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ABSTRACT

Social commerce platforms are emerging businesses where pro-

ducers sell products through re-sellers who advertise the products

to other customers in their social network. Due to the increasing

popularity of this business model, thousands of small producers

and re-sellers are starting to depend on these platforms for their

livelihood; thus, it is important to provide fair earning opportunities

to them. The enormous product space in such platforms prohibits

manual search, and motivates the need for recommendation algo-

rithms to effectively allocate product exposure and, consequently,

earning opportunities. In this work, we focus on the fairness of

such allocations in social commerce platforms and formulate the

problem of assigning products to re-sellers as a fair division prob-

lem with indivisible items under two-sided cardinality constraints,

wherein each product must be given to at least a certain number of

re-sellers and each re-seller must get a certain number of products.

Our work systematically explores various well-studied bench-

marks of fairness—including Nash social welfare, envy-freeness

up to one item (𝐸𝐹1), and equitability up to one item (𝐸𝑄1)—from

both theoretical and experimental perspectives. We find that the

existential and computational guarantees of these concepts known

from the unconstrained setting do not extend to our constrained

model. To address this limitation, we develop a mixed-integer linear

program and other scalable heuristics that provide near-optimal

approximation of Nash social welfare in simulated and real social

commerce datasets. Overall, our work takes the first step towards

achieving provable fairness alongside reasonable revenue guaran-

tees on social commerce platforms.

CCS CONCEPTS

• Information systems → Recommender systems; Electronic

commerce; • Theory of computation→ Algorithmic mecha-

nism design.
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1 INTRODUCTION

Social commerce platforms are online platforms where social net-

works between users enable commerce. These platforms involve

two primary stakeholders: producers, who sell their products on the

platforms, and re-sellers, who are the users who help the producers

reach out to the customers. In contrast to traditional e-commerce

platforms where customers directly interact with the platform to

purchase products, in social commerce the interaction is indirect

and is facilitated by re-sellers who curate and promote products to

other users/customers (see Figure 1). Re-sellers leverage their social

networks (e.g., WhatsApp, Facebook, Instagram, as well as offline

connections) to amplify the potential for sale [35]. Typically, the

explicit social network being leveraged by the reseller is invisible

to the social commerce platform.

Several companies around the world have successfully adopted

social commerce as their business model. Prominent examples in-

clude Pinduoduo and Taobao in China, Meesho and Shopsy in India,

Cafepress and Lockerz in USA, and Shopify in Canada. According to

a recent study, social commerce industry is projected to reach USD

7.03 trillion globally by 2030 [46]. The impressive growth of social

commerce stems from its ability to tap into a customer base that e-

commerce has been unable to reach. Specifically, a large number of

customers are still more comfortable with physical shopping than

electronic marketplaces. This preference is due to various factors

including a lack of digital skills, online payment issues, lack of trust

over after-sales services, etc. [3]. Social commerce combines the

benefits of e-commerce and physical stores: interacting with the

re-sellers provides the customers with the same trust factor (the

“human touch”) and comfort of interacting with physical stores (say,

due to the ease of communication in the local dialect [6]) while

extending the benefits of lower price and a larger item inventory

commonly associated with electronic marketplaces.

https://doi.org/10.1145/3543507.3583398
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Figure 1: Producers connect with the customers directly in

e-commerce platforms (left), whereas in social commerce, re-

sellers facilitate this connection (right).

By incorporating re-sellers in the business chain, social com-

merce provides livelihood to millions of people. For example, in In-

dia alone, one of the social commerce platforms engages 13 million

re-sellers [45]. In addition, social commerce, much like e-commerce

platforms, provides revenue opportunities to a large number of

sellers/producers who sell products on these platforms. Since the

number of products in the inventory is often huge, social commerce

platforms assist re-sellers by recommending products that are more

likely to be purchased during their social sharing [19, 54]. The rec-

ommendation engine, therefore, plays a crucial role in determining

the revenues earned by both producers and re-sellers. Consequently,

it is imperative that the recommendations are made in a fair and

equitablemanner to ensure a holistic long-term engagement of both

parties with the platform.

While the fairness of recommendation in e-commerce platforms

has been studied recently [1, 38, 42, 50], such questions remain

unexplored in the context of social commerce. Furthermore, owing

to the nature of the business model and resulting constraints in

social commerce platforms, fairness notions from e-commerce do

not trivially extend to social commerce. This gives rise to various

challenges, as listed below:

• Lack of customer visibility: Many social commerce platforms

do not have access to the social graphs among customers and

re-sellers. In such cases, they rely entirely on the re-sellers’

ability to promote and sell a product. This scenario is in sharp

contrast to e-commerce platforms where the customers are

directly visible and the recommendations can therefore be

personalized. Thus, the social commerce recommendation,

in effect, (virtually) allocates products to the re-sellers for

selling. Our work makes the first attempt towards exploring

fairness in such setting.

• Re-seller constraints: Each re-seller may have expertise

only on a subset of products available in the inventory.

Additionally, the number of allocations to each re-seller

needs to be capped to ensure the design constraints of the

UI, which allows showing only a certain number of products

to each re-seller.

• Product constraints: Similarly, there are constraints on the

product side as well. The platforms may have tie-ups with

different producers demanding that every product get some

minimum exposure – meaning that every product must be

recommended to at least a few re-sellers.

Owing to the challenges outlined above, in this work, we seek

to develop a fair product allocation algorithm for re-sellers which

at the same time maximizes cumulative revenue of the re-sellers

(as well as the social commerce platform) while providing some

minimum exposure guarantee to each product on the platform. Our

main contributions are summarized as follows:

• Novel problem: We formulate the problem of assigning

products to re-sellers in social commerce platforms as a

fair division problem with indivisible items under two-sided

cardinality constraints. The product-side cardinality con-

straint ensures that each product must be allocated to at

least a certain number of re-sellers. The re-seller cardinality

constraint, on the other hand, enforces that each re-seller

must get a certain number of products (§ 2).

• Theoretical analysis: We explore various well-studied

benchmarks of fairness—including Nash social welfare, Envy-

Freeness up to one item (EF1), and Equitability up to one item

(EQ1)—in the context of two-sided cardinality constraints.

We show that the positive existential and computational

guarantees of these concepts in the unconstrained setting

(i.e., without cardinality constraints) do not extend to our

constrained setting (§ 3).

• Algorithm design: We develop a mixed-integer linear

program (MILP) for the NP-hard problem of optimizing

Nash social welfare in our setting. While the MILP is

reasonable for small-sized simulated data, it turns out to

be prohibitively slow for real-world datasets. We overcome

this bottleneck by designing considerably faster heuristics

that provide near-optimal efficacy (§ 4).

• Empirical evaluation: We perform extensive experiments

on a large real-world social commerce dataset from Shopsy

(owned by Flipkart), one of the largest social commerce

platforms in India, to demonstrate the effectiveness and

scalability of the proposed methodologies (§ 6).

2 PRODUCT ALLOCATION IN SOCIAL

COMMERCE

In this section, we formulate the problem of product allocation in

social commerce. First, we define the problem from a purely revenue

maximization perspective. Then, we introduce the constraints from

both producer and re-seller sides. In the next section, we modify

the optimization objective to ensure fair revenue distribution.

2.1 Revenue Maximization Perspective

We begin with the assumption that there exists𝑚 re-sellers (𝑈 =

{𝑢1, 𝑢2, · · · , 𝑢𝑚}) and𝑛 products (𝑃 = {𝑝1, 𝑝2, · · · , 𝑝𝑛}) in the social
commerce platform.

Definition 1 (Expertise Matrix (𝐸)). We assume that each

re-seller has expertise in a specific set of products which we model

via an expertise matrix 𝐸 ∈ R𝑚×𝑛
where 𝐸𝑖, 𝑗 ∈ [0, 1] represents

the probability with which re-seller 𝑢𝑖 sells a product 𝑝 𝑗 (after 𝑝 𝑗 is

allocated to 𝑢𝑖 ).

