COL202: Discrete Mathematical Structures. I semester, 2022-23.
Amitabha Bagchi
Tutorial Sheet 6: Relations, functions and ordering relations.
6 October 2022
Important: The question marked with a $\boldsymbol{\uparrow}$ is to be written on a sheet of paper and submitted to your TA within the first 10 minutes of the beginning of your tutorial session. Questions marked with a^{*} are optional challenge problems and are not to be discussed in the tutorial.

Problem 1 [1]

Prove that for binary relations $\mathcal{R}, \mathcal{R}^{\prime}$ from A to B and $\mathcal{S}, \mathcal{S}^{\prime}$ from B to C, if $\mathcal{R} \subseteq \mathcal{R}^{\prime}$ and $\mathcal{S} \subseteq \mathcal{S}^{\prime}$ then $\mathcal{R} \circ \mathcal{S} \subseteq \mathcal{R}^{\prime} \circ \mathcal{S}^{\prime}$.

Problem 2 [1]

Given $\mathcal{R} \subseteq A \times B$ and $\mathcal{S}, \mathcal{T} \subseteq B \times C$, prove or find an example that disproves

1. $\mathcal{R} \circ(\mathcal{S} \cup \mathcal{T})=(\mathcal{R} \circ \mathcal{S}) \cup(\mathcal{R} \circ \mathcal{T})$
2. $\mathcal{R} \circ(\mathcal{S} \cap \mathcal{T})=(\mathcal{R} \circ \mathcal{S}) \cap(\mathcal{R} \circ \mathcal{T})$
3. $\mathcal{R} \circ(\mathcal{S} \backslash \mathcal{T})=(\mathcal{R} \circ \mathcal{S}) \backslash(\mathcal{R} \circ \mathcal{T})$

Problem 3 [1]

Show that a relation \mathcal{R} on a set A is

1. antisymmetric if and only if $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq \mathcal{I}_{A}$.
2. transitive if and only $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.
3. connected if and only if $(A \times A) \backslash \mathcal{I}_{A} \subseteq \mathcal{R} \cup \mathcal{R}^{-1}$.

Problem 4 [1]

Consider any preorder \mathcal{R} on A. For each $a \in A$ let $[a]_{\mathcal{R}}=\{b \in A: a \mathcal{R} b \wedge b \mathcal{R} a\}$. Now let $B=\left\{[a]_{\mathcal{R}}\right.$: $a \in A\}$. Define a relation $\mathcal{S} \subseteq B \times B$ as follows: $[a]_{\mathcal{R}} \mathcal{S}[b]_{\mathcal{R}}$ whenever $a \mathcal{R} b$. Show that \mathcal{S} is a partial order.

Problem 5

Suppose we have a set S and a partially ordered set $\left(T, \preceq_{T}\right)$, let \mathcal{F} be the set of functions $f: S \rightarrow T$, i.e., all the functions from S to T. We define a relation, \preceq, on \mathcal{F} as follows: $f \preceq g$ if $f(x) \preceq_{T} g(x)$ for all $x \in S$. Show that \preceq is a partial order on \mathcal{F}.

Problem 6

Given a set X, let $X \preceq$ be the set of partial orders on X. For any two partial orders $\preceq_{1}, \preceq_{2} \in X \preceq$ we say that $\preceq_{1} \unlhd \preceq_{2}$ if $x_{1} \preceq_{1} x_{2}$ implies $x_{1} \preceq_{2} x_{2}$ for all $x_{1}, x_{2} \in X$. Show that (X_{\preceq}, \unlhd) is a partially ordered set. Is it totally ordered?

Problem 7

For any $n>0$, let $\mathbb{R}^{n \times n}$ be the set of $n \times n$ real matrices. We say an $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if for every column vector $\boldsymbol{x} \in \mathbb{R}^{n \times 1}, \boldsymbol{x}^{T} A \boldsymbol{x} \geq 0$. Let $\mathcal{P}^{n} \subseteq \mathbb{R}^{n \times n}$ be the set of positive semi-definite $n \times n$ real matrices. We say that for $A, B \in \mathcal{P}^{n}, A \preceq B$ if $B-A$ is positive semidefinite. Is \preceq a partial order on \mathcal{P}^{n} ?

Problem 8

Let $\left(S, \preceq_{S}\right)$ and $\left(T, \preceq_{T}\right)$ be two posets defined on disjoint sets S, T. The linear sum $S \oplus T$ of the two posets is $(S \cup T, \preceq)$ where for $x, y \in S \cup T$ we say $x \preceq y$ if either $x \preceq_{S} y$ or $x \preceq_{T} y$ or if $x \in S$ and $y \in T$. Show that \preceq is a partial order on $S \cup T$. Draw an example of a graph for which a normal spanning tree's tree order can be represented as the linear sum of two tree orders.

Problem 9

Two partially ordered sets $\left(S, \preceq_{S}\right)$ and $\left(T, \preceq_{T}\right)$ are said to be isomorphic if there exists a bijection $f: S \rightarrow T$ such that $x \preceq_{S} y$ if and only if $f(x) \preceq_{T} f(y)$ for all $x, y \in S$. The function f is called an isomorphism. Also a function $f: S \rightarrow T$ is said to be increasing if $x \preceq_{S} y$ implies $f(x) \preceq_{T} f(y)$ for all $x, y \in S$. A function $f: S \rightarrow T$ is said to be strictly increasing iff for $x \neq y, x \preceq_{S} y$ implies $f(x) \preceq_{T} f(y)$ and $f(x) \neq f(y)$ (this could also be denoted $\left.f(x) \prec_{T} f(y)\right)$.

Show by example that an increasing function need not be an isomorphism.

Problem 10

Suppose $\left(S, \preceq_{S}\right)$ and (T, \preceq_{T}) are isomorphic and $f: S \rightarrow T$ is an isomorphism between them. Show that f and f^{-1} are both strictly increasing functions.

Problem 11 * requires some knowledge of Linear Algebra

For $i \in[n]$, let $\lambda_{i}: \mathcal{P}^{n} \rightarrow \mathbb{R}$ be the function mapping a matrix to its i smallest eigenvalue. Is λ_{n} an increasing function from $\left(\mathcal{P}^{n}, \preceq\right)$ to (\mathbb{R}, \leq) where \preceq and \mathcal{P}^{n} are as defined in Problem 7 ? What about λ_{1} ? What about λ_{i} for $i \neq 1, n$?

References

[1] S. Arun-Kumar, Lecture notes for Introduction to Logic for Computer Science., IIT Delhi, 2002. http://www.cse.iitd.ernet.in/~sak/courses/ilcs/logic.pdf

