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Abstract

The k-SERVER problem is one of the most prominent prob-
lems in online algorithms with several variants and exten-
sions. However, simplifying assumptions like instantaneous
server movements and zero service time has hitherto lim-
ited its applicability to real-world problems. In this paper,
we introduce a realistic generalization of k-SERVER with-
out such assumptions – the k-FOOD problem, where requests
with source-destination locations and an associated pickup
time window arrive in an online fashion, and each has to be
served by exactly one of the available k servers. The k-FOOD
problem offers the versatility to model a variety of real-world
use cases such as food delivery, ride sharing, and quick com-
merce. Moreover, motivated by the need for fairness in on-
line platforms, we introduce the FAIR k-FOOD problem with
the max-min objective. We establish that both k-FOOD and
FAIR k-FOOD problems are strongly NP-hard and develop an
optimal offline algorithm that arises naturally from a time-
expanded flow network. Subsequently, we propose an on-
line algorithm DOC4FOOD involving virtual movements of
servers to the nearest request location. Experiments on a real-
world food-delivery dataset, alongside synthetic datasets, es-
tablish the efficacy of the proposed algorithm against state-
of-the-art fair food delivery algorithms.

Introduction
The k-SERVER problem (Manasse, McGeoch, and Sleator
1990) is one of the most studied problems in the domain of
online algorithms. In this problem, a sequence of requests
arrives online at various locations in a m-point metric space
and each request has to be served by one of the k servers
by moving the server to the corresponding location, and the
objective is to minimize the total movement of the servers.
Owing to its significance, a number of variants of this prob-
lem have been explored in the past. For instance, the k-TAXI
problem (Coester and Koutsoupias 2019) extends the k-
SERVER problem to consider each request as a pair of points
in the metric space. A server must move from a request’s
source point to the corresponding destination point in order
to fulfill the request. The goal is to efficiently assign the k
taxis to minimize the total travel distance. Another notable
variant is the k-server with Time Windows (k-SERVERTW)
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problem (Gupta, Kumar, and Panigrahi 2022b) where each
request, additionally, has a deadline associated with it within
which it needs to be served, allowing a server to handle sev-
eral ‘live’ requests in a single visit. Many of these extensions
have the capacity to model specific problems like caching,
path planning, and resource allocation.

However, all existing variants of the k-SERVER problem
assume that the server movement is instantaneous, i.e., once
a server is assigned to a particular request, it takes no time
for it to move to the request location. Moreover, there is no
service time associated with a request, and thus all k servers
are available to serve a request at time t even if some of
them were assigned a request at time t−1. Such simplifying
assumptions limit the applicability of k-SERVER problem to
more realistic scenarios.

To overcome these issues, in this work, we introduce a
general problem, called the k-FOOD problem, which builds
upon a number of aforementioned k-server extensions but
is more rooted in reality. In this problem, each request cor-
responds to a pair of points – source and destination – in
a metric space accompanied by a pick-up (or preparation)
time window. Serving a request involves moving one of the k
servers to its source location within the pick-up time window
and subsequently moving to its destination. Importantly, the
servers take finite amount of time to travel, during which
they are unavailable to serve a new request. The objective of
k-FOOD is still to minimize the net server movement.

Going further, motivated by the recent reports highlight-
ing the difficult condition of gig delivery drivers in the
global south (Gupta et al. 2022; Nair et al. 2022; Sühr et al.
2019; Cao, Wang, and Li 2021; Singh, Das, and Chakraborty
2023), particularly their struggle to earn even minimum
wage, we also introduce a variant of k-FOOD problem, called
the FAIR k-FOOD problem which assumes a max-min objec-
tive instead of the min cost objective. This objective, inspired
by Rawls’ theory of justice (Rawls 1971), aims to maximize
the minimum reward earned by any server. We demonstrate
the applicability of FAIR k-FOOD problem in ensuring fair-
ness in food delivery platforms.