In this work, we treat the construction of the expertise matrix

as a black box. The typical approach to construct this matrix is

through collaborative filtering [27, 29] or neural models [8, 25, 28].

Definition 2 (Utility (𝑊 )). We denote the expected revenue

generated by re-seller 𝑢𝑖 for product 𝑝 𝑗 as Utility𝑊𝑖, 𝑗 .

𝑊𝑖, 𝑗 = 𝐸𝑖, 𝑗 · rev( 𝑗) (1)

Here rev( 𝑗) is the revenue (or profit) generated from selling 𝑝 𝑗 .
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Given a binary re-seller-product allocation matrix 𝐴 ∈ [0/1]𝑛×𝑚 ,

the expected revenue to the social platform, under the assumption

of𝑊𝑖, 𝑗 independence for all 𝑢𝑖 and 𝑝 𝑗 , is:

𝐸𝑟𝑒𝑣 (𝐴) =
∑︁
𝑢𝑖 ∈𝑈

∑︁
𝑝 𝑗 ∈𝑃

𝑊𝑖, 𝑗 ×𝐴𝑖, 𝑗 (2)

Hereon, we use the notation 𝐴𝑖 = {∀𝑝 𝑗 ∈ 𝑃, 𝐴𝑖, 𝑗 = 1} to denote

the set of products allocated to re-seller 𝑢𝑖 . Furthermore, we use

𝑝 𝑗 ∈ 𝐴𝑖 to denote 𝐴𝑖, 𝑗 = 1.

A purely revenue maximization objective would therefore reduce

to finding the allocation matrix 𝐴∗
𝑟𝑒𝑣 that maximizes 𝐸𝑟𝑒𝑣 .

arg max

𝐴∗
𝑟𝑒𝑣 ∈A

𝐸𝑟𝑒𝑣 (𝐴∗
𝑟𝑒𝑣) (3)

Here, A denotes the universe of all possible allocation matrices.

2.2 Two-Sided Constraints

While maximizing revenue is a reasonable goal, it does not consider

some practical business requirements. For example, maximizing

revenue may only allocate the most profitable products to the most

successful re-sellers. As a result, other products may never get allo-

cated, violating agreements a platformmay have with the producers.

Similarly, these platforms work within the design constraints of

a UI, which typically shows a certain number of products to each

re-seller. Without it, some re-sellers may get overwhelmed with

product recommendations, while others may fail to get a reason-

able number of products, hampering the re-seller experience. We

introduce the following constraints to avoid these scenarios.

(1) Re-seller-Constraint: Each re-seller gets allocated at

least 𝐿1 and at most 𝐿2 unique products.

𝐿1 ≤ |𝐴𝑖 | ≤ 𝐿2,∀𝑢𝑖 ∈ 𝑈 (4)

(2) Product-Constraint: Each product is allocated to at

least 𝑅1 and at most 𝑅2 number of re-sellers.

𝑅1 ≤
∑︁

𝑖∈{1,2,...,𝑚}
1{𝑝 𝑗 ∈ 𝐴𝑖 } ≤ 𝑅2,∀𝑝 𝑗 ∈ 𝑃 (5)

Next, we explore how we can achieve fair revenue distribution

under these two constraints.

3 FAIR ALLOCATION UNDER CARDINALITY

CONSTRAINTS

Prior research in other contexts has shown that focusing only on

maximizing revenue can lead to unfairness [12, 34, 38, 42, 47]. Sim-

ilarly, in social commerce, an algorithm maximizing revenue under

the two-sided constraints may allocate all high revenue products to

a few re-sellers, while others get only the low revenue ones. If most

of the re-sellers do not find enough opportunities to earn well, they

may leave a particular platform and go to its competitors. Thus,

ensuring that resellers earn equitably can be a differentiating factor

to attract more resellers into a platform and retain them in the long

run. In this work, we aim to provide a fair product allocation scheme

to re-sellers such that each re-seller is treated fairly in terms of

earning opportunity and revenue generation.

To determine a suitable notion of fairness, we resort to the fair

division literature [2] and consider two well-studied notions—envy-

freeness and equitability—which are based on “intrapersonal" and

“interpersonal" comparisons, respectively. For indivisible resources

(as in our context), exact versions of these notions can not be

guaranteed. Hence, one has to define approximations, and two

popular approximations are envy-freeness up to one item (𝐸𝐹1),

and equitability up to one item (𝐸𝑄1). Next, we define 𝐸𝑄1 and

𝐸𝐹1, and prove their non-existence in the presence of Re-seller-

Constraint (Eq.4) and Product-Constraint (Eq.5). Then, we dis-

cuss anotherwell-studiedmeasure of fairness—Nash social welfare—

and establish its suitability in our context where we have to satisfy

the two-sided cardinality constraints.

3.1 Equitability up to One Item (EQ1)

Definition 3 (Eqitability up to one item (𝐸𝑄1)). An allo-

cation 𝐴 = (𝐴1, . . . , 𝐴𝑛) is said to satisfy equitability up to one item

(𝐸𝑄1) if for every pair of re-sellers 𝑢𝑖 , 𝑢𝑘 ∈ 𝑈 such that 𝐴𝑘 ≠ ∅, there
exists some item 𝑝 𝑗 ∈ 𝐴𝑘 such that𝑈𝑖 (𝐴𝑖 ) ≥ 𝑈𝑘 (𝐴𝑘 \ 𝑝 𝑗 ).

Intuitively, an 𝐸𝑄1 allocation ensures that the maximum revenue

disparity between any pair of re-sellers is bounded by the revenue

of one allotted item. For 𝐸𝑄1, positive existence results are known

in the literature in the unconstrained setting.

Proposition 1. 𝐸𝑄1 allocation always exists if an allocation is

performed without any cardinality constraints [18, 23].

However, in the presence of the two-sided constraints, an 𝐸𝑄1

allocation may not exist.

Theorem 1. 𝐸𝑄1 allocation may not exist in the presence of

Re-seller-Constraint (Eq.4) and Product-Constraint (Eq.5).

Proof. Provided in Appendix A. □

Theorem 2. Determining the existence of an 𝐸𝑄1 allocation

in the presence of Re-seller-Constraint (Eq.4) and Product-

Constraint (Eq.5) is NP-complete.

Proof. Provided in Appendix B. □

3.2 Envy-Freeness Up to One item (EF1)

Definition 4 (Envy-freeness up to one item (𝐸𝐹1)). An al-

location 𝐴 = (𝐴1, . . . , 𝐴𝑛) is said to satisfy envy-freeness up to one

item (𝐸𝐹1) if for every pair of re-sellers 𝑢𝑖 , 𝑢𝑘 ∈ 𝑈 such that 𝐴𝑘 ≠ ∅,
there is some item 𝑝 𝑗 ∈ 𝐴𝑘 such that 𝑈𝑖 (𝐴𝑖 ) ≥ 𝑈𝑖 (𝐴𝑘 \ 𝑝 𝑗 ). Here,
𝑈𝑖 (𝐴𝑖 ) =

∑
𝑝 𝑗 ∈𝐴𝑖

𝑊𝑖, 𝑗 , where𝑊𝑖, 𝑗 is the utility of re-seller 𝑢𝑖 for the

item 𝑝 𝑗 .

𝐸𝐹1 ensures that no re-seller envies another re-seller for more

than one item. Specifically, if the items allotted to re-seller 𝑢𝑘 (𝐴𝑘 )

are instead allotted to 𝑢𝑖 , then the maximum increase in the income

of 𝑢𝑖 is bounded by the revenue of one item in 𝐴𝑘 . In the uncon-

strained setting, arbitrarily selecting any permutation of re-sellers

and then allocating products greedily in round robin fashion gives

𝐸𝐹1 solution [11]. We next show that in the presence of Re-seller-

Constraint (Eq.4) and Product-Constraint (Eq.5), the exact

permutation of re-sellers matters.

