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ABSTRACT
To minimize battery drain due to background communication in
cellular-connected devices such as smartphones, the duration for
which the cellular radio is kept active should be minimized. This,
in turn, calls for scheduling the background communication so as
to maximize the throughput. It has been recognized in prior work
that a key determinant of throughput is the wireless link quality.
However, as we show here, another key factor is the load in the cell,
arising from the communication of other nodes. Unlike link quality,
the only way, thus far, for a cellular client to obtain a measure of
load has been to perform active probing, which defeats the goal of
minimizing the active duration of the radio.

In this paper, we address the above dilemma by making the fol-
lowing contributions. First, we show experimentally that to obtain
good throughput, considering link quality alone is insufficient, and
that cellular load must also be factored in. Second, we present a
novel technique called LoadSense for a cellular client to obtain a
measure of the cellular load, locally and passively, that allows the
client to determine the ideal times for communication when avail-
able throughput to the client is likely to be high. Finally, we present
the Peek-n-Sneak protocol, which enables a cellular client to “peek”
into the channel and “sneak” in with its background communica-
tion when the conditions are suitable. When multiple clients in
a cell perform Peen-n-Sneak, it enables them to coordinate their
communications, implicitly and in an entirely distributed manner,
akin to CSMA in wireless LANs, helping improve throughput (and
reduce energy drain) for all. Our experimental evaluation shows
overall device energy savings of 20-60% even when Peek-n-Sneak
is deployed incrementally.
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1. INTRODUCTION
Background communication on cellular devices such as smart-

phones has been growing in importance [5], due to applications
such as social networking and software updates. Users want grati-
fication (e.g., the Facebook photos posted by a friend) sooner rather
than later, and are typically unwilling to accept a long delay, e.g.,
several hours. Also, despite its prevalence, WiFi is often not us-
able, because of sign-in or payment requirements, vehicular mobil-
ity, etc. So the cellular link becomes the only means of communi-
cation in many situation.

However, the battery drain due to background cellular commu-
nication has been a matter of concern. Indeed, there has been much
research on quantifying the energy costs, both due to transmission
and reception [15] and signaling-induced radio-tail periods [14].
For these reasons, many mobile platforms (e.g., Apple iOS, Mi-
crosoft Windows Phone) restrict background communication.

Battery drain due to communication is lower when the through-
put is higher, because the cellular radio remains in the active state
(DCH state in 3G parlance) for a shorter duration. A key deter-
minant of throughput is the link quality, which is quantified by the
strength of the base station’s pilot signal, as recorded at the receiver.
Prior work on energy-efficient scheduling [15] has suggested pref-
erentially communicating while the link quality is good.

However, link quality does not yield the full picture. As our
first contribution, we show experimentally that cellular load also
matters. The load is caused by the communication of other clients
in the cell and also interference due to the neighboring cells (the
latter in cell-edge locations), and fluctuates over time scales of sev-
eral seconds, even when a client is stationary. The higher the load,
the more the channel resources get divided, and so the lower the
throughput obtained by any one client.

In view of the above, we would ideally want to schedule back-
ground communication by factoring in the load as well as the link
quality. However, unlike the link quality, which can be measured
passively by a cellular client, estimating load has hitherto required
active measurements such as a trial download or packet-pair probes.
This is because the closed nature of the cellular network does not
allow a client to listen in on the communication of other clients, and
the network does not share load information with the clients. How-
ever, active measurements defeat the goal of saving energy since
even a single-packet probe would cause the radio to remain in a
high-energy state for several seconds, even with optimization such
as fast dormancy [14].



Our second contribution is a novel technique called LoadSense
that allows a client to obtain a measure of cellular load, locally
and passively, i.e., while keeping the radio in the idle state. Load-
Sense is based on sensing the total power in the cellular channel
and comparing it with the power of the pilot signal transmitted by
the base station. We compute the ratio of the pilot power to the to-
tal power as the power ratio. When the cellular load is nil, the total
power would equal the pilot power, so the power ratio would be
0dB. However, in the presence of load due to other clients, the total
power would be greater than the pilot power, since the measure-
ment interval would span both the pilot phase and the subsequent
communication with other clients in the cell. So the power ratio
would be lower, as low as -10dB when the full power of a fully-
loaded channel is used, assuming typical allocation of 10% of total
power to the pilot channel. In practice, the power ratio could be
even lower because of inter-cell interference at cell-edge locations.

We show experimentally that, while extreme values of link qual-
ity and the power ratio can, individually, help predict low or high
throughput, there is a wide range in the middle where neither met-
ric, by itself, enables accurate prediction. Therefore, LoadSense
uses a support vector machine generated classifier that works with
a set of readily-available features, including link quality, power ra-
tio, and the observed variation in the power ratio, to make a binary
prediction of the availability of low or high throughput for the cel-
lular client. We show that our classifier is efficient to compute on
the client, utilizes only three seconds of passive measurements to
make its prediction and achieves accuracy levels of 80-90% across
a range of network conditions and operators.