Today, platforms like DoorDash, Deliveroo and Zomato
have become de facto destinations for ordering food. Apart
from serving many customers, they also provide livelihood
to millions of delivery drivers worldwide. Although multiple
approaches have been proposed to ensure fair driver assign-



ment (Gupta et al. 2022; Nair et al. 2022), they all adopt a
semi-online approach where they collect requests within an
accumulation time window and then apply an offline algo-
rithm to match with eligible drivers. The underlying prob-
lem, however, is inherently online, where food orders (re-
quests) arrive one by one and have to be assigned to one of
the eligible drivers (servers). In this work, apart from devel-
oping an offline solution scalable up to thousands of requests
and hundreds of servers, we propose the first purely online
driver assignment algorithm for food delivery, which we call
DOC4FOOD. Extensive experiments on synthetic and real
food-delivery data establish the superiority of DOC4FOOD
compared to semi-online solutions.
Our Contributions. In summary, in this paper, we
• introduce the k-FOOD and FAIR k-FOOD problems with

the potential to model multiple real-world applications,
and show that both problems are strongly NP-hard;

• design a fractional offline-optimal algorithm for the
FAIR k-FOOD problem utilizing the corresponding time-
expanded flow network;

• propose an online algorithm DOC4FOOD for fair food
delivery, employing a prominent heuristic in online algo-
rithms informed by domain-specific knowledge; and

• present extensive experimental analysis on a real-world
food delivery dataset and two synthetic datasets.

A detailed version of our work, inclusive of detailed proofs,
is available at (Singh, Kumar, and Chakraborty 2023).

Related Works
k-SERVER and its variants. The online k-SERVER prob-
lem (Manasse, McGeoch, and Sleator 1990) is arguably
the most prominent problem in online algorithms. Over
the past few decades, numerous variations of this problem
have been explored, including paging (Fiat et al. 1991),
k-sever with time windows (Gupta, Kumar, and Panigrahi
2022b), delayed k-server (Bein et al. 2005), k-server with
rejection (Bittner, Imreh, and Nagy-György 2014), on-
line k-taxi (Coester and Koutsoupias 2019), Stochastic k-
server (Dehghani et al. 2017) and, k-server with prefer-
ences (Castenow et al. 2022). However, in all these variants,
server movement is always instantaneous. Our proposed k-
FOOD problem moves beyond this assumption and captures
the subtleties of real-world settings.
Fairness in k-SERVER. The k-SERVER problem and its
variants have traditionally been studied with the objective
of minimizing the total movement cost. To our knowl-
edge, the only other work that presents a fairness-motivated
objective is (Chiplunkar et al. 2023), where the paging
problem – a special case of the k-SERVER problem – is
studied with the min-max objective. They design a deter-
ministic O(k log(n) log(k))-competitive algorithm and an
O(log2 n log k)-competitive randomized algorithm for the
online min-max paging problem.
Fairness in online platforms. The growing prevalence of
online platforms in various domains, including ride hail-
ing, food delivery and e-commerce, has attracted increas-
ing attention to these research areas (Gupta et al. 2023;
Chakraborty et al. 2017; Joshi et al. 2022; Sühr et al. 2019).

For instance, research on ride hailing has focused on ef-
ficiency maximization (Ta et al. 2017; Jia, Xu, and Liu
2017) and more recently on promoting fairness (Sühr et al.
2019; Cao, Wang, and Li 2021). Online vehicle routing
problem (Bertsimas, Jaillet, and Martin 2019) is an inter-
esting work that bears resemblance to our k-FOOD problem.
They developed an efficient offline mixed-integer optimiza-
tion framework that scales well to real-world workload via
sparsification and re-optimization of the offline optimal.

Similarly, research on food delivery has seen similar shift
from increasing efficiency by minimizing travel costs (Joshi
et al. 2022; Yildiz and Savelsbergh 2019; Zeng, Tong, and
Chen 2019) to developing equitable food delivery algo-
rithms (Gupta et al. 2022; Nair et al. 2022; Singh, Das, and
Chakraborty 2023). Yet, limited exploration exists regard-
ing purely online solutions tailored to fair food delivery. We
attempt to fill this gap in the current work.

Problem Statement
Next, we formally describe the classical k-SERVER problem
and one of its extensions – k-SERVERTW problem, and then
introduce the k-FOOD and FAIR k-FOOD problems.
Definition 1. (The k-SERVER problem) Consider an m-
point metric space (M, d), an online sequence of requests
σ = {r1, r2, · · · , rn}, and a set of k servers existing at
specific, not necessarily distinct, points in the metric space.
Each request ri arrives at a specific point in the metric space
and must be served by one of the k servers by moving the
server to the corresponding location. The movement of a
server incurs a cost equivalent to the distance between the
current server location and the requested location. The ob-
jective is to minimize the total movement cost. The server
movement between any two points is assumed to be instan-
taneous. Hence, whenever a new request ri arrives, all k
servers are immediately available for assignment.
Definition 2. (The k-SERVERTW problem) The k-server
with Time Windows (k-SERVERTW) problem extends the
k-SERVER problem to accommodate an additional deadline
associated with a request. Specifically, each request r arriv-
ing at a point in the metric space at some time tbr with a
deadline ter ≥ tbr must be served by moving one of the k
servers to the corresponding location within the time win-
dow [tbr, t