Proposition 2. Some permutation of re-sellers in round robin

allocation may not find feasible 𝐸𝐹1 solution in the presence of Re-

seller-Constraint (Eq.4) and Product-Constraint (Eq.5).
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Proof. Provided in Appendix A. □

There are pseudopolynomial-time algorithms known for finding

an 𝐸𝐹1 and Pareto optimal
1
allocation without cardinality con-

straints [5] or cardinality constraints at product side [13]. However,

their adaptation to our two-sided cardinality-constrained version is

not straightforward. Freeman et al. [16] studied 𝐸𝐹1 from both sides

of matching parties (double envy-freeness up to one match) and

concluded that two-sided 𝐸𝐹1 i.e., double 𝐸𝐹1, does not always ex-

ist. Patro et al. [42] used round robin allocations to find 𝐸𝐹1 solution,

but without strictly ensuring that product side constraints are sat-

isfied. Gollapudi et al. [22] considered two-sided 𝐸𝐹1 in a dynamic

setting, but only for symmetric binary valuations. In our case, how-

ever, the expected revenue can not be mapped to binary valuations.

3.3 Nash social welfare

In the unconstrained setting, the problem of maximizing the Nash

social welfare is defined as follows.

Problem 1 (NashOptimization). Given a set of 𝑛 products

𝑃 = {𝑝1, . . . , 𝑝𝑛} and 𝑚 re-sellers 𝑈 = {𝑢1, . . . , 𝑢𝑚} with utilities

{𝑊𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] , the goal in NashOptimization is to return an

allocation 𝐴∗ = (𝐴∗
1
, . . . , 𝐴∗

𝑚) that maximizes the geometric mean

(equivalently, the product) of agents’ utilities. That is,

𝐴∗ ∈ argmax

𝐴=(𝐴1,...,𝐴𝑛 )

∏
𝑖∈[𝑚]

∑︁
𝑝 𝑗 ∈𝐴𝑖

𝑊𝑖, 𝑗 (6)

𝑤ℎ𝑒𝑟𝑒 𝐴𝑖 ∩𝐴𝑘 = ∅ ∀ 𝑖, 𝑘 ∈ [𝑚] and 𝐴1 ∪ · · · ∪𝐴𝑚 = 𝑃 .

Replacing revenue with Nash social welfare in the objective

function hits a sweet spot between Bentham’s utilitarian notion

of social welfare (maximize the sum of utilities) and the egalitarian

notion of Rawls (maximize the minimum utility) in unconstrained

cardinality setting[11].

While 𝐸𝑄1 and 𝐸𝐹1 are constraint satisfaction based objectives

specifying whether an allocation is permitted or not, NashOpti-

mization is an optimization problem. Historically, NashOptimiza-

tion has mostly been studied in a setting where only one copy

of each product is available for allocation. Chaudhury et al. [13]

proposed a polynomial-time algorithm to approximate the opti-

mal Nash social welfare (NashOptimization) up to a factor of

𝑒1/𝑒 considering the product side cardinality; however, there is no

other constraints (on the re-seller side cardinality). We focus on

optimizing NashOptimization in two-sided cardinality setting

in the presence of Re-seller-Constraint (Eq.4) and Product-

Constraint (Eq.5).

Problem 2. Two-sided cardinality constrained Nash Op-

timization (2S-CardNashOpt): Given the set of 𝑚 re-sellers

(𝑈 = {𝑢1, · · · , 𝑢𝑚}), 𝑛 products (𝑃 = {𝑝1, · · · , 𝑝𝑛}), and the pa-

rameters 𝐿1, 𝐿2, 𝑅1, 𝑅2 of the Re-seller-Constraint and Product-

Constraint, identify the allocation matrix A maximizing:

A = argmax

𝐴

∏
𝑢𝑖 ∈𝑈

∑︁
𝑝 𝑗 ∈𝐴𝑖

𝑊𝑖, 𝑗 (7)

subject to satisfying Re-seller-Constraint and Product-

Constraint.

1
An allocation is Pareto optimal if no other allocation can make some re-seller strictly

better off without making some other re-seller strictly worse off.

This introduces non-trivial challenges and highlights why ob-

taining fairness in social commerce is a challenging problem. To

rigorously establish this, we next discuss the known results for

NashOptimization in the literature, their validity under two-sided

constraints, and why NashOptimization is the objective function

of choice for the proposed problem.

It is known that allocations maximizing Nash social welfare

simultaneously satisfy 𝐸𝐹1 and Pareto optimality—a well-studied

criterion of economic efficiency in an unconstrained setting [11].

However, the same result may not hold in the presence of Re-

seller-Constraint (Eq.4) and Product-Constraint (Eq.5).

Theorem 3. Optimising Nash social welfare (Eq. 7 ) may not

give EF1 solution in the presence of Re-seller-Constraint (Eq.4) and

Product-Constraint (Eq.5).

Proof. Provided in Appendix A. □

Next, we prove that two-sided cardinality constrainedNashOpti-

mization is NP-hard, which makes the proposed problem NP-hard.

Theorem 4. Two-sided cardinality constrained Nash Optimiza-

tion (2S-CardNashOpt) problem is NP-hard.

Proof. Provided in Appendix B. □

3.4 Suitability of Optimizing Nash social

welfare for Social Commerce

𝐸𝑄1 allocation under two-sided cardinality constraints may not

exist (Theorem 1). Furthermore, determining the existence itself

is NP-complete (Theorem. 2). Similarly, double-sided 𝐸𝐹1 may not

exist either [16]. The feasibility of 𝐸𝐹1 under two-sided cardinality

constraints depends upon the selection of re-seller permutation

in round-robin allocation (proposition 2). In contrast, although 2S-

CardNashOpt is NP-hard, we can attempt to design heuristics and

identify allocations with high Nash social welfare. This motivates

us to choose Nash social welfare as the fairness measure of choice.

Note that by maximizing the (mathematical) product of the

individual revenues obtained by each re-seller, we value allocation

schemes higher where none of the individual re-seller revenues is

low. This ensures re-seller-side fairness. Fairness on the exposure

of products is obtained through Product-Constraint. As we

show later, the proposed heuristic for 2S-CardNashOpt provides

near-optimal performance empirically. In the next section, we

design MILP and our heuristics for 2S-CardNashOpt.

4 PROPOSED ALGORITHMS

Next, we describe the proposed algorithms to optimize Nash social

welfare under two-sided cardinality constraints. Our contributions

towards this goal include a mixed integer linear program (§ 4.1)

which is an adaptation of an existing MILP from the unconstrained

setting [11], and two iterative greedy heuristics (§ 4.2).

4.1 Mixed Integer Linear Programming (MILP)

Since maximizing Nash social welfare in the unconstrained fair

division problem is APX-hard [32], this motivates the development

of integer linear programs and heuristics to work on small instances.

To this end, Caragiannis et al. [11] proposed a mixed integer linear



Towards Fair Allocation in Social Commerce Platforms WWW ’23, April 30–May 04, 2023, Austin, TX, USA

program (MILP) that was based on the idea of lower bounding the

log function by a piecewise linear function.
2
The latter was designed

to be exactly equal to the log function on integral points, and thus

a piecewise linear approximation suffices. We adapt this MILP to

our setup by incorporating two-sided cardinality constraints and

call the adapted program NashMax.

4.1.1 NashMax. We scale all𝑊𝑖, 𝑗 (utility) between 1 to 1000 in-

tegers and let those scaled integer values are 𝑣𝑖, 𝑗 , ∀𝑖 and 𝑗 such

that

∑
𝑗 𝑣𝑖, 𝑗 ≤ 1000,∀𝑖 . Let 𝛾𝑖 be a continuous variable denoting

the log of the utility to player 𝑖 , and bound it using a set of linear

constraints such that the tightest bound at every integral point 𝑘 is

exactly log(𝑘).

