COL202: Discrete Mathematical Structures. I semester, 2022-23.

Amitabha Bagchi

Tutorial Sheet 1: Logic and Proofs.
18 August 2022
Important: The question marked with a $\boldsymbol{\uparrow}$ is to be written on a sheet of paper and submitted to your TA within the first 10 minutes of the beginning of your tutorial session.

Note: Please read all of Chapter 3 of [1] before attempting this sheet. All questions in this sheet are from that book, question numbers and page indicated in brackets refer to the pdf linked on the course page.

Problem 1 (Prob 1, pp 94)

Give truth tables for the following compound propositions

1. $(s \vee t) \wedge(\neg s \vee t) \wedge(s \vee \neg t)$
2. $(s \Rightarrow t) \wedge(t \Rightarrow u)$
3. $(s \vee t \vee u) \wedge(s \vee \neg t \vee u)$

Problem 2 (Prob 8, pp 94)

Use a truth table to show that $(s \vee t) \wedge(u \vee v)$ is equivalent to $(s \wedge u) \vee(s \wedge v) \vee(t \wedge u) \vee(t \wedge v)$.

Problem 3 (Prob 8, pp 107)

Write the following statement as a logical expression: The product of odd integers is odd. You may assume that odd : $\mathbb{Z} \rightarrow\{T, F\}$ is a predicate that maps odd integers to T and even integers to F.

Problem 4 (Theorem 3.2, pp 100)
Here is the statement of a theorem given in [1] written in slightly different terms.

Theorem 1

Suppose we have a domain D and two predicates $P, Q: D \rightarrow\{T, F\}$. Let $A=\{x \in D: Q(x)$ is $T\}$. Show that

1. $\forall x \in A: P(x)$ is logically equivalent to $\forall x \in D: Q(x) \Rightarrow P(x)$.
2. $\exists x \in A: P(x)$ is logically equivalent to $\exists x \in D: Q(x) \wedge P(x)$.

Write a proof for this. You may read the proof in the book and then write it in your own words.

Problem 5 (Prob 10, pp 107)

Rewrite the following statement without any negations. It is not the case that there exists an integer n such that $n>0$ and for all integers $m>n$, for every polynomial equation $p(x)=0$ of degree m there are no real numbers for solutions.

Problem 6 (Prob 11, pp 107)
Consider the following slight modification of Theorem 3.2. For each part below, either prove that it is true or give a counterexample. Let U_{1} be a universal set contained in another universal set U_{2}, i.e., $U_{1} \subseteq U_{2}$. Suppose that $q(x)$ is a statement such that $U_{1}=\left\{x \in U_{2} \mid q(x)\right.$ is true $\}$.

1. $\forall x \in U_{1}: p(x)$ is equivalent to $\forall x \in U_{2}: q(x) \wedge p(x)$.
2. $\exists x \in U_{1}: p(x)$ is equivalent to $\exists x \in U_{2}: q(x) \Rightarrow p(x)$.

Problem 7 日

Given two predicates $P, Q: \mathbb{N} \rightarrow\{T, F\}$, suppose we know that $\forall n \in \mathbb{N}:(n \geq 5) \Rightarrow P(n)$ and $\forall n \in \mathbb{N}:(n \geq 6) \Rightarrow Q(n)$ are true. Prove that $\exists n \in \mathbb{N}: P(n) \wedge Q(n)$. Can we prove or disprove that $\exists n \in \mathbb{N}: P(n) \wedge \neg Q(n)$?

Problem 8 ([1], Prob 7, pp 115)
Prove using the contrapositive method that for all real numbers x, if $x^{2}-2 x \neq-1$ then $x \neq 1$.
Problem 9 ([1], Prob 8, pp 115)
Prove using the proof by contradiction method that for all real numbers x, if $x^{2}-2 x \neq-1$ then $x \neq 1$.
Problem 10 ([1], Prob 15, pp 115)
Given function $f, g, h: \mathbb{Z}_{+} \rightarrow \mathbb{R}_{+}$Recall that $f(n)=O(g(n))$ by definition if

$$
\exists c \in \mathbb{R}_{+}: \exists n_{0} \in \mathbb{Z}_{+}: \forall n \geq n_{0} f(n) \leq c g(n) .
$$

Prove that if $f(n)=O(g(n))$ and $g(n)=O(h(n))$ then $f(n)=O(h(n))$.

References

[1] K. Bogart, S. Drysdale, C. Stein Discrete Math for Computer Science Students. 2005.

