COL202: Discrete Mathematical Structures. I semester, 2022-23.

Amitabha Bagchi
Tutorial Sheet 8: Infinite sets.
20 October 2022
Important: The question marked with a $\boldsymbol{\uparrow}$ is to be written on a sheet of paper and submitted to your TA within the first 10 minutes of the beginning of your tutorial session. Questions marked with a^{*} are optional challenge problems and are not to be discussed in the tutorial.

Problem 1

In class we discussed Cantor's predicament when a fleet of buses indexed by \mathbb{N} appeared at his hotel, each with seats indexed by \mathbb{N}. We suggested that Cantor can accommodate the guests as follows

- Currently resident guest in room i can shift to room 2^{i}.
- The j passenger of bus k can move into room p_{k+1}^{j} where p_{k} denotes the k th prime number, i.e., $p_{1}=2$.

Problem 1.1

Extend the solution discussed in class to the case where the fleet of buses is indexed by \mathbb{N}^{2}.

Problem 1.2

Now let us consider a situation where the government declares that only rooms whose number is a multiple of 6 can be used. What should Cantor do to accomodate the guests now? In this case assume the buses are indexed by \mathbb{N}.

Problem 1.3

Use the solution of Problem 1.2 to give a simple way of accomodating a fleet of buses indexed by \mathbb{N}^{k} for any $k \geq 1$.

Problem 2

Which of the following is true?

1. A strict $\mathbb{N} \Leftrightarrow A$ is finite.
2. A strict $\mathbb{N} \Leftrightarrow \mathbb{N}$ surj A.
3. A strict $\mathbb{N} \Leftrightarrow \exists n \in \mathbb{N}:|A|<n$.

Problem 3 © [1]

Prove that the set $\{0,1\}^{*}$ of all finite strings on 0 and 1 is countable.

Problem 4

Prove that the set of positive rationals is countable. Then extend this proof to show that the set of rationals is countable.

Problem 5 [1]

Prove that the set \mathbb{N}^{*} of all finite sequences of natural numbers is countable.

Problem 6 [1]

Suppose we have an infinite sequence $\left\{f_{i}\right\}_{i \geq 1}$ of functions from \mathbb{N} to \mathbb{R}_{+}(positive reals). A function $h: \mathbb{N} \rightarrow \mathbb{R}_{+}$is said to majorize the sequence if for each $k \in \mathbb{N}$ there is some $n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0}: f_{k}(n) \leq h(n)$.

Problem 6.1

Before going to the main question do the following

1. Show that for any finite $A \subset \mathbb{R}_{+}, \sup A \in \mathbb{R}_{+}$.
2. Show that there exist infinite sets of the form $A \subset \mathbb{R}_{+}$such that $\sup A \notin \mathbb{R}_{+}$(i.e. the supremum is ∞).

Problem 6.2

Give an explicit construction for h using Problem 6.1 as a hint. Is there some way of doing it without using this hint?

Problem 6.3

Also show that there is an h such that $f_{k}(n)$ is $o(h(n))$ for every $k \in \mathbb{N}$.

Problem 7

In class we proved the Schroder-Bernstein theorem using Tarski's Fixed Point Theorem. However the better known proof proceeds more explicitly. First try to work out a proof for the finite case. Then go and look at the structure of the proof for the general case provided in Problem 8.14 of [1]. Work out the proof according to the directions provided there. (It's very long so I am not copying it all out here).

Problem 8 *

Suppose we are given a graph $G=(V, E)$ where V is an infinite set. We say that such a graph is connected if there is a finite length path between any two vertices. Prove that every connected graph has a spanning tree. (Hint: Consider the poset of the trees contained in G ordered by the subgraph relation and see if you can apply Zorn's Lemma to prove the result.)

Problem 9

Prove that \mathbb{R} is uncountable.

Problem 10 [1]

An infinite binary string is called OK if the 1 s are only allowed to appear in perfect square positions, i.e., at positions $1,4,9, \ldots$ Note that not all the perfect square positions must be 1 , but all non-perfect square positions must be 0 . Prove that the set of OK strings is uncountable.

References

[1] E. Lehman, F. T. Leighton, and A. R. Meyer. Mathematics for Computer Science June 2018, MIT Open Courseware.