Maximize

∑︁
𝑖∈𝑈

𝛾𝑖 (8)

Subject to

(1) Log approximation: The RHS in the constraint below is a

lower bound on the log function everywhere and is tight on

all points where the utility is integral.

∀𝑖, 𝛾𝑖 ≤ log𝑘 + [log(𝑘 + 1) − log𝑘] ×

∑︁
𝑗∈𝑃

𝑥𝑖, 𝑗 × 𝑣𝑖, 𝑗 − 𝑘

 ,
∀𝑖 ∈ 𝑈 , 𝑘 ∈ {1, 3, . . . , 999}

(2) Checking whether item 𝑗 is assigned to re-seller 𝑖

𝑥𝑖, 𝑗 ∈ {0, 1}

(3) Each item is allocated to at least 𝑅1 re-sellers and at most 𝑅2

∀𝑗, 𝑅1 ≤
∑︁
𝑖

𝑥𝑖, 𝑗 ≤ 𝑅2

(4) Each re-seller is allocated at least 𝐿1 and at most 𝐿2 items

∀𝑖, 𝐿1 ≤
∑︁
𝑗

𝑥𝑖, 𝑗 ≤ 𝐿2

Proposition 3. The allocation returned by NashMax has the

highest Nash social welfare among all cardinality-constrained alloca-

tions for the given instance.

We note that the proof of correctness of Proposition 3 is similar

to that of the unconstrained version as discussed in [11] and is

therefore omitted. Unfortunately, the MILP described above does

not scale to large datasets. This motivates us to develop greedy

heuristics for maximizing Nash welfare.

4.2 Iterative Greedy Heuristics

Here we propose two heuristics based approaches to optimize Nash

under two-sided cardinality constraints. The first approach is based

on pure greedy allocation, where we iteratively allocate each prod-

uct to a re-seller which maximizes the Nash. The second approach

is round wise allocation, where the poorest re-seller is preferred to

pick up its most preferred product in each round.

2
Notice that maximizing the Nash welfare product is equivalent to maximizing the

sum of log of the utilities.

Algorithm 1 GreedyNash: Greedily Maximize Nash under Two-

Sided Cardinality Constraints

Input:𝑚 re-sellers, 𝑛 products, utilities𝑊𝑖 𝑗 , 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛, and parameters 𝐿1 and 𝐿2 (The

lower and upper bound on recommendation list for re-sellers), 𝑅1 and 𝑅2 (Minimum and maximum

number of re-sellers allocated to each product respectively).

Output: Assignments of re-sellers𝐴 = {𝐴1, 𝐴2, ...., 𝐴𝑚 }.
——— INITIALIZATION——————-

1: for 𝑖 = 1 𝑡𝑜 𝑚 do:

2: set𝐴𝑖 = {}, (Empty allocations for re-seller𝑢𝑖 )

——— FIRST ALLOCATION——————-

3: for 𝑖 = 1 𝑡𝑜 𝑚 do:

4: Assign re-seller 𝑢𝑖 ’s most preferred unique product, 𝑝 𝑗 to 𝐴𝑖 subject to cardinality con-

straints

——— GREEDY ALLOCATION——————-

5: for 𝑗 = 1 𝑡𝑜 𝑛 do:

6: repeat

7: Find re-seller𝑢𝑖 such that, 𝑝 𝑗 ∉ 𝐴𝑖 , and allocation of product 𝑝 𝑗 to re-seller𝑢𝑖 leads to

maximum increase in Nash subject to cardinality constraints(with lower bounds). Assign

product 𝑝 𝑗 to𝐴𝑖

8: until product 𝑝 𝑗 is allocated to 𝑅1 users OR no such suitable user found

——— FULL-FILL RECOMMENDATION LIST ———

9: Some users may not be allocated to 𝐿1 products yet. Allocate their most preferred product until

their allocation list contains 𝐿1 unique products subject to the most preferred product should

not be already allocated to 𝑅2 users.

——— GREEDY REPLACEMENT ———

10: for each products 𝑝 𝑗 where number of re-sellers allocated to it is less than 𝑅1 do:

11: repeat

12: Find re-seller𝑢𝑖 such that, 𝑝𝑙 ∈ 𝐴𝑖 with number of re-sellers allocated to 𝑝𝑙 > 𝑅1 ,
𝑝 𝑗 ∉ 𝐴𝑖 , and replacement of 𝑝𝑙 with 𝑝 𝑗 result in a minimum decrease in her/his utility

13: Replace 𝑝𝑙 with 𝑝 𝑗 in𝐴𝑖

14: until Product 𝑝 𝑗 is allocated to 𝑅1 users

——— ASSIGN GREEDILY TILL UPPER-BOUNDS SATISFIED ———

15: for 𝑗 = 1 𝑡𝑜 𝑛 do:

16: repeat

17: Find re-seller𝑢𝑖 such that, 𝑝 𝑗 ∉ 𝐴𝑖 , and allocation of product 𝑝 𝑗 to re-seller𝑢𝑖 leads to

maximum increase in Nash subject to cardinality constraints(with upper bounds). Assign

product 𝑝 𝑗 to𝐴𝑖

18: until product 𝑝 𝑗 is allocated to 𝑅2 users OR no such suitable user found

4.2.1 GreedyNash. We now describe an iterative greedy approach

that we call GreedyNash (see Algorithm 1). The underlying idea

is to allocate each product to myopically achieve the maximum

increase in Nash social welfare. Specifically, starting from an empty

allocation (lines 1-2), we first allocate each re-seller exactly one

product by allowing the re-sellers to pick their most preferred

product in a round-robin manner subject to maintaining cardinality

constraints (lines 3-4). This step ensures that each re-seller acquires

a non-zero utility (thus, in turn, making the Nash product non-zero)

and makes the remaining decisions of the algorithm well-defined.

Next, we iterate over the set of products, and, at each step,

assign each product in a way that maximizes the marginal increase

in Nash Welfare subject to the cardinality constraints (lines 5-8).

This process continues until either all 𝑅1 copies of a product have

been allocated or no suitable user is found (line 8). If the cardinality

constraint for one or more users is not met, we continue allocating

them their most-preferred products (line 9). Similarly, products

not achieving their minimum cardinality are greedily assigned to

re-sellers (lines 10-14). Once all products achieve their minimum

cardinality, we can greedily allocate 𝑅2 copies of products subject

to user-side cardinality constraints (lines 15-18).

4.2.2 SeAl. It is a sequential egalitarian algorithm (Algorithm 2).

Initially, allocations are empty; hence the utility of all re-sellers

is 0. We perform allocations in 𝐿1 round. Each round sequentially

allocates the poorest re-seller (with the least utility) their most

preferred product subject to lower bound cardinality constraints.
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Algorithm 2 SeAl: Sequential Egalitarian Algorithm under Two-

Sided Cardinality Constraints

Input:𝑚 re-sellers, 𝑛 products, utilities𝑊𝑖 𝑗 , 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛, and parameters 𝐿1 and 𝐿2 (The

lower and upper bound on recommendation list for re-sellers), 𝑅1 and 𝑅2 (Minimum and maximum

number of re-sellers allocated to each product, respectively).