e
r]. The non-triviality (beyond k-SERVER) of this

problem lies in the fact that several requests at the same lo-
cation can be served by a single server visit to this location.
Problem 1. (The k-FOOD problem) Consider a metric space
(M, d) comprising m points. k servers exist at specific
points of M, constituting the initial server configuration.
Requests from a predefined sequence σ = {r1, r2, · · · , rn}
arrive one-by-one at specific locations in M. Each request rj
is a 4-tuple (sj , dj , t

b
j , t

e
j). Here sj , dj are points in M and

[tbj , t
e
j ] is the time-window associated with the request, also

known as the pick-up (or preparation) time window. Specif-
ically, request rj arrives at its source sj at time tbj and is
considered served if one of the k servers can reach sj before
the deadline tej and subsequently move to the destination dj .
Note that the source-to-destination travel for each request is
fixed and not subject to any deadline.



Figure 1: Time-Expanded (or Time-Indexed) Flow Network.

Unlike traditional k-SERVER setting, the k-FOOD prob-
lem considers travel time for server movements. When serv-
ing a request, the corresponding server becomes temporarily
unavailable for other requests and receives a reward equal to
the distance it moves. The primary objective of the k-FOOD
problem is to minimize the net reward earned (or total dis-
tance traveled) by all servers.
Problem 2. (The FAIR k-FOOD problem) The FAIR k-FOOD
problem is a variant of the k-FOOD problem with a maxmin
objective, aiming to maximize the minimum reward earned
by any server. The choice of this fairness objective, inspired
by the Rawlsian maxmin doctrine (Rawls 1971), is driven
by the need to address a real challenge faced by gig delivery
drivers (Nair et al. 2022). Recent reports by FairWork (Fair-
work 2022, 2023) highlight the hardships faced by drivers
across different gig delivery platforms (including food de-
livery, quick-commerce, e-commerce), revealing that many
drivers fail to earn minimum wage mandated by the respec-
tive governments. Thus, there is a need to push the minimum
income above a certain threshold.1

Note that for both k-FOOD problem and FAIR k-FOOD
problem, all server movements are on the shortest paths.

Hardness Results
Next, we prove that both k-FOOD and FAIR k-FOOD prob-
lems are strongly NP-hard by reductions from the PAGETW
and the M-PARTITION (Garey and Johnson 1978) problems
respectively, which are known to be strongly NP-hard.
Definition 3. (The PAGETW problem) Given a computing
process working on n pages of data, with access to two
memory levels: a fast cache capable of holding k < n pages,
and a slower memory (e.g., disk) containing all n pages.
Initially, all pages reside in the slower memory. Each page
p carries a weight wp. When the process accesses (or re-
quests) a page, it’s either fetched from the cache or prompts
a page fault, requiring it to enter the cache and potentially
evicting an existing page – termed as serving a page request.
Each page request comes with a deadline by which it must

1Although in this work, we focus on the maxmin objective,
the framework and the proposed methodology are versatile enough
to accommodate alternate fairness objectives such as group fair-
ness (Barocas, Hardt, and Narayanan 2023), where we can aim at
minimizing inter-group disparity between servers with distinct sen-
sitive attributes (e.g., gender, race, etc.).

be served. The objective is to minimize the total weight of
evicted pages while satisfying the specified deadlines.

Theorem 1. The k-FOOD problem is NP-hard.

Proof. The unit-weight PAGETW problem, where all pages
p have wp = 1, was shown to be NP-hard by (Gupta, Kumar,
and Panigrahi 2022a). We can extend this result by present-
ing a polynomial-time reduction from unit-weight PAGETW
problem to a k-FOOD problem instance on uniform metric
space with infinite server speeds, thus proving that the k-
FOOD problem is NP-hard. A comprehensive proof is avail-
able in (Singh, Kumar, and Chakraborty 2023).

Theorem 2. FAIR k-FOOD problem is strongly NP-hard.

