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𝑎𝑟𝑔min𝐸 𝑙𝑃 =  

𝑝∈𝑃

𝐷𝑝 𝑙𝑝 + 

𝑐∈𝐶

𝑊𝑐 𝑙𝑐
𝑃 is the set of pixels, 𝐶 is the set of cliques. 
𝐷𝑝 is per pixel unary/data cost. 

𝑊𝑐 is clique prior/potential.

• Inference problem is NP hard in general

Allows more complex clique potential based 
upon learnt patterns [4]. 

Structural constraints based upon shape 
and gradients can only be encoded using 
higher order potentials [9].
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Higher Order MRF-MAP

Complimentary Slackness Condition

𝑌𝑐
𝑙𝑐 > 0 ⇒  𝑝∈𝑐 𝑉𝑐,𝑝,𝑙𝑐

𝑝 = 𝑊𝑐(𝑙𝑐)

Which can also be written as

 
𝑝∈𝑐:𝑙𝑐

𝑝
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𝑉𝑐,𝑝,𝑏 = 𝑊𝑐(𝑙𝑐)

Weak Persistence

• We have embedded a 𝑘-ary potential function f(.) in a 2𝑘-ary function 𝑔𝑐(⋅,⋅) such that 
𝑔𝑐 𝑥,  𝑥 = 𝑊𝑐(𝑥) and 𝑔 𝑥, 𝑦 = ∞, 𝑦 ≠  𝑥.

• The Approximate Cuts compute a submodular approximation 𝑔∗(⋅,⋅) of 𝑔 ⋅,⋅ .
• Weak Persistence is guaranteed along the lines of Kahl and Strandmark [6] and 

Windheuser et al. [5] . 
• Node labels are guaranteed to be weakly persistent whenever the two graph nodes 

corresponding to a pixel are on opposite sides of cut. 

Denoising – 4 Clique: Submodular Potential (Optimal Inference)

Stereo – 4 Clique

Deblurring – 4 Clique

Deblurring – 9 Clique

Problem Type Optimal Inference Approximate Inference

2-Label First Order Graph Cuts (max flow) QPBO [3]

2-Label Higher Order Generic Cuts [1] Proposed Algorithm, Reduction [8]

Multi-Label First Order Ishikawa [9] Alpha Expansion

Multi-Label Higher Order MLGC [2] Message Passing Variants [10,11,12]
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Primal Dual

max
𝑝
(𝑈𝑝)
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Proposed Gadget for Non-submodular Potentials
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𝑠Gadget for label 𝑎 Gadget for label 𝑏

𝑉𝑐,𝑝,𝑏 = 𝑓𝑛𝑏 →𝑝𝑏 − 𝑓𝑝𝑏→𝑚𝑏𝑉𝑐,𝑝,𝑎 = 𝑓𝑛𝑎 →𝑝𝑎 − 𝑓𝑝𝑎→𝑚𝑎

Capacity Constraints: 
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AC runs orders of magnitude faster with superior visual quality