Output: Assignments of re-sellers𝐴 = {𝐴1, 𝐴2, ...., 𝐴𝑚 }.
——— INITIALIZATION——————-

1: 𝑃𝑄 = [ ] (Empty ascending order priority queue)

2: for 𝑖 = 1 𝑡𝑜 𝑚 do:

3: set𝐴𝑖 = {}, (Empty allocations for re-seller𝑢𝑖 )
4: Insert pair < 𝑢𝑖 , 0 > i.e. <user𝑢𝑖 ,𝑢𝑖 ’s utility> to 𝑃𝑄

——— SEQUENTIAL ITERATIVE GREEDY ALLOCATION WITH LOWER BOUND———

5: for 𝑘 = 1 𝑡𝑜 𝐿1 do:

6: while 𝑃𝑄 is empty do

7: Take out a reseller𝑢𝑖 with minimum utility from 𝑃𝑄
8: Assign re-seller𝑢𝑖 to his/her most preferred product, 𝑝 𝑗 such that 𝑝 𝑗 ∉ 𝐴𝑖 and the

number of re-sellers allocated to 𝑝 𝑗 is less than 𝑅1
9: If no such 𝑝 𝑗 is found then assign re-seller𝑢𝑖 to his/her most preferred product, 𝑝 𝑗

such that 𝑝 𝑗 ∉ 𝐴𝑖 and the number of re-sellers allocated to 𝑝 𝑗 is less than 𝑅2

10: for 𝑖 = 1 𝑡𝑜 𝑚 do:

11: Insert pair < 𝑢𝑖 ,𝑢𝑖 ’s utility> to 𝑃𝑄

——— GREEDY REPLACEMENT ———

12: for each products 𝑝 𝑗 where number of re-sellers allocated to it is less than 𝑅1 do:

13: repeat

14: Find re-seller𝑢𝑖 such that, 𝑝𝑙 ∈ 𝐴𝑖 with number of re-sellers allocated to 𝑝𝑙 > 𝑅1 ,
𝑝 𝑗 ∉ 𝐴𝑖 , and replacement of 𝑝𝑙 with 𝑝 𝑗 result in a minimum decrease in her/his utility

15: Replace 𝑝𝑙 with 𝑝 𝑗 in𝐴𝑖

16: until Product 𝑝 𝑗 is allocated to 𝑅1 users

——— SEQUENTIAL ITERATIVE GREEDY ALLOCATION WITH UPPER BOUND———

17: for 𝑘 = 𝐿1 𝑡𝑜 𝐿2 do:

18: while 𝑃𝑄 is empty do

19: Take out a reseller𝑢𝑖 with minimum utility from 𝑃𝑄
20: Assign re-seller𝑢𝑖 to his/her most preferred product, 𝑝 𝑗 such that 𝑝 𝑗 ∉ 𝐴𝑖 and the

number of re-sellers allocated to 𝑝 𝑗 is less than 𝑅2

21: for 𝑖 = 1 𝑡𝑜 𝑚 do:

22: Insert pair < 𝑢𝑖 ,𝑢𝑖 ’s utility> to 𝑃𝑄

At the end of 𝐿1 rounds, if some products are not allocated to

𝑅1 re-sellers, perform greedy product replacement as mentioned

in steps 12-16. Once every product achieves their minimum

cardinality, we can allocate 𝑅2 copies of products subject to

user-side cardinality constraints (steps 17-22).

Between GreedyNash and SeAl, the outperformance depends

on the utility values of the re-sellers (Appendix D provides some rel-

evant Examples). Computational complexity of both algorithms are

discussed in Appendix C. Note that in both cases, a feasible solution

may not exist under all possible cardinality constraints. However,

the constraints can be set to ranges that guarantee feasibility (§ 6).

5 DATASETS

In this section, we introduce the datasets used to benchmark the

proposed methodologies.

5.1 Real Social Commerce Dataset

The dataset from Shopsy comprises of one month of click and pur-

chases history, followed by the next six months’ purchase history.

In addition, it includes the product catalog, which details the price,

revenue (profit), and category of each product. Table 1 presents the

statistics of this dataset. It is worth noting that this is possibly the

largest real dataset being studied in the fair allocation literature.

Since the dataset contains products of various price-ranges and

categories, it is not fair to compare the revenues generated by re-

sellers across different categories with vastly different expertise. As

an example, re-sellers specializing in expensive electronic items (Ex:

TV, laptop, etc.) have significantly different expectations in terms

of product allocations and revenue contribution to platform when

#Re-sellers #Products #Purchases #Product categories

531933 13178 951664 703

Table 1: Summary of the real social commerce dataset.
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Figure 2: Distributions of the re-sellers (left) and the average

price of products sold by them in each cluster (right).

compared to those who specialize in garments. Hence, we parti-

tion re-sellers into homogeneous clusters by performing 𝑘-means

clustering on their expertise vectors. The expertise vectors are

learned using collaborative filtering [29]. The value of 𝑘 is set to 53

since inter-cluster distance computed through elbow-method [39]

stabilizes at this value. The problem of 2S-CardNashOpt is solved

on each cluster separately, and the results are reported in § 6. The

distributions of the cluster sizes and the average price of items sold

by re-sellers in each cluster are shown in Fig. 2. As can be seen,

there is a significant disparity in the price of the items sold by each

cluster, which necessitates this segregation step of the raw data

through clustering.

5.2 Synthetic Dataset

Since MILP (Recall § 4.1) does not scale to large datasets, we create

small, synthetic datasets so that the proposed heuristic can be

compared to the optimal allocation. More details about the synthetic

dataset generation is provided in Appendix F.

6 EXPERIMENTAL RESULTS

In this section, we benchmark the proposed methodologies on the

datasets described in § 5 and establish that:

• Approximation quality: SeAl achieves near optimal per-

formance with minimal dip in revenue.

• Efficacy: SeAl provides significantly higher fairness while

also ensuring minimal reduction in the revenue when com-

pared to purely maximizing revenue.

The implementations of all algorithms used in this study are in

Python 3.0. Our experiments are performed on a machine with

Intel(R) Xeon(R) CPU @ 2.10GHz with 252GB RAM on Ubuntu

18.04.3 LTS. Our codebase is available at https://github.com/idea-

iitd/FairAllocInSocialCom.git

6.1 Baselines

To contextualize the performance of the proposed algorithms, we

compare its performance to the following baselines:

• RevMax: We use Integer Linear Programming (ILP) to maxi-

mize the overall revenue (Eq. 2) by enforcing both Re-seller-

Constraint and Product-Constraint.

• GreedyRevenue: We use the iterative greedy approach

to maximize revenue in the presence of Re-seller-

Constraint (Eq.4) and Product-Constraint (Eq.5).

https://github.com/idea-iitd/FairAllocInSocialCom.git
https://github.com/idea-iitd/FairAllocInSocialCom.git
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Figure 3: The bar plot shows (a) an increase in fairness among re-sellers, (b) a decrease/increase in fairness among products, and

(c) a decrease in revenue on comparing NashFair to RevMax w.r.t. variation in 𝑳. Recall that 𝑳1 and 𝑳2 are set as 𝑳 − 𝝐 and 𝑳 + 𝝐
respectively where 𝝐 = 3. (d-f) represent the same metrics but, w.r.t. 𝑹1. (g-h) Scalability: Running time (in seconds) comparison

of SeAl, GreedyNash, and NashMax on synthetic dataset w.r.t. increase in the number of (g) products and (h) re-sellers.

Specifically, it proceeds in an iterative manner and in each

iteration we select the ⟨𝑟𝑒 − 𝑠𝑒𝑙𝑙𝑒𝑟, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩ tuple that

maximizes revenue without violating either Re-seller-

Constraint or Product-Constraint. While RevMax is

guaranteed to provide a superior revenue, GreedyRevenue

is significantly faster and hence scales to large datasets.

• FairRec [42] and TFrom [52] are two-sided fairness-

aware recommendation algorithms. FairRec ensures EF1

allocations for customers, and aims to achieve product

side constraints. TFrom considers the position bias in

recommendations.

• FOEIR [44] is fair-ranking algorithm that deal with advan-

taged and disadvantaged social groups’ bias and positional

bias. In our adaptation, we randomly divided products into

these two groups, assumed a uniform attention model and

applied the FOEIR algorithm maintaining the cardinality

constraints.

In addition to the baselines, this work contributes three algorithms,

namely NashMax, which optimizes Nash through MILP (§ 4.1),

GreedyNash (Alg. 1) and SeAl (Alg. 2). Also note that we do not

consider revenue maximization without constraints, since such

allocation results in the highest priced product being allocated to

all re-sellers, which is impractical.