Proof. We start by defining a special case of FAIR k-FOOD
with tbr = ter for all requests r and negligible service time.
We call this problem the FAIR k-TAXI problem as it resem-
bles the k-TAXI problem (Coester and Koutsoupias 2019)
except the objective. We can show that the FAIR k-TAXI
problem is strongly NP-hard using a reduction from the M-
PARTITIONproblem. Subsequently, we can extend this result
to the FAIR k-FOOD problem. A detailed proof is provided
in (Singh, Kumar, and Chakraborty 2023).

Proposed Methodology
In this section, we describe our offline solution for the FAIR
k-FOOD problem, referred to as FLOWMILP. Afterward,
we outline various online algorithms for the problem,
including our own proposal called DOC4FOOD.

FLOWMILP: Fractional offline optimal for FAIR
k-FOOD. We propose a fractional offline solution
(FLOWMILP) for the FAIR k-FOOD problem. It is a
Mixed Integer Linear Program (MILP) that, intuitively,
follows from the min-cost LP formulation for k-SERVER.
This MILP may route fractions of servers. Consequently,
serving a request entails moving a unit amount of server
towards the request’s location.

Consider an instance of the FAIR k-FOOD problem with
a metric space (X , d) on m points and a sequence of n re-
quests σ = {r1, r2, · · · , rn}. We observe the entire duration
T , from the arrival of the first order to the end of service
of the last order, in timesteps of size η so chosen that each
request has a distinct2 arrival timestep. We now construct a
time-expanded graph G(V,E) where V is the set of nodes
obtained by copying the nodes in X at each timestep i.e.,
V = {vi,j |i ∈ [m], j ∈ {0, η, 2η, · · · , T}} ∪ (vs, vt) where
vi,j is the copy of vi ∈ X at timestep t and E is the set of
edges. Here vs and vt are special source and sink nodes.

There are three types of edges in E: (i) Source-Sink
edges: 0-cost edges connecting source node vs to the nodes
in {vi,0|i ∈ [m]} and terminal node vt to {vi,T |i ∈ [m]};
(ii) Self edges: 0-cost edges between the nodes vi,j and
vi,j+1, ∀i ∈ [m], j ∈ {0, . . . , (T − 1)}, indicating that a

2This is without loss of generality. We can arrange simultaneous
requests arbitrarily and treat them as distinct arrivals.



server may stay at a location; and (iii) Cross edges: For ev-
ery request rj = (sj , dj , t

b
j , t

e
j), we add the following edges:

let sj,t and dj,t denote the copy of sj and dj in V at timestep
t respectively. First, we add edges from vh,t′ ∈ V to sj,tej ;
tbj ≤ t′ < tej , vh ̸= sj if the time taken to traverse on the
shortest path from vh,t′ to sj,tej is at most (tej − tbj). The cost
of this edge is equal to the corresponding shortest path dis-
tance. Next, we add an edge between sj,tej and dj,t, where
(t− tej) is the time taken to travel from sj to dj on the short-
est path and the cost of this edge is equal to the length of this
path. Note that we can prune some edges here. If we have
edges from vh,t1 and vh,t2 to sj,tej for some vertex v and
times t1 < t2, then we can remove the first edge. Indeed,
there is no loss in generality in assuming that the server ar-
rives at the source location at time tej . This ensures that the
server is moved only when the request becomes critical. The
flow on each edge e, denoted as fe, comprises of flow from
each of the k servers i.e., fe = Σk

i=1f
i
e. Figure 1 shows an

example flow network with 2 requests r1 = (s1, d1, 1, 3)
and r2 = (s2, d2, 2, 5).

The FLOWMILP on instance (G(V,E), σ) is defined as

max. M− p.

n∑
r=1

zr (1)

s.t. mi =
∑
e∈E

f i
e.ce,∀i ∈ [k] (2)

M ≤ mi,∀i ∈ [k] (3)∑
u∈δ−(v)

k∑
i=1

f i
(u,v) ≤ 1,∀v ∈ {sj : j ∈ [n]} (4)

zrj +

k∑
i=1

f i
(sj ,dj)

= 1,∀rj ∈ σ (5)∑
v∈δ+(u)

f i
(u,v) =

∑
v∈δ−(u)

f i
(u,v), u ∈ V, i ∈ [k] (6)

m∑
i=1

k∑
j=1

f j
(s,vi1)