Armed with the above, we present our final contribution — the
Peek-n-Sneak protocol — which allows cellular clients to “peek”
into the channel cheaply and “sneak” in with their communica-
tion when the conditions are suitable, i.e., when high throughput
is predicted. Peek-n-Sneak is incrementally deployable, i.e., bene-
ficial even to a single client that uses it. Furthermore, with wider
adoption, Peek-n-Sneak allows the set of participating clients in a
cell to coordinate their communications, implicitly and in a fully
distributed manner, with no support from the network operator. By
avoiding “stepping on each other’s toes”, each client is able to enjoy
higher throughput, and complete its communication and go back to
the idle state more quickly. In a sense, the coordination enabled by
Peek-n-Sneak is akin to (though not the same as) that enabled by
the widely-used carrier sense multiple access (CSMA) protocol in
wireless LANs.

Our experimental evaluation of Peek-n-Sneak spans three net-
work operators in two countries and includes both 3G and LTE
networks. We find that a single stationary client employing Peek-n-
Sneak for background downloads can save 20-60% of total energy
consumed by a client that does not employ Peek-n-Sneak. The ben-
efits grows as more clients adopt Peek-n-Sneak until the cell load is
saturated. Further, we show that a mobile client employing Peek-
n-Sneak can save on average up to 40% of total energy compared
to not using Peek-n-Sneak. Finally, we show that a wider adoption
of Peek-n-Sneak would also benefit foreground communication, by
helping streamline and thereby reducing contention due to back-
ground communication.

2. CELLULAR LOAD DYNAMICS
We have performed extensive measurements spanning a period

of four months, downloading 100+ GB of data over 100+ hours to
characterize the dynamics of cellular load and its impact on mobile
device energy consumption. We used TCP for all our experiments
since operators have been known to treat UDP traffic differently

(e.g., subject them to throttling, etc.). Our experiments were con-
ducted on the following operator networks and locations:

• Airtel: 3G and LTE in Bangalore, India

• AT&T: LTE in Seattle, US

• BSNL: 3G in Bangalore, India

Since we do not have the ground truth on the cellular load, i.e.,
the total volume of data traffic due to the active users in the cell, we
perform active throughput measurements to sense load. A higher
throughput for our active download implies a lower cellular load
due to other users, and vice versa. We postulate that any through-
put variation is largely due to contention in the wireless channel,
and not in the wired part of the operator network. In Section 3, we
present evidence to corroborate this presumption. Note that in all
cases, throughput was measured by downloading from a server lo-
cated in the same geographic region as the cellular client, to avoid
wide-area network bottlenecks.

To get a more detailed look at the dynamics of cellular load,
we present the throughput measurements from a long, continuous
TCP download of 1 GB on AT&T’s LTE network in Seattle dur-
ing peak hour (Figure 1a) and lean hour (Figure 1b), and 500 MB
on BSNL’s 3G network in Bangalore during peak hour (Figure 1c).
The throughput samples were computed over 1-second intervals.
The peak hour downloads were performed during a busy hour (mid-
day) in downtown locations, when the cell can be expected to have
many other active users. The figures show that throughput fluctu-
ates considerably, with several periods of low throughput but also
sustained periods (tens of seconds) of good throughput, despite
it being a busy period. This suggests that there is considerable
scope for benefiting from optimal scheduling over relatively short
timescales.

To analyze these results further, in Figure 2a, we show the au-
tocorrelation of the throughput values for lags ranging from 0 to
50 seconds. The figure shows that, although the autocorrelation
drops rapidly with increasing lag (which points to the fluctuating
nature of cellular load and hence throughput), there is a modest
degree of correlation over short time scales; for example, the au-
tocorrelation exceeds 0.5 for about the first 10 seconds. This sug-
gests that, even during peak hours, if we are somehow able to iden-
tify a good throughput period, then the chances are that we will
continue to enjoy good throughput for next several seconds, en-
abling high-throughput and hence energy-efficient transfer of a few
megabytes of data (e.g., a throughput of 1.5 Mbps over 10 seconds
would amount to almost 2 MB of data).

Can signal quality serve as a predictor of good throughput peri-
ods? Figure 2b answers this question in the negative, showing that
there is minimal correlation between link quality and throughput in
a busy cell. This finding highlights the importance of devising a
way to sense cellular load, so that there is hope of predicting good
throughput periods.