6.2 Parameters

Real dataset: We set 𝐿1 = 𝐿 − 𝜖 and 𝐿2 = 𝐿 + 𝜖 for 𝜖 = 0 and

𝐿 = 15 in Re-seller-Constraint, and 𝑅1 = ⌊ 𝐿1+𝐿2
2

× 𝑚
𝑛 ⌋, 𝑅2 =𝑚

in Product-Constraint. Here, 𝑛 and𝑚 represent the number of

products and re-sellers respectively. Synthetic dataset: We vary

𝐿 = [5, 10, 15, 20, 25], where 𝐿1 = 𝐿 − 𝜖 and 𝐿2 = 𝐿 + 𝜖 for 𝜖 = 3.

We set the minimum guaranteed copy for each product to 𝑅1, i.e.,

𝑅1 = ⌊𝛼 × 𝐿1 ×𝑚/𝑛⌋ for 𝛼 = [0.5, 0.75, 1] and 𝑅2 = [𝑚, 2 × 𝑅1].

6.3 Metrics

We quantify performance using the following metrics.

• Revenue: The total expected revenue from all products

(Eq. 2).

• Gini coefficient: The Gini coefficient is the ratio of the

area that lies between the line of equality and the Lorenz

curve over the total area under the line of equality [20].

Mathematically,

𝐺𝑖𝑛𝑖 =

∑𝑚
𝑖=1

∑𝑚
𝑗=1

��𝑈𝑖 −𝑈 𝑗

��
2𝑚

∑𝑚
𝑗=1𝑈 𝑗

(9)

where𝑈𝑖 is the expected revenue (utility) of re-seller 𝑖 and

𝑛 is the number of re-sellers for computing fairness for re-

sellers. For products, 𝑖 is product and𝑛 is number of products.

A lower Gini indicates fairer distribution.

• Average income gap: The income gap is the difference

between the maximum expected revenue with the minimum

one across all re-sellers, i.e.,

Income Gap = max

∀𝑢𝑖 ,𝑢𝑘 ∈𝑈
{|𝑟𝑒𝑣 (𝑢𝑖 ) − 𝑟𝑒𝑣 (𝑢𝑘 ) |}, (10)

where 𝑟𝑒𝑣 (𝑢𝑖 ) =
∑
𝑝 𝑗 ∈𝐴𝑖

𝑊𝑖, 𝑗 .

• Percentage of constraint-satisfying allocations: If we

are given𝑋 datasets/clusters of re-sellers and the correspond-

ing products to be allocated, we find in what percentage

of the datasets/clusters, an algorithm is able to provide an

allocation satisfying Re-seller-Constraint and Product-

Constraint.

6.4 Comparison of the Optimal Approaches

The MILP formulations, i.e., RevMax, ConRevMax and FairNash

provide optimal allocations under integer valuations. However,

since MILP-based algorithms are prohibitively slow, we measure

their efficacy only on the synthetic datasets.

6.4.1 Efficacy. Fig. 3 presents the results. We observe that enforc-

ing Nash has minimal impact on the revenue. Furthermore the

fairness on re-seller side in terms of Gini is significantly better. The
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SeAl GreedyNash

Avg. approx. ratio 0.9989 0.997

Min. approx. ratio 0.9952 0.987

% Dip in revenue 0.47 1.61

Avg. income gap ratio 0.97 1.02

Table 2: Comparison of SeAl and GreedyNash on synthetic

datasets. We present the ratios when compared to the same

metric obtained by NashMax.

Gini on the product sides are similar for RevMax and NashMax

since both ensure Product-Constraint.

6.4.2 Scalability. As noted earlier MILP-based algorithms are pro-

hibitively slow, making them impractical for real datasets. We

substantiate this claim by analyzing the growth of their running

times against the number of re-sellers and products in the system.

Figs. 3(g)-3(h) present the results, where we compare NashMax

with the greedy heuristics of GreedyNash and SeAl. As visible,

the greedy heuristics are more than 2 orders of magnitude faster.

6.5 Efficacy of Greedy Heuristics

The fast running times of greedy heuristics make them an attractive

proposition. We therefore investigate their efficacy on the synthetic

dataset against NashMax, which is optimal in terms of Nash.

6.5.1 Performance on synthetic datasets. Table 2 presents the re-

sults. We observe that the approximation ratios of GreedyNash

and SeAl are ≈ 0.99 indicating excellent efficacy; SeAl performs

marginally better. We also report the minimum approximation ra-

tios across all instances of synthetic datasets and notice that it is

close to the average indicating excellent stability. The dip in rev-

enue is less than 2%, with SeAl being the better performer. Finally,

the average of the income gaps is also close to the optimal. Overall,

these results establish greedy heuristics as a good alternative due

to obtaining excellent balance between efficiency and efficacy.

6.5.2 Performance on real datasets: We next measure performance

on the real datasets. Although no technique consistently achieves

the best performance across all metrics, SeAl and GreedyNash

achieve the best overall balance in performance. We notice that

both FairRec and TFrom violate cardinality constraints on the

product side in at least 96% of the instances. Although these base-

line algorithms try to adhere to two-sided constraints, they do not

guarantee adherence, which we do. This property manifests itself

in the trends visible in Table 3. Finally, although TFrom achieves

the best Gini on the re-seller side, its revenue is significantly worse,

making it impractical for social commerce platforms.

7 RELATEDWORK

Social recommendation: In a social network, users spread their

preferences for items to their connections by sharing the items, and

this potentially converts to the sales of items among connections.

In the social commerce domain, the problem of Influence Max-

imization (IM) is well-studied [15, 24, 30, 31, 33, 41, 48, 49]. The

focal point of IM is, however, different from ours. In IM, given a

social network and a budget 𝑏, the goal is to select 𝑛 nodes from the

network, such that if they advertise your product, then the cascad-

ing effect of this action is maximized through network diffusion. In

our problem, the set of influencers i.e., re-sellers, are given to us as

input. Thus, our focus is on which influencer i.e., re-sellers, should

promote which product, which is the allocation aspect. In addition,

Metric SeAl GREEDY- FairRec GREEDY- TFrom FOEIR

NASH REVENUE

Revenue (in USD) 381𝑘 372𝑘 349𝑘 390k 167𝑘 338.9𝑘

Avg. gini (users) 0.314 0.273 0.43 0.553 0.23 0.43

Avg. income gap 672.11 408 1123.257 1525 438 1338.01

% of Cardinality-

violations

0 0 96.22 0 100 0

Table 3: Comparison of SeAl and GreedyNash with base-

lines on real social commerce dataset. The best result for

each metric (row) is highlighted in bold.

the social network between re-sellers and customers is unavailable

in our case. Hence, recommendation techniques based on the

rating of goods provided by users and the interaction of those

users in a social network [14, 19, 35–37, 54, 55] is out of our scope.

Allocation problems: Fair allocation has been widely studied in

computational social choice theory, where the promary interest is

in the allocation of divisible goods (aka the cake-cutting problem).

Here, however, we are in the realm of indivisible goods since our

allocation is binary – a product can either be allocated or not. Very

recently, some papers focused on allocating indivisible goods in

budgeted course allocation [10], balanced graph partition [9], or

allocation of cardinality constrained group of resources [7]. Few

other sets of papers propose envy freeness up to one good (EF1) and

Pareto optimal product allocations [4, 17, 42, 53]. Going beyond, we

explore various well-studied notions of fairness in the allocation of

goods —including Nash social welfare, EF1, and equitability up to

one item (EQ1)—in the context of two-sided cardinality constraints.

Fair Recommendation: Wu et al. [50] proposes a multi-objective

gradient descent algorithm that optimizes fairness and utility

to balance the objectives between consumers and producers.

Few recent works propose a framework to learn the relevance

scores considering the joint multi-objective optimization [21, 51].

However, in this work, we only focus on the allocation aspect. To

the best of our knowledge, this is the first work on the allocation

problem in the context of social commerce, which does not have

a social graph among re-sellers and customers.