=

m∑
i=1

k∑
j=1

f j
(viT ,t) = k (7)

vars. f i
e ∈ [0, 1], ∀i ∈ [k], zr ∈ {0, 1}, ∀r ∈ σ

The objective (1) captures the goal of maximizing the
minimum reward M while minimizing the infeasibilities
(zr’s); p being the infeasibility penalty. The binary variable
zr is 1 iff request r cannot be served. The variable f i

e de-
notes the flow of server i on edge e. The minimum reward
M is computed using the constraints (2) and (3). Constraints
(4) and (5) capture that each request r is served by at most
1 server, and if it is not served, then zr is 1. Constraints (6)
is the flow-conservation constraint, whereas constraint (7)
refers to the fact that we have k servers.

Overall, the FLOWMILP formulation has O(mk(n +
T )) decision variables and O(nkT ) constraints. The
FLOWMILP formulation is flexible and can be easily modi-
fied to accommodate various other objectives. For example,
the k-FOOD problem can be modeled using FLOWMILP by

changing the objective (1) to a min-cost objective and disre-
garding the separate flows for each server.
Cost Efficiency. Focusing only on maximizing the mini-
mum server reward might result in FLOWMILP deliberately
placing servers at locations away from future requests. In
real world food delivery setting, such redundant increments
in rewards can lead to an unnecessary rise in travel expenses
i.e., cost to the platform. This scenario clearly implies an in-
herent cost-fairness trade-off. To consider both platform and
server perspectives, we introduce an extra constraint in the
FLOWMILP that upper bounds the total server rewards by
a constant multiple of the cumulative edge costs associated
with source-destination edges of each request. We choose
these edges because they are invariant to the algorithm’s
other routing decisions.

k∑
i=1

mi ≤ α.

n∑
j=1

c(sj ,dj), (8)

The additional constraint is represented as equation (8),
where α is a tunable parameter that controls the cost-fairness
trade-off. The lower the value of α, the higher the empha-
sis on reducing the platform-cost and vice-versa. This con-
straint forces FLOWMILP to be considerate towards both
platform and servers. We name this FLOWMILP instance as
Two-Sided FLOWMILP (FLOWMILP(2S)).
Online Algorithms. In this work, we consider the follow-
ing online algorithms pertaining to the max-min objective.
The guiding principle underlying these approaches is to pri-
oritize an eligible server with the minimum accumulated re-
ward while assigning servers to requests. An eligible server,
with respect to a request r, is one that is available (not cur-
rently serving any other request) to serve the request as well
as reachable within r’s preparation time.

• RANDOM. The core idea here is that as a server starts
gaining rewards, it becomes exponentially harder for it
to get further rewards. Specifically, an upcoming request
r at time t is assigned to one of the eligible servers i with
a probability proportional to 2−xi where xi is the accu-
mulated reward of the i-th server till time t. It is similar
to increasing a server’s weight as it accumulates more re-
wards that, in turn, make its movements harder. The time
complexity per request is O(k).

• GREEDYMIN. In this online algorithm, an upcoming re-
quest r is assigned to an eligible server with the mini-
mum reward so far. This can be viewed as a specific in-
stance of the RANDOM approach, where the server with
the minimum reward is assigned with a unit probability.
The time complexity per request is O(k).

• DOC4FOOD. Drawing inspiration from the classical
DOUBLE COVERAGE algorithm (Chrobak et al. 1991)
commonly seen in the context of k-SERVER problems,
which involves proactive movement of idle servers for
better performance, we propose DOuble Coverage for
FOOd Delivery (DOC4FOOD) algorithm that combines
GREEDYMIN with a heuristic informed by the domain
knowledge specific to the food-delivery sector.



#Unserved Cost Min.R
FLOWMILP 2 2444.50 2444.50

FLOWMILP(2S) 2 1399.56 1399.56

RANDOM 8 1712.04 723
GREEDYMIN 10 1703.43 1065
DOC4FOOD 5 1766.01 1186
MINDELTA 5 1658.12 430

ROUNDROBIN 30 1500.85 10

Table 1: Comparison of FLOWMILP against various on-
line algorithms on the SYNSPARSE dataset.

