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Abstract. Smartphones connected to cellular networks are increasingly
being used to access Internet-based services. Using data collected from
smartphones running a popular location-based application, we examine
IP address allocation in cellular data networks, with emphasis on un-
derstanding the applicability of IP-based geolocation techniques. Our
dataset has GPS-based location data for approximately 29,000 cellu-
lar network assigned IP addresses in 50 different countries. Using this
dataset, we provide insights into the global deployment of cellular net-
works. For instance, we find that Network Address Translation (NAT)
is commonplace in cellular networks. We also find several instances of
service differentiation with operators assigning public IP addresses to
some devices and private IP addresses to other devices. We also evalu-
ate the error of geolocation databases when determining the position of
the smartphones, and find that the error is 100km or more for approx-
imately 70% of our measurements. Further, there is potential for errors
at the scale of inter-country and inter-continent distances. We believe
this dataset may be of value to the research community, and provide a
subset of the dataset to the community.

1 Introduction

Estimating the geographical location of Internet hosts has many applications
including targeted marketing, user profiling, fraud detection, regulatory com-
pliance, digital rights management, and server or content distribution network
performance tuning. For instance, to comply with region-specific licensing ar-
rangements, many streaming media services restrict content access based on the
user’s geographic location. One popular approach to geolocation is the use of
database services such as Maxmind [2] and IPinfoDB [1] that maintain an ex-
haustive table of IP prefix to location matches. However, dynamic assignment
of IP addresses, increased fragmentation of IP address blocks, and extensive use
of middleboxes make IP-based geolocation extremely challenging.

In this paper, we examine IP address allocation in cellular data networks,
with emphasis on understanding the feasibility of IP-based geolocation tech-
niques. We believe this is an important problem as smartphones connected to



cellular networks are increasingly being used to access Internet-based services.
Of course, customized smartphone applications can use the built-in Global Po-
sition Systems (GPS) receiver to obtain accurate location information. How-
ever, in cases where a service is accessed through the phone’s browser1 or when
GPS-based tracking is disabled (e.g., by the user because of privacy concerns),
alternative geolocation techniques are necessary. The IP geolocation problem
has not received much attention in the context of cellular data networks, and
we fill this void by instrumenting a popular location-based iOS application to
collect and subsequently analyze a dataset that has GPS-based location data
for approximately 29,000 cellular network assigned IP addresses, obtained from
several thousand individual smartphones spread across 50 countries.

This paper offers several contributions. First, we characterize the dataset and
offer insights on the global deployments of cellular data networks. For instance,
we find that NAT and other middleboxes are widely deployed in cellular networks
worldwide. We also provide evidence of service differentiation, where a provider
assigns publicly visible IP addresses to some users, while other users are behind
NAT boxes. Second, we study whether or not geolocation databases provide
good location estimates and show that the error is 200km or more in 50% of our
measurements. Further, we observe some large errors, owing to mobile operator’s
implementation of roaming functionality. This can be expected to become a
commonplace problem as roaming traffic charges drop. Finally, we provide an
original dataset to the community, with an unprecedented number of ground
truth measurements of IP to geolocation mapping for cellular data networks.

The remainder of this paper is organized as follows. Section 2 present an
overview of related work. Our data collection method and a preliminary analysis
of the dataset is present in Section 3. An analysis of the IP addresses observed
in our dataset is presented in Section 4. Section 5 presents concluding remarks.

2 Related Work

The problem of geolocating hosts in networks has been widely studied [8]. Tech-
niques range from measuring packet latencies to landmark nodes and then esti-
mating their location relative to these nodes [6–8], applying machine learning to
ground truth datasets [5], or using tabular storage of IP prefixes and associated
locations (‘GeoIP databases’) [1, 2]. The accuracy of GeoIP databases has also
been debated [9, 10]. For instance, Poese et al. [9] recently evaluated the accu-
racy of several GeoIP databases using ground truth information from several
POP locations from one European wired ISP and found that while most GeoIP
databases can claim accuracy at the country level, their databases are heavily
biased towards few countries.

1 The HTML5 Geolocation API [3] allows browsers to report a device’s position. The
source of location data is implementation-dependent, and can be obtained from GPS
receivers, WiFi network location databases, or other means. It is still early days for
this solution, and geolocation databases are likely to be a popular method for many
reasons, including privacy concerns associated with fine-grained location tracking.



Data Description

Unique ID Per device, unique id (fully anonymised)
Timestamp Time at server when measurement was recorded

Interface IP Address IP address assigned to the Cellular Data interface
Observed IP Address Device IP address, as observed at the application’s server

Location Latitude / Longitude coordinates
Horizontal Accuracy Accuracy, in meters, of the location measurement

Table 1. Dataset details.