Finally, assuming we are able to accurately predict throughput,
with low overhead, and thereby schedule background communica-
tion optimally, how much of battery energy savings can we expect?
To answer this question, we compare the naive approach of down-
loading immediately, with an oracular approach of picking the op-
timal starting time for the download assuming perfect knowledge
of future throughput. We used a workload comprising one 5MB
download performed by a stationary device every 15 minutes. We
treated 15 minutes as the “deadline” for completion of the down-
load, thus giving the oracle some room to play with scheduling.
Given the modest size of the individual downloads (5 MB), we as-
sume that once the download starts, it runs to completion; this helps
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(a) Throughput on AT&T LTE
network during peak hour
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(b) Throughput on AT&T LTE
network during lean hour
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(c) Throughput on BSNL 3G
network during peak hour

Figure 1: TCP download throughput over cellular networks
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(a) Autocorrelation of throughput
on AT&T LTE during peak hour
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(c) Energy savings for an oracular ap-
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Figure 2: Analysis of cellular download throughput

avoid the overhead of radio “tails” [14]. Based on the throughput
attained by these 5 MB downloads, we estimate the corresponding
energy cost for the whole device (not just the radio).

Figure 2c shows the average energy savings of the oracular scheme
relative to the naive scheme for BSNL’s 3G network during peak
hour in a busy downtown location in Bangalore as well as for peak
hour traffic using AT&T’s LTE network in Seattle. In both cases,
we see significant energy savings of 37-47%.

The above findings clearly indicate that an effective throughput
prediction scheme can be very beneficial. Note, however, that such
a predictor is not sufficient, since multiple clients with background
workloads could use the same predictor and start their downloads
at the same time, to everyone’s detriment. So, in our work, we
develop low-overhead techniques for both cellular throughput pre-
diction (LoadSense) and distributed coordination (Peek-n-Sneak).

3. LOADSENSE: SENSING CELLULAR
LOAD

We now consider the problem of sensing cellular load in a way
that imposes a low energy overhead on the mobile device and works
without assistance from the network. The energy overhead require-
ment rules out performing active network measurements or even
transitioning the radio to the high-power, active state. The lack
of network assistance reflects the reality of cellular networks being
closed, operator-controlled entities. Furthermore, unlike in the case
of wireless LANs, the cellular interface on mobile devices does not
support carrier sensing. Even snooping on background data traffic
is not possible, as cellular modems do not decode data destined for
other clients.

We look at how we can achieve carrier sensing like functionality
for cellular interfaces, despite the challenges listed above. The ba-
sic intuition of our approach is that, as the number of active clients

in a cell increases, the volume of downlink transmissions from the
base station would likely also increase. As a result, the raw power
in the downlink channel is likely to increase. This phenomenon
would occur in both WCDMA (3G) and LTE networks, and points
to how a client could sense the cellular load.

One issue is that we need to know the base power level, before
we can determine whether there is an increase in power level due
to load. To obtain the base power level, we can leverage pilot sig-
nals that are transmitted in cellular networks. Each cell tower pe-
riodically broadcasts pilot signals, to enable clients to detect the
presence of the tower. Clients use pilot information for a number
of purposes, such as cell reselection, handoff decisions, and syn-
chronization. For instance, cell reselection is a procedure whereby
clients can passively evaluate which tower to connect to in case
there is a data transmission in the near future. This procedure is
performed continuously, even when the radio is in the low-power,
idle state.

The pilot power is a measure of how good the link is (i.e., the link
quality) between the base station and the device. The link quality,
as indicated by the pilot power, is an indicator of the download
data rate that can be expected, in absence of background traffic.
The closer the client is to the cell tower, the higher the pilot power
it sees and the higher the modulation rate that can be used. On the
other hand, the farther the device is from the tower, the lower the
pilot power it measures and the lower the usable modulation rate.

However, the pilot power can sometimes give a conservative es-
timate of the achievable data rate, since it ignores transmit power
control that is typically employed by cell towers while transmit-
ting to individual clients. Depending on the power budget available
at the base station, different amounts of power can be allocated
for transmissions to different clients. If there are few other active
clients in a cell, the base station can devote more of its power bud-
get to serving a particular client. Thus, sometimes even when a
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Figure 3: Throughput vs Number of Background downloaders (3G)

client is far away from the base station, it might still enjoy a high
data rate if there are not many other active clients in the cell.

In addition to measuring the pilot power, mobile devices, in both
WCDMA (3G) and LTE networks, measure the total, or raw, power
in the channel. The raw power comprises the accumulation of the
pilot power and the power due to data transmissions to other clients.
The ratio of the pilot power to the raw (total) power in the channel
turns out to be a a good indicator of cellular load. Thus, we define:
PowerRatio = PilotPower

TotalRawPower
In WCDMA (3G), the particular parameters that correspond to

the pilot power and the power ratio are Received Signal Code Power
(RSCP) and Received Energy per chip and Interference level (ECIO),
respectively. In LTE, these are called Reference Signal Received
Power (RSRP) and Reference Signal Received Quality (RSRQ),
respectively. These parameters are typically exposed by most cel-
lular devices through applications such as field test [2] [1]. We used
a specific tool from Qualcomm, called QXDM, to obtain these pa-
rameters from a Windows Phone device. We can obtain around 3
samples a second from the cellular modem for each of these param-
eters.