#Unserved Cost Min.R
FLOWMILP 1 7137.44 7137.44

FLOWMILP(2S) 1 1282.93 1282.93

RANDOM 8 1534.80 800
GREEDYMIN 8 1550.81 1034
DOC4FOOD 7 1554.02 1045
MINDELTA 6 1496.73 855

ROUNDROBIN 12 1494.92 10

Table 2: Comparison of FLOWMILP against various on-
line algorithms on the SYNDENSE dataset.
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Figure 2: Lorenz curves for various algorithms on the (a) SYNSPARSE, (b) SYNDENSE and (c) food-delivery datasets.

In food delivery, incoming orders originate from a prede-
termined set of locations corresponding to various restau-
rants. This set of locations typically forms a small sub-
set of all vertices in the metric space. With respect to k-
FOOD, this translates into a distinct subset of points, say
R, within the metric space, representing the potential ar-
rival locations for requests.
Transitioning to the DOC4FOOD algorithm, upon the ar-
rival of a request r, akin to the GREEDYMIN strategy,
the eligible server with the minimum accumulated re-
ward is chosen to move to r’s source location. While it
moves towards r, all available servers also move virtu-
ally, by a small distance, towards their nearest nodes in
R. Such server movements are also referred to as non-
lazy movements. This mimics the actual practice of de-
livery drivers’ movement to the nearest restaurant loca-
tion (or market area) when they are idle (Singh, Das, and
Chakraborty 2023). Note that while assigning servers,
the virtual locations are considered for determining eli-
gibility, but the actual locations are used for calculating
rewards for the selected server. For more clarity, the pseu-
docode for the DOC4FOOD algorithm has been provided
in (Singh, Kumar, and Chakraborty 2023).

The consideration of fractional servers alongwith the
described edge pruning allows us to efficiently solve
FLOWMILP and FLOWMILP(2S) for many practical in-
stances of the FAIR k-FOOD problem (refer Experimental
Evaluation), leveraging advanced MILP solvers (Gurobi Op-

timization 2023; Cplex 1987). However, in contrast to the of-
fline solutions, the described online algorithms are rounded
by default, i.e., they assign an entire server to a single re-
quest rather than using fractional assignments.

Experimental Evaluation
In this section, we present the experimental analysis on both
synthetic and real-world food-delivery datasets.

Experimental Framework
We conduct experiments on a machine with an Intel(R)
Xeon(R) CPU @ 2.30GHz and 252GB RAM running on
Ubuntu 20.04.5 LTS. The entire codebase is written in
Python 3.9, and the Gurobi optimizer (Gurobi Optimization
2023) is used for solving the linear programs.

Baselines
• FLOWMILP: The fractional offline optimal algorithm

for the FAIR k-FOOD problem.

• RANDOM and GREEDYMIN: As explained in the subsec-
tion Online Algorithms under Methodology.

• MINDELTA: A purely online counterpart to the heuristic-
based semi-online algorithm developed by (Gupta et al.
2022) aiming to minimize the reward gap between the
minimum and maximum earning servers. Takes O(k2)
time per request assignment.



• ROUNDROBIN: Here, an upcoming request is assigned to
the first eligible server in round-robin manner. The server
assignment complexity per request is O(k).

Evaluation Metrics
We consider the following evaluation metrics:
• Number of infeasible requests (#Unserved). The num-

ber of requests that the corresponding algorithm could
not serve. This might happen due to a scarcity of eligible
(available and reachable) servers for the given request.

• Minimum Reward (Min.R). Given that our objective is
to maximize the minimum reward, we record the mini-
mum reward among the server rewards. The higher the
minimum reward, the fairer the algorithm. If it is 0, we
look at the number of servers with a 0 reward.

• Cost. We define the cost of an algorithm as the average
of all the server rewards. Since, for a given request, the
source-destination distance is fixed, this cost essentially
represents the algorithm’s routing and server-assignment
decisions. In real-world applications such as food deliv-
ery, ride-sharing, etc., it represents the total cost incurred
by an online platform to compensate its delivery drivers
(also referred to as the platform-cost.