8 CONCLUSION

Social commerce has emerged as a successful model to doing busi-

ness. Recommendation engines form a core component of the social

commerce platform and dictates the revenue earned by both produc-

ers and re-sellers. While several works have studied fairness issues

on e-commerce recommendation engines, it remains unexplored in

the context of social commerce. In this work, we bridged this gap.

Our analysis revealed that ensuring fairness on social commerce

maps to a special case of fair division of individual goods under two-

sided cardinality constraints. We studied multiple fairness notions

and established that many of the existential and computational

guarantees of unconstrained setting do not extend to two-sided

cardinality settings. Based on our discoveries, we proposed Nash

social welfare the optimization function of choice. We showed that

optimizing Nash under two-sided constraints is NP-hard, and hence

designed polynomial-time greedy heuristics to overcome the bot-

tleneck. Extensive experiments on real datasets obtained from a

leading social commerce firm showed that the proposed heuris-

tics provide near-optimal efficacy in a fraction of time. In addition,

they out-performed established baseline algorithms showcasing

the need to design a specialized algorithm that is cognizant of the

social commerce context.
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APPENDIX

A Non-Existence Proofs

Theorem 1. 𝐸𝑄1 allocation may not exist in the presence of

Re-seller-Constraint (Eq.4) and Product-Constraint (Eq.5).

Proof. Suppose there are 5 re-sellers and 5 products. We want

to allocate 3 products to each re-seller and provide at least 3 copies

of recommendations for each product, i.e., 𝐿1 = 𝐿2 = 𝑅1 = 𝑅2 = 3.

The utility values (𝑊𝑖, 𝑗 ) are given in Table D. In such a setting, these

conditions must satisfy:

(1) Out of first 4 rows, at least 1 row will have valuation 𝛼 × 3/4.
(2) If we remove one item from allocation of 𝑢5, its utility will be 4.

Now, 𝐸𝑄1 fails if 4 > 𝛼 × 3/4 ⇒ 𝛼 < 16/3. □

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

𝑢1 𝛼/4 𝛼/4 𝛼/4 𝛼/4 10-𝛼

𝑢2 𝛼/4 𝛼/4 𝛼/4 𝛼/4 10-𝛼

𝑢3 𝛼/4 𝛼/4 𝛼/4 𝛼/4 10-𝛼

𝑢4 𝛼/4 𝛼/4 𝛼/4 𝛼/4 10-𝛼

𝑢5 2 2 2 2 2

Table D

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

𝑢1 3 3 2 1 1

𝑢2 3 3 2 1 1

𝑢3 3 3 2 1 1

𝑢4 3 3 2 1 1

𝑢5 1 1 2 3 3

Table E

Proposition 2. Some permutation of re-sellers in round robin

allocation may not find feasible 𝐸𝐹1 solution in the presence of Re-

seller-Constraint (Eq.4) and Product-Constraint (Eq.5).

Proof. Suppose there are 5 re-sellers and 5 products. We want

to allocate 3 products to each re-seller and provide at least 3 copies

of recommendation to each product. The utility values (𝑊𝑖, 𝑗 ) are

given in Table E. In such a setting, we can not find a feasible 𝐸𝐹1

solution if we take any permutation that does not start with 𝑢5. □

Theorem 3. Optimising Nash social welfare (Eq. 7 ) may not

give EF1 solution in the presence of Re-seller-Constraint (Eq.4) and

Product-Constraint (Eq.5).

Proof. Consider an instance with two re-sellers 𝑢1 and 𝑢2 and

four products 𝑝1, 𝑝2, 𝑝3 and 𝑝4. Suppose each re-seller can receive

exactly two products, and suppose each product can be assigned

to exactly one re-seller, i,e, 𝐿1 = 𝐿2 = 2 in Re-seller-Constraint

and 𝑅1 = 𝑅2 = 1 in Product-Constraint.

Let the utilities for re-seller𝑢1 be 1, 1, 2+𝜖, 2+𝜖 for 𝑝1, 𝑝2, 𝑝3, 𝑝4
respectively, where 𝜖 > 0 is sufficiently small (say less than 0.4).

Similarly, let re-seller 𝑢2 value 𝑝1, 𝑝2, 𝑝3, 𝑝4 at 𝜖, 𝜖, 3, 3, re-

spectively. A cardinality-constrained Nash optimal allocation gives

𝑝1, 𝑝2 to re-seller 𝑢1 and 𝑝3, 𝑝4 to re-seller 𝑢2. This violates 𝐸𝐹1

w.r.t. re-seller 𝑢1. □

B Hardness Proofs

Theorem 2. Determining the existence of an 𝐸𝑄1 allocation

in the presence of Re-seller-Constraint (Eq.4) and Product-

Constraint (Eq.5) is NP-complete.

Proof. We will show a reduction from the 3-Partition problem,

which is known to be NP-complete [26]. □

Definition 5 (3-Partition problem). An instance of the

3-Partition problem involves a set of 3𝑚 numbers 𝑏1, · · · , 𝑏3𝑚 that

sum up to𝑚𝑇 . The goal is to partition the numbers into𝑚 triplets

with equal sums. The problem remains NP-complete even if all 𝑏𝑖 ’s

are close to 𝑇 /3.
Fair division instance to find EQ1 under cardinality con-

straints: Construct a fair division instance with a set of𝑚 + 1 re-

sellers and 3𝑚+3 items. There are𝑚main re-sellers and one dummy

re-seller. The items consist of 3𝑚 partition items 𝑔1, · · · , 𝑔3𝑚 and

three dummy items. Each main re-seller values each partition item

𝑔𝑖 at 𝑏𝑖 , and each dummy item at 0. The dummy re-seller values

every item at 𝑇 /2. The cardinality constraints require that each

re-seller receives exactly three items, and one copy of the items is

allocated.

In the forward direction, given a solution to 3-Partition, one

can construct a feasible 𝐸𝑄1 allocation by assigning the partition

items among the main re-sellers in accordance with the solution to

3-Partition, and give the three dummy items to the dummy re-seller.

In the reverse direction, suppose 𝐴 is a feasible 𝐸𝑄1 allocation.

Then, by the cardinality constraint, the dummy re-seller must re-

ceive three items under𝐴, each of which it values at𝑇 /2. Therefore,
to satisfy 𝐸𝑄1, every main re-seller must have a value of at least 𝑇 .

This means that each main re-seller must get three partition items

(recall that each 𝑏𝑖 is close to 𝑇 /3, so any two 𝑏𝑖 ’s together cannot

take us to𝑇 ). This, in turn, implies that all dummy items must go to

the dummy re-seller. Therefore, under𝐴, we must allocate partition

items so that each main re-seller gets exactly three partition items,

and its utility is at least 𝑇 . Since the partition items have a total

value of𝑚𝑇 , each main re-seller must have a value of exactly 𝑇 ,

giving us a solution of 3-Partition. Hence, finding 𝐸𝑄1 allocation

under cardinality constraints is NP-complete. □

Theorem 4. Two-sided cardinality constrained Nash Optimiza-

tion (2S-CardNashOpt) problem is NP-hard.

Proof. (sketch) We briefly outline a reduction from a balanced

version of the Partition problem [43]. The input consists of a set of

2𝑟 numbers 𝑎1, . . . , 𝑎2𝑟 that sum up to 2𝑇 . The goal is to partition

these numbers into two sets of cardinality 𝑟 each such that the

numbers in each set sum to 𝑇 .

The reduced fair division instance is constructed as follows:

There are 2𝑟 items/products 𝑝1, . . . , 𝑝2𝑟 . Each item can be allocated

to exactly one reseller (i.e., 𝑅1 = 𝑅2 = 1). Each reseller can get

exactly 𝑟 items (i.e., 𝐿1 = 𝐿2 = 𝑟 ). The decision threshold for Nash

welfare is 𝑇 .

