COL202: Discrete Mathematical Structures. I semester, 2022-23.
Amitabha Bagchi
Tutorial Sheet 3: Graph Theory basics.
1 September 2022
Important: The question marked with a $\boldsymbol{\uparrow}$ is to be written on a sheet of paper and submitted to your TA within the first 10 minutes of the beginning of your tutorial session. Questions marked with a^{*} are optional challenge problems and are not to be discussed in the tutorial.

Problem 1

Prove that every simple graph has two vertices of the same degree.

Problem 2 [1, Prob 2, page 30]

Let $d \in \mathbb{N}$ and $V=\{0,1\}^{d}$, i.e., V is the set of all $0-1$ sequences of length d. We define the edge set as follows: there is an edge between two sequences if they differ in exactly one position. This graph is known as the d-dimensional cube. Determine the average degree, diameter, girth and circumference of the d-dimensional cube. Note that the circumference of a graph is the length of the longest cycle in the graph.

Problem 3 [1, Prob 3, page 30]

Let G be a graph containing a cycle C, and assume that G contains a path of length at least k between two vertices of C. Show that G contains a cycle of length at least \sqrt{k}.

Problem 4

Suppose we are given that there exists a homomorphism φ from $G=(V, E)$ to $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. We assume that $V, V^{\prime} \neq \emptyset$. Prove that there is an independent set in G whose size is at least $|V| /\left|V^{\prime}\right|$. Note: If $\left|V^{\prime}\right| \geq|V|$ then the result is trivially true since, for any $v \in V$, the set $\{v\}$ is trivially an independent set.

Problem 5 *

For $k \geq 0$, a k-colouring of a graph $G=(V, E)$ is a function $f: V \rightarrow[k]$ (where $[n]$ is the set $\{1,2, \ldots, n\})$ such that for all $(u, v) \in E, f(u) \neq f(e)$. We say a graph is k-colourable if a k-colouring exists for the graph. Show that G is k-colourable if and only iff there is a homomorphism from G to the complete graph on k vertices (i.e. K_{k}).

Problem 6 [1, Prob 6, page 30]

Show that $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$ for every graph G.

Problem 7

Given a set X, a function $f: X \times X \rightarrow[0, \infty)$ is called a distance if

1. $\forall x, y \in X: f(x, y)=0 \Leftrightarrow x=y$,
2. $\forall x, y \in X: f(x, y)=f(y, x)$, and
3. $\forall x, y, z \in X: f(x, y) \leq f(x, z)+f(z, y)$.

Problem 7.1

Prove that the graph distance defined as the length of the shortest path between two vertices is a distance.

Problem 7.2

Suppose that given a graph $G=(V, E)$ we have a function $w: E \rightarrow \mathbb{R}$ and we define the length of the path $x_{0} \ldots x_{k}$ to be $\sum_{i=1}^{k} w\left(x_{i-1} x_{i}\right)$. As before we define the "distance" between two vertices to be the length of the shortest path between the two vertices. What condition do we need on w for this "distance" to actually be a distance? Which of the requirements of a distance get violated if w is allowed to assign negative values? Do any requirements get violated if w is allowed to assign the value 0 ?

Problem 8

Given two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that $|V|=\left|V^{\prime}\right|$, suppose we can find a $\phi: V \rightarrow V^{\prime}$ which is a bijection and is a graph homomorpishm. Prove that diameter $\left(G^{\prime}\right) \leq \operatorname{diameter}(G)$. Draw an example where the inequality is strict. Use this fact to prove that two isomorphic graphs have the same diameter.

Problem 9 *

Given a set of vertices V such that $|V|=n$, and given k such that $\binom{n}{2} \geq k \geq 0$, let us denote by $A_{n, k}$ the set of all simple graphs on V with exactly k edges. We now define a graph whose vertices are the elements of $A_{n, k}$. We put an edge between graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ if $\left|E_{1} \backslash E_{2}\right|=1$. What is the diameter of this graph in terms of k ? Does the diameter always increase as k increases?

References

[1] Reinhard Diestel, Graph Theory 5ed., Springer, 2016.