Experiments with Synthetic Data
Dataset and Setup. We begin by establishing a graph
X composed of 500 nodes. Using the Erdos-Renyi
model (Erdös and Rényi 1959), we add edges with an edge
connection probability denoted as p, while ensuring X
remains connected. Subsequently, we generate two distinct
datasets: one with p = 0.5, referred to as SYNSPARSE,
and another with p = 0.9, known as SYNDENSE. This
deliberate variation enhances our analysis by encompassing
different network structures. The edge weights within X
are uniformly selected at random from a set of values
{10, . . . , 10000}.3 For each dataset, we generate a total
of 250 requests. Recall that each request r in the k-FOOD
problem is a 4-tuple (s, d, tb, te). For each request, we sam-
ple s, d from X and tb, te from the interval [100, 900], such
that the preparation-time (te-tb) lies in the interval [1, 100].
The delivery time of a request is set equal to the distance
between the s and d (essentially, the speed of each server
is assumed to be 1 unit per timestep). Additionally, we
maintain that tb for each request r is distinct. Consequently,
we have a set of 250 requests that arrive at one of the 500
nodes of X over a span of 1000 timesteps. The choice of
the edge weights and the data configuration described above
have been inspired by the characteristics of the real-world
food-delivery dataset. We consider k=100 servers in each
dataset and assume that all the servers are active for the
entire duration of 1000 timesteps. We use α = 1.2 for the
FLOWMILP(2S) algorithm.

Results. Tables 1 and 2 show results on the SYNSPARSE
and SYNDENSE datasets respectively. We observe qualita-
tively similar results for both datasets. The fractional offline

3Alternate weight selection methods, such as uniform or expo-
nential, yield qualitatively similar results.
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Figure 3: Semi-online algorithms FOODMATCH and FAIR-
FOODY vs. online algorithms on food delivery dataset.

algorithms FLOWMILP and FLOWMILP(2S) perform op-
timally, achieving equal rewards for all servers. As intended,
FLOWMILP(2S) reduces the cost while maintaining simi-
lar reward distribution compared FLOWMILP. Among on-
line algorithms, DOC4FOOD achieves the highest min. re-
ward while serving a nearly maximal number of requests
while MINDELTA, on the other hand, performs poorly in
terms of both feasibility and minimum reward maximiza-
tion. Notably, DOC4FOOD, as intended, reduces infeasibil-
ity as compared to GREEDYMIN due to its non-lazy server
movements. RANDOM and ROUNDROBIN do well in terms
of feasibility but fall short in increasing the minimum re-
ward. Note that a higher (or lower) cost incurred by an algo-
rithm can be primarily due to the more (or lesser) number of
requests it serves.

Figures 2(a) and 2(b) depict the Lorenz curves corre-
sponding to various algorithms, focusing on servers within
the bottom 25 percentile in terms of rewards. The closer a
curve is to the line of equality, the more the fraction of net re-
wards captured by the corresponding fraction of the servers.
The curves for FLOWMILP and FLOWMILP(2S) intersect
with the line of equality because all servers earn equal re-
wards. Remarkably, we see that DOC4FOOD, closely fol-
lowed by GREEDYMIN, outperforms all other online algo-
rithms, raising the sum of rewards earned by the bottom 25%
earners to nearly 20% of the net server rewards.

Experiments with Real Food Delivery Data
Dataset. We utilize a real-world Indian food delivery
dataset (Gupta et al. 2022). It comprises 6 days of food-
delivery data from 3 major Indian cities, encompassing or-
der load trends for both weekdays and weekends. Notably,
the dataset provides thorough information about the delivery
drivers (or servers) and orders (or requests) such as delivery
vehicle trajectories, road networks of the cities, drivers’ cho-
sen working shifts (or active time durations), vehicle IDs,
restaurant locations, customer locations, arrival-, pickup-,
and delivery-time of each order, among other information.

Additional baselines. In addition to the baseline algo-
rithms described earlier, we consider two offline algorithms
from the domain of online food delivery:



#Unserved Cost Min.R.
FLOWMILP 0 19049.20 19049.20

FLOWMILP(2S) 0 8505.19 8505.19

RANDOM 7 6534.46 251
GREEDYMIN 10 6512.85 2490
DOC4FOOD 6 6545.52 2563
MINDELTA 0 6070.41 0(94)

ROUNDROBIN 10 6538.56 11

Table 3: FLOWMILP vs. Online algorithms on the food-
delivery dataset. The values in the parentheses indicate
the number of servers with 0 reward.

#Unserved Cost Min.R
FOODMATCH 2 8357.47 0(379)
FAIRFOODY 170 9203.52 0(268)

WORK4FOOD 276 8693.66 0(308)

RANDOM 25 15705.28 0(269)
GREEDYMIN 35 8481.59 0(223)
DOC4FOOD 30 8672.00 0(223)
MINDELTA 18 11589.69 0(265)

ROUNDROBIN 56 5431.93 0(263)

Table 4: Offline delivery algorithms vs Online algorithms
on the food-delivery dataset. The values in the parenthe-
ses indicate the number of servers with 0 reward.