Closely related to our work are recent studies by Balakrishnan et al. [4], Xu et
al. [12], and Wang et al. [11]. For mobile devices connected through 3G networks,
Balakrishnan et al. [4] studied the accuracy of GeoIP databases, the client/server
latencies, and the IP address ‘stickiness’. Their study, while comprehensive, is
based on three datasets with a maximum of about 100 devices, over a single
mobile operator network in the US. Xu et al. [12] combined several data sources
to discover cellular network infrastructure. Their work relied on server logs, DNS
request logs, and publicly available routing updates to characterize four major
US cellular carrier networks. Xu et al. evaluated the cellular network diameter,
and demonstrate how this could affect content placement strategies. Wang et
al. [11] characterized NAT, firewall, and other security policies deployed in more
than 100 cellular IP networks.

We believe our work complements these recent efforts [4, 11, 12]. Our novel
dataset has ground truth information on the location of mobile devices, and thus
allows us to evaluate how well GeoIP databases may perform for IP addresses
assigned by cellular networks. Further, our dataset provides an opportunity to
study IP address assignment at a larger scale than that of previous studies, and
across carriers in many different countries.

3 Dataset and Preliminary Analysis

3.1 Dataset

Use of third-party smartphone applications has exploded in recent years, owing
to the phenomenal success of the ‘App Store’ model. These third-party appli-
cations present an unprecedented opportunity for crowd-sourcing network mea-
surements from mobile networks. For this work, we partnered with the developer
of a location-based iOS application2 to add minimal instrumentation code such
that the application’s Internet-based server logs reported the device’s local IP
address. This reporting is only done when the device is using the 3G/GPRS
interface for communication.

2 The application is available only on Apple devices running the iOS operating system,
and has been downloaded by 140,000 users from 50 countries, and is particularly
popular in Germany and Australia.



The application developer provided us with processed data from their server
logs. In particular, the raw dataset consists of 29,043 measurement points, col-
lected from 11,230 unique smartphones between May and August 2011. The
information available is detailed in Table 1.

This dataset may be obtained by contacting the authors. For privacy rea-
sons, the released dataset will not provide the location data and instead provide
the corresponding country and city-level information available from the Google
reverse geocoding service. In addition, the released dataset will include the ob-
served IP address but not the Interface IP address. Instead, we include a set of
two boolean flags, to indicate respectively whether the device IP address was
in the private IANA space, and whether it was different from the observed IP
address. Finally the device id and horizontal accuracy are also removed. This
transformation on the data improves the users privacy while providing the in-
formation required to confirm the key results of this paper, and develop many
new findings.

3.2 Geographical Coverage

Before analyzing the collected data, we applied a few simple filtering rules. Note
that the number of measurements from a particular device depends on the fre-
quency with which the owner of the device interacts with the application. As
we are not interested in recording multiple instances of identical information,
for each smartphone we discard a measurement point only if all the following
conditions are met, with respect to the previous measurement point: i) both
the device and observed IP address are unchanged, ii) the distance between the
measurements locations is less than 1km3, and iii) the time elapsed since the
previous measurement is less than 3 hours. Following this preprocessing, we are
left with 27,328 measurements. Next, we applied the Google reverse-geocoding
service to obtain city and country information from the GPS coordinates. We
successfully looked up 26,566 dataset entries. The remainder of this paper fo-
cuses on this filtered dataset. In total, we have measurements from 1,924 cities
in 50 different countries as summarized in Table 2 and illustrated in Figure 1.

Devices running iOS use a proprietary ‘Assisted GPS’ method to optimize the
device location computation, using a combination of GPS data and a proprietary
WiFi geo-database. The 3G iPhone’s Assisted GPS typically has horizontal ac-
curacy errors of 10-15 m [13]. The iOS application programmer can retrieve the
accuracy level, in meters, associated with any GPS location measurement. This
horizontal accuracy value was available for 97% of our measurement points, and
these indicate that 78% of the GPS location information are accurate to 100m,
and 93% are accurate to at least 1km.

3 Condition (ii) captures mobility and uses 1km as the threshold since more than 90%
of the measurements have horizontal accuracy of at least 1km.



Continent Countries # of Cities Total Entries

Australia (2) AU,NZ 166 18,211

Europe (26) DE,FR,SE,AT,CH,GB,ES,IT,PL 1482 7,036
TR,LU,DK,BE,GR,NL,HU,RO
RS,FI,CZ,HR,NO,IE,LI,PT,SK

Asia (14) TW,SG,JP,MY,CN,HK,KW 158 991
KH,CY,OM,IN,AE,KR,LB

America (3) US,CA, CR 104 282

Others (5) MO,AR,CO,PR,ZA 14 46

Table 2. Reverse geocoding of measurement locations.

