COL202: Discrete Mathematical Structures. I semester, 2022-23. Amitabha Bagchi Tutorial Sheet 10: Generating functions. 3 November 2022

Important: The question marked with a \blacklozenge is to be written on a sheet of paper and submitted to your TA within the first 10 minutes of the beginning of your tutorial session. Questions marked with

a * are optional challenge problems and are not to be discussed in the tutorial.

Problem 1

In the 2-dimensional plane we have n lines such that no two lines are parallel and no three lines intersect at one point. If R_n is the number of regions created by these n lines, find a recurrence for R_n and solve it.

Problem 2

Find a recurrence relation for the number of bit strings of length n that contain the string 01. Try and solve it if possible.

Problem 3

Find a recurrence relation for the number of bit strings of length n that contain three consecutive 0s. Try and solve it if possible.

Problem 4

Let A_n be the $n \times n$ matrix with 2's on its main diagonal, 1's in all positions next to a diagonal element, and 0's everywhere else. Find a recurrence relation for d_n , the determinant of A_n . Solve this recurrence relation to find a formula for d_n .

Problem 5

In how many ways can 3r balls be chosen from 2r red balls, 2r blue balls and 2r green balls?

Problem 6

Evaluate the following sums:

Problem 6.1

$$\binom{n}{1} + 2 \cdot \binom{n}{2} + \dots + i \cdot \binom{n}{i} + \dots + n \cdot \binom{n}{n}$$

Problem 6.2

Given that $k \leq m$ and $k \leq n$

$$\binom{n}{0} \cdot \binom{m}{k} + \binom{n}{1} \cdot \binom{m}{k-1} + \binom{n}{2} \cdot \binom{m}{k-2} + \dots + \binom{n}{k} \cdot \binom{m}{0},$$

Problem 6.3

$$\binom{2n}{n} + \binom{2n-1}{n-1} + \dots + \binom{2n-i}{n-i} + \dots + \binom{n}{0}$$

Problem 7 **(pp 25 of [1])**

Let X be a random variable that takes values $0, 1, 2, \ldots$ with probabilities p_0, p_1, p_2, \ldots respectively. Clearly we must have p_i is nonegative for each i and the sum of p_i s is 1. Let P(x) be the ordinary power series generating function (opsgf) of $\{p_n\}_{n\geq 0}$.

Problem 7.1

Express the mean and standard deviation of X in terms of P(x).

Problem 7.2

Let X_1 and X_2 be two independent random variables with the same distribution as X. Let $p_n^{(2)}$ be the probability that $X_1 + X_2 = n$. What is the opsgf of $\{p_n^{(2)}\}_{n \ge 0}$?

Problem 7.3

For $k \ge 2$, let X_1, \ldots, X_k be k independent random variables with the same distribution as X. Let $p_n^{(k)}$ be the probability that $\sum_{i=1}^k X_i = n$. What is the opsgf of $\{p_n^{(k)}\}_{n\ge 0}$?

Problem 7.4

Use the results above to write out the mean and standard deviation of $\sum_{i=1}^{k} X_i$ where the X_i are independently chosen with the same distribution as X.

Problem 8

Let f(n, k, h) be the number of ordered representations of n as a sum of exactly k integers each of which is $\geq h$. Find the generating function $\sum_{n} f(n, k, h)x^{n}$. By ordered representation we mean that that if n = 10, k = 3 and h = 2 then we will consider 5 + 3 + 2 and 2 + 3 + 5 as two *different* representations.

Problem 9

In each part below the sequence $\{a_n\}_{n\geq 0}$ satisfies the given recurrence. Find the ordinary power series generating function in each case and solve to find a_n where possible.

Problem 9.1

$$a_{n+1} = 3a_n + 2, (n \ge 0, a_0 = 0).$$

Problem 9.2

$$a_{n+1} = \alpha a_n + \beta, (n \ge 0, a_0 = 0).$$

Problem 9.3

$$a_{n+2} = 2a_{n+1} - a_n, (n \ge 0, a_0 = 0, a_1 = 1).$$

Problem 9.4

$$a_{n+1} = a_n/3 + 1, (n \ge 0, a_0 = 0).$$

Problem 10

Let f(n) be the number of subsets of $\{1, 2, ..., n\}$ that contain no two consecutive integers. Find a recurrence for f(n) and try to solve it to the extent possible using generating functions.

Problem 11

In the following assume that A(x), B(x) and C(x) are the ordinary power series generating functions of the sequences $\{a_n\}_{n\geq 0}$, $\{b_n\}_{n\geq 0}$ and $\{c_n\}_{n\geq 0}$ respectively. With this notation attempt the following problems:

Problem 11.1 If $c_n = \sum_{j+2k \le n} a_j b_k$, express C(x) in terms of A(x) and B(x).

Problem 11.2 If

$$nb_n = \sum_{k=0}^n 2^k \frac{a_k}{(n-k)!},$$

express A(x) in terms of B(x).

Problem 12

Solve the recurrence $g_0 = 0, g_1 = 1$ and

$$g_n = -2ng_{n-1} + \sum_{k=0}^n \binom{n}{k} g_k g_{n-k}, \text{ for } n > 1,$$

using an exponential generating function.

References

[1] Herbert S. Wilf, generatingfunctionology, 1994, Academic Press.