Important: The question marked with a $\boldsymbol{\uparrow}$ is to be written on a sheet of paper and submitted to your TA within the first 10 minutes of the beginning of your tutorial session. Questions marked with a^{*} are optional challenge problems and are not to be discussed in the tutorial.

Problem 1

Prove that any finite lattice is complete.

Problem 2

In [1] on page 122 it is stated that a finite poset is a lattice iff it has a greatest element and a least element. However this is not true. Prove that (i) a finite lattice has a greatest element and a least element and (ii) there is a finite poset with a greatest element and a least element which is not a lattice.

Problem 3

Prove that the meet and join of a complete lattice are commutative, associative and idempotent and have the absorption property, i.e., prove Proposition 4.2.2 of [1].

Problem 4

Given a set X, let $S \subseteq 2^{X}$ be a collection of subsets of X such that

1. $X \in S$, and
2. if $A_{x} \in S$ for all $x \in I$ where I is some index set, then $\cap_{x \in I} A_{x}$ is also in S.

Prove that (S, \subseteq) is a complete lattice.

Problem 5

Write out the complete proof of step 2 of Tarski's Fixed Point Theorem (Theorem 4.2.6 of [1].)

Problem 6

Suppose that (X, \preceq) is a lattice. For any $k>1$, we define a relation \preceq_{k} on X^{k} as follows: $\left(x_{1}, \ldots, x_{k}\right) \preceq_{k}$ $\left(y_{1}, \ldots, y_{k}\right)$ if $\forall i \in[k]: x_{i} \preceq y_{i}$.

Problem 6.1

Prove that $\left(X^{k}, \preceq_{k}\right)$ is a lattice. Beging by showing that it is a poset.

Problem 6.2*

If (X, \preceq) is a complete lattice, is (X^{k}, \preceq_{k}) also a complete lattice?

Problem 7

A lattice X is called distributive if for all $x, y, z \in X$,

- $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$, and
- $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.

Give an example of a distributive lattice and a lattice which is not distributive.

Problem 8

Suppose that (X, \leq) is a finite distributive lattice and there is an $a \in X$ such that a is minimal in $X \backslash\{\perp\}$. Let $S_{1}=\{x \in X: a \not \leq x\}$ and $S_{2}=\left\{x \in X: x=x^{\prime} \vee a\right.$ for some $\left.x^{\prime} \in S_{1}\right\}$. Show that S_{1} and S_{2} form distributive lattices.

Problem 9

Wisden decides to publish a book with exactly 100 pages containing biographies and photos of the top 100 cricketers of all time. The cricketers are ranked from 1 to 100 . Although the text can be broken over multiple pages, each photo has to appear on a single page. Multiple photos can appear on the same page but the photos must appear in order of rank, i.e., the photo of cricketer ranked i must appear before the photo of cricketer ranked j whenever $i<j$.

Problem 9.1

Prove using Tarski's fixed point theorem that there is at least one cricketer whose photo appears on a page number equal to their rank (e.g. the photo of the 47 th greatest cricketer appears on page 47).

Problem 9.2 *

Give another proof using induction.

References

[1] J. Gallier. Discrete Mathematics for Computer Science: Some Notes arXiv:0805.0585, 2008.

