COL202: Discrete Mathematical Structures. I semester, 2022-23.
Amitabha Bagchi
Tutorial Sheet 10: Generating functions.
3 November 2022
Important: The question marked with a $\boldsymbol{\uparrow}$ is to be written on a sheet of paper and submitted to your TA within the first 10 minutes of the beginning of your tutorial session. Questions marked with a^{*} are optional challenge problems and are not to be discussed in the tutorial.

Problem 1

In the 2-dimensional plane we have n lines such that no two lines are parallel and no three lines intersect at one point. If R_{n} is the number of regions created by these n lines, find a recurrence for R_{n} and solve it.

Problem 2

Find a recurrence relation for the number of bit strings of length n that contain the string 01 . Try and solve it if possible.

Problem 3

Find a recurrence relation for the number of bit strings of length n that contain three consecutive 0 s. Try and solve it if possible.

Problem 4

Let A_{n} be the $n \times n$ matrix with 2's on its main diagonal, 1 's in all positions next to a diagonal element, and 0 's everywhere else. Find a recurrence relation for d_{n}, the determinant of A_{n}. Solve this recurrence relation to find a formula for d_{n}.

Problem 5

In how many ways can $3 r$ balls be chosen from $2 r$ red balls, $2 r$ blue balls and $2 r$ green balls?

Problem 6

Evaluate the following sums:

Problem 6.1

$$
\binom{n}{1}+2 \cdot\binom{n}{2}+\cdots+i \cdot\binom{n}{i}+\cdots+n \cdot\binom{n}{n}
$$

Problem 6.2

Given that $k \leq m$ and $k \leq n$

$$
\binom{n}{0} \cdot\binom{m}{k}+\binom{n}{1} \cdot\binom{m}{k-1}+\binom{n}{2} \cdot\binom{m}{k-2}+\cdots+\binom{n}{k} \cdot\binom{m}{0}
$$

Problem 6.3

$$
\binom{2 n}{n}+\binom{2 n-1}{n-1}+\cdots+\binom{2 n-i}{n-i}+\cdots+\binom{n}{0}
$$

Problem 7 (pp 25 of [1])

Let X be a random variable that takes values $0,1,2, \ldots$ with probabilities $p_{0}, p_{1}, p_{2}, \ldots$ respectively. Clearly we must have p_{i} is nonegative for each i and the sum of $p_{i} \mathrm{~s}$ is 1 . Let $P(x)$ be the ordinary power series generating function (opsgf) of $\left\{p_{n}\right\}_{n \geq 0}$.

Problem 7.1

Express the mean and standard deviation of X in terms of $P(x)$.

Problem 7.2

Let X_{1} and X_{2} be two independent random variables with the same distribution as X. Let $p_{n}^{(2)}$ be the probability that $X_{1}+X_{2}=n$. What is the opsgf of $\left\{p_{n}^{(2)}\right\}_{n \geq 0}$?

Problem 7.3

For $k \geq 2$, let X_{1}, \ldots, X_{k} be k independent random variables with the same distribution as X. Let $p_{n}^{(k)}$ be the probability that $\sum_{i=1}^{k} X_{i}=n$. What is the opsgf of $\left\{p_{n}^{(k)}\right\}_{n \geq 0}$?

Problem 7.4

Use the results above to write out the mean and standard deviation of $\sum_{i=1}^{k} X_{i}$ where the X_{i} are independently chosen with the same distribution as X.

Problem 8

Let $f(n, k, h)$ be the number of ordered representations of n as a sum of exactly k integers each of which is $\geq h$. Find the generating function $\sum_{n} f(n, k, h) x^{n}$. By ordered representation we mean that that if $n=10, k=3$ and $h=2$ then we will consider $5+3+2$ and $2+3+5$ as two different representations.

Problem 9

In each part below the sequence $\left\{a_{n}\right\}_{n \geq 0}$ satisfies the given recurrence. Find the ordinary power series generating function in each case and solve to find a_{n} where possible.

Problem 9.1

$$
a_{n+1}=3 a_{n}+2,\left(n \geq 0, a_{0}=0\right) .
$$

Problem 9.2

$$
a_{n+1}=\alpha a_{n}+\beta,\left(n \geq 0, a_{0}=0\right)
$$

Problem 9.3

$$
a_{n+2}=2 a_{n+1}-a_{n},\left(n \geq 0, a_{0}=0, a_{1}=1\right) .
$$

Problem 9.4

$$
a_{n+1}=a_{n} / 3+1,\left(n \geq 0, a_{0}=0\right)
$$

Problem 10

Let $f(n)$ be the number of subsets of $\{1,2, \ldots, n\}$ that contain no two consecutive integers. Find a recurrence for $f(n)$ and try to solve it to the extent possible using generating functions.

Problem 11

In the following assume that $A(x), B(x)$ and $C(x)$ are the ordinary power series generating functions of the sequences $\left\{a_{n}\right\}_{n \geq 0},\left\{b_{n}\right\}_{n \geq 0}$ and $\left\{c_{n}\right\}_{n \geq 0}$ respectively. With this notation attempt the following problems:

Problem 11.1

If $c_{n}=\sum_{j+2 k \leq n} a_{j} b_{k}$, express $C(x)$ in terms of $A(x)$ and $B(x)$.

Problem 11.2

If

$$
n b_{n}=\sum_{k=0}^{n} 2^{k} \frac{a_{k}}{(n-k)!},
$$

express $A(x)$ in terms of $B(x)$.

Problem 12

Solve the recurrence $g_{0}=0, g_{1}=1$ and

$$
g_{n}=-2 n g_{n-1}+\sum_{k=0}^{n}\binom{n}{k} g_{k} g_{n-k}, \text { for } n>1,
$$

using an exponential generating function.

References

[1] Herbert S. Wilf, generatingfunctionology, 1994, Academic Press.