Fig. 1. All measurement locations.

3.3 Limitations

Our dataset constitutes a sample of smartphone locations worldwide, the IP ad-
dress assigned by the cellular data network to these smartphones, and the IP
address from which these devices are visible on the Internet. The main draw-
back of this application-driven measurement method is the spatial and temporal
sampling bias introduced as the measurement occurrences are driven by: i) the
adoption rate of the smartphone type/OS on which the application is available,
ii) the application adoption rate and the spatial distribution of its adopters, and
iii) the application usage rate and spatial pattern, which is dependent on the
application’s intended use. This dataset is, however, to our knowledge, the first
of its kind to be available to the research community.

4 Cellular Networks: View from the IP level

4.1 Public IPs, Private IPs, and Middleboxes

With the number of Internet-enabled smartphones exploding, and the increased
scarcity of available IPv4 address space, mobile operators are likely to rely on



Network Name Country total # devices with # devices with
devices only private IP only public IP

OPTUSINTERNET-AU AU 2039 11 1958
CUSTOMERS-DE DE,IT,HR, 1337 1134 135

FR,PT,NL
TELSTRAINTERNET42-AU AU 1122 1119 0
VODAFONE AU 1101 1029 59
H3GAIPNET AU 789 783 1
DE-D2VODAFONE DE,ES,NL,CH, 702 692 8

FR,IT,DK,GR
VODAFONE-PACIFIC-AU AU,NL 486 479 0
E-PLUS-MOBILES-BLOCK-6 DE 342 341 0
o2-Germany-NAT-Pool2-FRA DE 300 299 0
o2-Germany-NAT-Pool1-DUS DE,ES 283 282 0
o2-Germany-NAT-Pool1-BER DE 265 264 0
DE-D2VODAFONE-20101118 DE 217 216 1
ORANGE-FR FR 183 183 0
SFR-INFRA FR,BE 163 163 0
EMOME-NET TW 162 3 159

Table 3. IP allocation statistics for the top 15 networks in the dataset.

Network Address Translation (NAT) solutions. This section quantifies, for our
dataset, the prevelance of public IP address assignment, NAT solution, and other
middleboxes.

We observe 18,949 measurements, or roughly 70% of the measurements,
where the smartphone’s device interface is assigned a private IP address. As-
signment of an address from IANA’s reserved IP address space indicates the use
of NAT solutions between the user’s device and the application server. Further,
we identify 478 instances where the phone’s cellular interface address is assigned
a public IP address but it does not match the observed IP address at the ap-
plication server, thus indicating the presence of middleboxes between the device
and the application server.

Table 3 illustrates the diversity of networks seen in our dataset. For each
measurement point, we determine the network operator by querying the WHOIS
service. The query uses the interface IP address if it is public or the observed
IP address if the interface is assigned a private IP address. The table ranks
networks based on the number of unique smartphones matched to a network. We
notice that most operators use some form of NAT. Further, among these top 15
networks, we find several instances where a network assigns private IP addresses
to some devices and public IP addresses to other devices, indicating service
differentiation within operators: some devices benefit from publicly routable IP
addresses, but most do not. We also find a few instances where a smartphone is
assigned a private IP address at one point in time, and a public IP address at
another point in time.



/24 IP block # Countries # Measurement Country List

77.24.0 7 246 DE,FR,NL,DK,IT,ES,CH
80.187.96 4 174 DE,NL,IT,FR

193.247.250 4 88 FR,IT,NL,CH
80.187.107 3 303 DE,HR,PT
203.20.35 2 792 AU,NL
80.187.106 2 360 DE,IT
89.204.153 2 359 DE,ES
80.187.110 2 310 DE,FR
80.187.111 2 281 DE,FR
80.187.97 2 180 DE,IT

Table 4. /24 IP blocks with hosts in more than one country.

(a) 202.81.69.a (b) 58.163.175.b (c) 192.148.117.c (d) 58.163.175.d

Fig. 2. Dispersion of hosts around the top four mobile gateways in the dataset.

4.2 Spatial Allocation of IP Blocks

We investigated the geographical span of devices belonging to the top /24 IP sub-
nets in the dataset. This indication can be useful when building GeoIP databases,
especially when longest prefix matching strategies are used. We identified the top
10 /24 subnets that account for the most measurements from unique devices,
and used Google’s reverse-geocoding service to lookup the country location for
each measurement in this set. Using a WHOIS service, we verified that all IPs in
each /24 subnet does indeed belong to the same network provider. Table 4 sum-
marizes our results, and illustrates that devices physically present in different
countries may be assigned an address from the same IP block.

