.5% for NYUV2 against SoTA DPT-Hybrid [18] and by
3.2% against Adabins [19]. As shown in Fig. 2, our method
Depthformer predicts a more accurate depth image in com-
parision to SoTAs [18] and [19].

Benchmarking of VITs on Monocular depth estimation:
Table 3 shows the performance of various SoTA VITs for
monocular depth estimation on the NYUV2 dataset. For a
fair comparison, we have taken model variants with a simi-
lar number of trainable parameters. For this experiment, we
have taken the decoder as in [11]. All the VITs outperform
the CNN-based Resnet-50 [27]. MiT-B2 [11] shows the best
performance in comparison to other MVTs. This can be at-
tributed to shared information across feature vectors as men-
tioned in Section 2. In this work, we initialise the encoder via
pretrained weights from MiT-B4 [11]. We hope this bench-
mark can be used as a baseline for future research in depth
estimation.

Method RMSE ↓ REL ↓
Decoder Xie et al. ([11]) 0.375 0.114
Decoder(ours) + GAP 0.350 0.105
Decoder(ours) + Adabins [19] 0.394 0.115
Decoder(ours) + Transbins 0.345 0.100

Table 4. Ablation study on NYUV2 dataset for different de-
coder designs in the proposed Depthformer model.

Ablation for Decoder architecture: Table 4 showcases the
efficacy of our proposed decoder network. For all these exper-
iments, we have taken the proposed encoding backbone. The
baseline uses a decoder network as proposed in [11], which
predicts the depth at a resolution of 1/4th scale and upsam-
ples it using bilinear interpolation. We first deploy Global
Average Pooling (GAP) on top of our decoder to predict adap-
tive bins. As shown in the table, adding GAP gives a signif-
icant improvement over the baseline. Next, we ablate on our
decoder design using the adaptive binning strategy proposed
by Adabins [19] and our proposed Transbins. As shown,
Transbins outperforms Adabins by a good margin which
validates our claim that encoding global information during
the initial layers is a better strategy in comparison to encod-
ing the information at the final layers.

4. CONCLUSION

This paper introduces a multiscale vision transformer-based
monocular depth estimation technique that achieves state-
of-the-art results on KITTI and NYUV2 datasets. We also
benchmark SoTA transformer architectures for monocular
depth estimation task. We hope it motivates researchers to
design new architectures to address task specific intricacies.
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and Janne Heikkilä, “Guiding Monocular Depth Estima-
tion Using Depth-Attention Volume,” in ECCV 2020.

[5] Xiaotian Chen, Xuejin Chen, and Zheng-Jun Zha,
“Structure-Aware Residual Pyramid Network For
Monocular Depth Estimation,” in IJCAI-19.

[6] Behrooz Mahasseni, Michael Lam, and Sinisa Todor-
ovic, “Unsupervised Video Summarization With Ad-
versarial LSTM Networks,” in CVPR 2017.

[7] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid,
“Learning Depth From Single Monocular Images Using
Deep Convolutional Neural Fields,” ITPAMI 2016.

[8] Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe,
“Semi-Supervised Deep Learning For Monocular Depth
Map Prediction,” in CVPR 2017.

[9] Yukang Gan, Xiangyu Xu, Wenxiu Sun, and Liang Lin,
“Monocular Depth Estimation With Affinity, Vertical
Pooling, And Label Enhancement,” in ECCV 2018,
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss, Eds.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei, “ImageNet: A Large-Scale Hierarchical
Image Database,” in CVPR 2009.

[11] Enze Xie, “SegFormer: Simple and Efficient Design For
Semantic Segmentation With Transformers,” in NIPS
2021.

[12] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling
Shao, “Pyramid Vision Transformer: A Versatile Back-
bone For Dense Prediction Without Convolutions,” in
ICCV 2021.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby, “An Image Is Worth 16x16 Words:
Transformers For Image Recognition At Scale,” in
ICLR 2021.

[14] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko, “End-to-End Object Detection with Trans-
formers,” in ECCV 2020.

[15] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo, “Swin
Transformer: Hierarchical Vision Transformer Using
Shifted Windows,” in ICCV 2021.

[16] Xiangxiang Chu, “Twins: Revisiting The Design Of
Spatial Attention In Vision Transformers ,” in NIPS
2021.

[17] Youngwan Lee, Jonghee Kim, Jeffrey Willette, and
Sung Ju Hwang, “MPViT: Multi-Path Vision Trans-
former For Dense Prediction,” in CVPR 2022.
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