The implication in forward direction is easy to see. In the

reverse direction, we observe that the arithmetic mean of the value

is exactly 𝑇 and the geometric mean is at least 𝑇 . Thus, by the

AM-GM inquality, the utilities of resellers must be equal, inducing

the desired partition. □

C Complexity Analysis

Suppose there are𝑚 re-sellers and 𝑛 products. The minimum and

maximum size of allocation list for each re-seller is 𝐿1 and 𝐿2 re-

spectively. 𝑅1 and 𝑅2 are the minimum and maximum number of

assigned re-sellers for each product respectively.

C.1 The complexity of GreedyNash algorithm. The complexity of

algorithm 1 (GreedyNash) is 𝑂 (𝑚𝑛 + 𝑅1
2𝐿2

3). The complexity of

steps (1-9 and 15-18) is 𝑂 (𝑚𝑛). The greedy replacement procedure

(steps 10-14) is bounded with 𝑂 (𝑅12𝐿23) for 𝑅1 = ⌊𝛼 × 𝐿1 ×𝑚/𝑛⌋,
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where 0 < 𝛼 ≤ 1. At step 7, a product (𝑝) is not allocated to any re-

seller, when at most 𝑅1 re-sellers are assigned products less than 𝐿2.

Note that these re-sellers are already in allocation of (𝑝), say such

re-sellers𝑈𝑅 . This case of not finding feasible re-seller can arise for

at most 𝐿2 products, say those products 𝑃𝐿 . The re-sellers𝑈𝑅 can

be assigned with at most 𝑅1×𝐿2 unique products whose cardinality
can exceed 𝑅1 (at step 9). So there can be at most 𝑅1 × 𝐿2 × 𝐿2
re-sellers which are assigned products whose cardinality exceed 𝑅1,

say such re-sellers𝑈𝑅𝐿2
2 . To balance the cardinality of products 𝑃𝐿 ,

at most 𝑅1 × 𝐿2 assignments are done by greedily replacing 𝑅1 × 𝐿2
products across 𝑅1 × 𝐿2 × 𝐿2 re-sellers of𝑈𝑅𝐿2

2 . So complexity of

replacement procedure (steps 10-14) is bounded with 𝑂 (𝑅12𝐿23).

C.2 The complexity of SeAl algorithm. The complexity of algo-

rithm 2 (SeAl) is 𝑂 (𝑚𝑛 log𝑚 + 𝐿2
2𝑅1

2). The complexity of steps

(1-4) is 𝑂 (𝑚 log𝑚), steps (5-9 and 17-20) is (𝑚𝑛 log𝑚), and steps

(10-11 and 21-22) is 𝑂 (𝑚 log𝑚). The complexity of steps (12-16) is

bounded by𝑂 (𝐿22𝑅12) for 𝑅1 = ⌊𝛼×𝐿2×𝑚/𝑛⌋, where 0 < 𝛼 ≤ 1. A

re-seller can not find feasible products at step 8, if there are at most

𝐿2 products which are allocated to less than 𝑅1 re-sellers. Say such

products 𝑃𝐿 . There can be at most 𝐿2 × 𝑅1 re-sellers which are allo-

cated to products whose cardinality exceed 𝑅1, say such re-sellers

𝑈𝐿𝑅 . To balance the cardinality of products 𝑃𝐿 , at most 𝑅1 × 𝐿2
assignments are done by greedily replacing 𝑅1 ×𝐿2 products across

𝑅1×𝐿2 re-sellers of𝑈𝐿𝑅 . So complexity of steps (12-16) is𝑂 (𝐿22𝑅12).

D Comparing GreedyNash and SeAl

𝑝1 𝑝2 𝑝3

𝑢1 7 1 2

𝑢2 5.5 2 2.5

𝑢3 5 4 1

Table F: GreedyNash

is better than SeAl

𝑝1 𝑝2 𝑝3

𝑢1 7 1 2

𝑢2 6 1.5 2.5

𝑢3 5 4 1

Table G: SeAl is better than

GreedyNash

While comparing SeAl and GreedyNash, either one might out-

put allocations with better NashWelfare. Lets demontrate it with an

example. Suppose there are three re-sellers and three products. We

want to allocate 2 products to each re-seller and provide 2 copies

of recommendations for each product, i.e., 𝐿1 = 𝐿2 = 𝑅1 = 𝑅2 = 2.

The utility values (𝑊𝑖, 𝑗 ) are given in Tables F and G. Suppose

we allocate the first product to users in order 𝑢1, 𝑢2, and 𝑢3,

and we choose product ordering 𝑝1, 𝑝2, and 𝑝3 for allocation.

In case of Table F GreedyNash provide allocations (𝑢1 [𝑝1, 𝑝3],
𝑢2 [𝑝1, 𝑝2],𝑢3 [𝑝2, 𝑝3]) with 𝑁𝑎𝑠ℎ = 337.5, while SeAl provides al-

locations (𝑢1 [𝑝1, 𝑝2], 𝑢2 [𝑝1, 𝑝3],𝑢3 [𝑝2, 𝑝3]) with 𝑁𝑎𝑠ℎ = 320. In

cases of Table F, GreedyNash provides allocations (𝑢1 [𝑝1, 𝑝3],
𝑢2 [𝑝1, 𝑝2],𝑢3 [𝑝2, 𝑝3]) with 𝑁𝑎𝑠ℎ = 337.5, while SeAl provides allo-

cations (𝑢1 [𝑝1, 𝑝2], 𝑢2 [𝑝1, 𝑝3],𝑢3 [𝑝2, 𝑝3]) with 𝑁𝑎𝑠ℎ = 340.

Metric SeAl GreedyNash LPT UnconsGreedyNash

Revenue (in USD) 310.57k 309.4𝑘 306.35𝑘 308.5𝑘

Avg. gini (users) 0.19 0.21 0.07 0.09

Avg. income gap 398.33 1080.40 342.94 346.68

5th %tile of products allocated 15 15 1 1

95th %tile of products allocated 15 15 19 26

Variance in products allocated 0 0 30.95 53.81

Table H: Comparison of SeAl, GreedyNash, LPT, and Un-

consGreedyNash on real social commerce dataset to show

the need of re-seller side constraints

E Importance of Re-seller-Constraint (Eq.4)

Re-seller-Constraint constraint is a practical necessity.

Social-commerce platforms work within the design constraints

of a UI, which typically shows a certain number of products.

length of the recommendation list for each re-seller is controlled

through re-seller-side constraints. To verify this empirically, we

benchmark our algorithms against two adapted baselines without

Re-seller-Constraint.

• LPT [40] is an extension of Graham(1966)’s classical

"Longest-processing-time-first(LPT)" algorithm for job

scheduling. We adapt it to showcase the use of re-seller

side cardinality constraints while optimizing Nash. In our

adaptation, we iteratively assign products to the least-happy

reseller while ensuring that product-side cardinality con-

straints are satisfied.

• UnconsGreedyNash is un-constrained version of Greedy-

Nash where Re-seller-Constraint (Eq.4) is not enforced.

We set 𝑅2 = 𝑅1 + 1 for comparing LPT with GreedyNash and SeAl.

SeAl and GreedyNash outperforms LPT and UnconsGreedyNash

(see Table H). Specifically, when UnconsGreedyNash optimizes

Nash, the number of products allocated to a reseller varies widely,

violating re-seller side constraints. For example, 15.35% resellers

got less than 5 products, whereas 25.82% resellers got more than 20

products. A Similar trend is observed for the LPT too. Since selling

success depends on multiple factors such as catalog diversity,

finding interested customers, etc., such variability hurts the

re-seller experience.

F Synthetic Dataset Generation

To compare the proposed heuristic to the optimal allocation, we

generate 100 synthetic datasets with each containing 100 users

and 100 products. Each product’s (revenue) is set to an integer

chosen uniformly at random in the range [1, 1000]. Note that Nash
optimization is free from scaling the utilities of users, and the

need for integer valuation for MILP is mentioned in § 4.1. Each

dimension (product) in the expertise vector of an user is set to a

value chosen uniformly at random from the range [0, 1].
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