4.3 Spatial Coverage of Gateways

When a cellular network uses middleboxes, the application’s server will receive
connections from several distinct devices, all originating from a single IP address
(which we refer to as the mobile gateway IP address). Here, we study the spatial
dispersion of devices around mobile gateways, as observed in our dataset. This
has implications on the accuracy of GeoIP databases as multiple, potentially
far apart, devices have the same IP address from the point-of-view of Internet
servers.

Figure 2 illustrates the dispersion of hosts attached to some example mobile
gateway IP addresses4, for one country (Australia). It is interesting to note

4 The host number part of the IP addresses is truncated.



Observed IP # Country Country (# Measurement)

77.24.0.a 3 DE(28),IT(1),NL(1)
77.24.0.b 3 DE(21),ES(2),NL(1)

193.247.250.c 3 CH(2),FR(1),NL(1)
203.20.35.d 2 AU(532),NL(1)
77.24.0.e 2 DE(47),ES(1)
77.24.0.f 2 DE(34),CH(1)
77.24.0.g 2 DE(27),DK(1)
77.24.0.h 2 DE(24),FR(1)

202.175.20.i 2 MO(8),CN(3)
89.204.153.j 2 DE(8),ES(1)

Table 5. Top 10 observed gateway addresses with hosts in more than one country.
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Fig. 3. Geographical dispersion of mobile hosts around the top 100 gateways.

that each gateway has hosts roughly in all major Australian cities. In addition,
we found one device in the Netherland with the observed IP of 203.20.35.d,
which is most likely a roaming user. Table 5 quantifies the spatial diversity for
the top 10 gateways with hosts in more than one country, in our dataset. Our
dataset suggests that mobile networks allocate IP addresses at a country-level
granularity: mobile hosts exit the operator’s network through a few gateways
within the country, and these exit points may also be maintained while roaming.

We quantify the geographic spread of hosts served by a gateway by computing
the maximum distance between any two hosts that are connected to the Internet
through the same gateway. Figure 3 shows the histogram of the maximum dis-
persion values (in KM), for the top 100 gateways in our dataset. We notice that
there are three clusters: one at approximately 500km, one at about 1500 km,
and another at about 4000km. These clusters approximately correspond to the
average inter-city, inter-state, and inter-country or inter-continental distances in
our dataset. We also observed an outlier at 17,000km (not shown on the plot)
which correspond to an Australian user roaming in the Netherlands.

4.4 Accuracy of IP Geolocation Databases

We also tested the ability of GeoIP databases to return host location based on IP
addresses seen by the application’s server. For this analysis, we use two commer-
cial GeoIP databases, namely MaxMind [2] and IPinfoDB [1], and compute the
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Fig. 4. Geolocation error when using GeoIP databases.

error as the distance between the geographical location returned by the GeoIP
database and our measurement location. As previously mentioned, application-
level measurements introduce sampling bias: as each measurement occurrence
depends on a user starting the application and the user’s current position, more
popular areas or areas where the service is more popular will have more mea-
surement points. To address this spatial sampling bias, we normalize the error
at the city scale, by computing the average error for each city (identified using
Google’s reverse geocoding service).

Figure 4 shows the distribution of the computed errors, for the GeoIP databases
considered, with results presented separately for public and private IP addresses
(Note that for devices with private IPs we use their gateway address as visible
to the server on the Internet.) For our dataset, depending on the database used,
errors of 100km or more are observed in at least 70% of the measurements al-
though 90% of the errors are under 1000km. The errors are typically larger for
devices assigned private IP addresses. This is not surprising as we have previ-
ously noted that one mobile gateway could potentially cover an entire country,
including countries as large as Australia.

5 Concluding Remarks

We studied cellular data networks from the point-of-view of IP clients, cover-
ing both spatial and IP-layer aspects. Our work is based upon a comprehen-
sive dataset of several thousand mobile device locations and IP addresses. Our
dataset suggests that mobile operators worldwide are using some form of NAT
or middlebox. This has implications for application designers (e.g., difficulty of
implementing peer-to-peer communication, performance implications). As hosts
behind NATs appear from a few IP addresses per country, we shown how these
IP addresses can cover hosts physically present in entire countries, across inter-
national borders, and even continents. We also evaluated the accuracy of GeoIP



database in the mobile domain, and found that, for our data, the distance er-
ror between the GeoIP database determined location and the GPS determined
location is at least 100km for approximately 70% of our measurements, with a
few errors being substantially larger.
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