COL202: Discrete Mathematical Structures. I semester, 2022-23. Amitabha Bagchi Tutorial Sheet 4: Graph Connectivity . 8 September 2022

Important: The question marked with a ♠ is to be written on a sheet of paper and submitted to your TA within the first 10 minutes of the beginning of your tutorial session. Questions marked with a * are optional challenge problems and are not to be discussed in the tutorial.

Problem 1 [1, Prob 12, page 30]

Show that every 2-connected graph contains a cycle.

Problem 2

Show using only the material covered in [1, Ch 1.4] that every connected graph on n vertices has at least n-1 edges.

Problem 3

Generalize the result of Problem 2 to show that every graph on n vertices and m edges has at least n-m components.

Problem 4

Given a graph G = (V, E) and a minimal edge separator $F \subseteq E$, show that any cycle of G contains an even number of edges of F (this number could be 0 as well).

Problem 5

The *n-Hamming cube* is a graph with $V(G) = \{0,1\}^n$, i.e., whose vertices are vectors with *n* coordinates, each of which can be either 0 or 1. We put an edge between any two vertices whose vectors differ in exactly one coordinate.

Problem 5.1 ♠

Prove that the *n*-Hamming cube is a connected graph for any n > 0.

Problem 5.2 *

What is the highest value k such that the n-Hamming cube is k-connected?

Problem 6

Let \bar{G} be the complement of the graph G, i.e., all edges of G are non-edges of \bar{G} and vice versa. Show that both G and \bar{G} cannot be disconnected, i.e., at least one of them must be connected.

Problem 7

Given a graph G = (V, E) such that |V| = n, a cut $F \subset E$ is called a balanced cut if $G \setminus F$ has exactly 2 components and each of these components has size at least n/3. Construct graphs on n vertices whose smallest balanced cut has size (a) $\theta(1)$, (b) $\theta(\sqrt{n})$ and (c) $\theta(n)$.

Problem 8 (Menger's Theorem)

Prove that a graph G has $\lambda(G) = k$ for any $k \ge 1$ iff there are k edge-disjoint paths between any pair of vertices in G. Two paths are said to be edge-disjoint if they don't share any edges. Caution: One direction of this theorem is easy and the other is tricky.

References

[1] Reinhard Diestel, Graph Theory 5ed., Springer, 2016.