• FOODMATCH: An efficient, heuristic last-mile delivery
algorithm introduced by (Joshi et al. 2022).

• FAIRFOODY: A fair food delivery algorithm that tries to
achieve an equitable driver income distribution (Gupta
et al. 2022).

• WORK4FOOD: A fair food delivery algorithm that at-
tempts to provide minimum wage guarantees to the gig
delivery drivers (Nair et al. 2022)

Setup. We present an experimental evaluation on a subset
of the dataset comprising the first 8 hours of data of one of
the three cities, averaged across all days. It consists of 1050
orders and 734 drivers on the first day. We selected this par-
ticular subset because it corresponds to the largest instance
of the FLOWMILP problem solvable under the computa-
tional constraints of our evaluation framework.4 The length
of each timestep is 1 second. Most orders in the dataset al-
ready have distinct arrival times, otherwise we ensure the
same by shifting the orders in time up to a few minutes.

The dataset includes information about specific pre-
defined intervals in the day when drivers choose to be ac-
tive, referred to as “work-shifts”. For comparison against
FLOWMILP, which assumes the servers to be active for all
timesteps, we disregard the work-shifts and consider all the
drivers to be active for the entire duration of 8 hours. How-
ever, while comparing against more practical algorithms
like FOODMATCH and FAIRFOODY, which do consider the
work-shifts, we also account for the same. Due to this dis-
tinction, we present the comparison between these algo-
rithms and the online algorithms separately.

For the RANDOM baseline, presented evaluations are an
average of 5 runs of the algorithm. For the FLOWMILP(2S)
algorithm, an α value of 5 is chosen.

Results. Table 3 shows the evaluations of the fractional
offline solutions FLOWMILP and FLOWMILP(2S) and
the online algorithms. The offline methods achieve op-
timal solutions where all servers attain equal rewards.
FLOWMILP(2S) outperforms FLOWMILP in terms of cost
efficiency. Among the online algorithms, DOC4FOOD per-
forms the best in increasing the min. reward, slightly out-

4Scaling to the entire 24-hour duration is feasible through re-
optimization techniques (Berbeglia, Cordeau, and Laporte 2010).

performing GREEDYMIN while being more feasible. The
RANDOM algorithm shows mediocre performance across all
metrics. While MINDELTA excels in minimizing costs, it
fares poorly in terms of minimum reward, resulting in nearly
40% servers receiving no rewards.

Table 4 presents the evaluations for the offline algorithms
FOODMATCH and FAIRFOODY along with the online base-
lines. The offline algorithms aren’t designed to reject re-
quests beyond preparation time so their corresponding in-
feasibility values denote pick-up deadline violations; no re-
quest was actually infeasible. Again, DOC4FOOD leads to
best min. reward slightly outperforming GREEDYMIN that
too with fewer infeasbilities. It’s worth noting that the online
approach MINDELTA demonstrates a close performance to
FAIRFOODY, its offline counterpart. Other online algorithms
exhibit similar trends as observed in Table 3.

Figure 2(c) and Figure 3 clearly show the superiority of
DOC4FOOD in effectively elevating the net rewards of the
bottom earners as compared to all other online algorithms.

Conclusion
In this work, we introduce two generalizations of the classi-
cal k-SERVER problem – k-FOOD and FAIR k-FOOD– with
the ability to model a variety of real-world platforms. We
prove these problems to be strongly NP-hard and develop a
fractional offline optimal solution FLOWMILP for the FAIR
k-FOOD problem. We also propose DOC4FOOD, a heuristic-
based pure online algorithm for the food delivery domain.
We conduct extensive experimentation on a synthetic dataset
as well as a real-world food delivery dataset demonstrating
the effectiveness of our proposal.

We hope that our work can serve as a foundation for multi-
ple research problems in both AI and Theoretical Computer
Science community. Immediate follow-up works could in-
volve incorporating predictions about future requests to en-
hance online algorithm performance, particularly in scenar-
ios with a higher volume of requests within a short timespan,
and leveraging recent advances in deep learning for con-
strained optimization to approximate our offline solution.
Reproducibility. Our codebase is available at
https://github.com/ddsb01/Fair-kFood.
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