When there are no transmissions, the power ratio is very close to
0 dB, since the raw power in the channel is equal to the pilot power
observed, assuming that ambient noise is negligible.

With increased transmissions, the power ratio value drops, as
the raw power in the channel is more than just that of the pilots
in the carrier. There are couple of contributors to the increased
raw power: (a) increased transmissions in the same cell, and (b)
interference from neighboring cells, typically at locations near the
cell edge. In either case, the expected throughput for the client de-
vice goes down. When there is a large number of active clients in
the same cell, the proportional scheduler allocates fewer resource
blocks to the individual clients due to increased contention, result-
ing in lower throughput per client. With increased interference
from neighboring cells, the modulation rates have to be lowered to
ensure successful communication, and thus the achievable bitrate
for the client drops.

To validate point (a) above, we performed the following con-
trolled experiment, which was done at a late night hour, to make it
likely that the cell was unloaded. We had a test client measure the
ECIO on a WCDMA channel for 20 seconds and then perform a 20-
second download to measure throughput. Alongside this, we had
0 to 3 background clients, under our control and in the same cell,
perform continuous downloads. Figure 3 shows that the throughput
seen by the test client falls from 3 Mbps to under 1 Mbps, as the
number of background downloads grows from 0 to 3. Correspond-
ingly, the ECIO seen by the test client also drops (Figure 4) as the
background load increases.
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Figure 4: ECIO vs Number of Background downloaders (3G)

This controlled experiment shows that ECIO (or the power ra-
tio, in general) is indicative of the load in the cell and hence the
throughput that can be expected. However, both the link quality (as
indicated by the pilot power) and the cellular load plus interference
(as indicated by the power ratio) have an impact on the achievable
data rate and hence the throughput for clients, as we discuss next.

To understand the relationship between the pilot power, power
ratio, and observed throughput, we performed a large number of
experiments, wherein we measured the RSCP and ECIO values on
a 3G network while the device was in a disconnected state, and then
initiated a data transfer immediately thereafter to measure through-
put.

Figure 5 shows a 3D plot of throughput achieved at different
locations and at different times of the day, corresponding to a range
of measured values of RSCP and ECIO. We find that there is a
wide range of throughput for each RSCP level, which indicates that
congestion due to cellular load is a significant factor that impacts
throughput.

For the purposes of throughput prediction, we confine ourselves
to predicting one of two throughput classes — High or Low —
where the threshold of 1.5 Mbps is used to separate the classes in
3G networks (7 Mbps in LTE networks). Figure 6 shows the RSCP
and ECIO values for data points corresponding to the High and
Low classes. It is clear that whenever RSCP is very low (<-90dBm)
and/or ECIO is very low (<-10dB), we can predict with high accu-
racy (90+%) that a low throughput is to be expected. Similarly,
when RSCP is very high and ECIO is low, we can predict with
(90+%) accuracy that throughput is going to be high. However,
we find that there is a significant intermediate region where the
throughput could be high or low.

We observe similar behavior for LTE devices. Figure 7 show
data points for the high and low throughput classes, and the corre-
sponding pilot power (RSRP) and power ratio (RSRQ) values. The
patterns are similar to those in 3G, with there again being an in-
termediate region where it is difficult to predict the high and low
throughput classes.

It turns out that the power ratio (ECIO in WCDMA) exhibits
high variation over time. The reason is the bursty nature of data
traffic. At one instant, when lots of transmissions are occurring,
ECIO would be low, and in the next instant, if there is a relative
lull in transmissions, ECIO would go up again. Figure 8 shows a
time series plot of ECIO measured at one client, where we had a
separate client initiating short bursts of data transfer periodically,
so create background traffic. We notice that ECIO variations are
high whenever there is data transfer activity in the background.

This experiment clearly highlights the fact that there are tempo-
ral signatures in the ECIO (and also RSCP) parameters that could
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Figure 6: 3G Pilot Power vs Power Ratio for two throughput classes

be used to predict the throughput class better. To this end, we
trained an empirical, Support Vector Machine (SVM) based clas-
sifier that is able to predict the occurrence of high or low through-
put values, using the RSCP and ECIO measurements made by the
client while it is idle, immediately preceding the download. We
used the default Radial Basis Function (RBF) kernel for SVM. We
trained using various features that capture temporal variations in
ECIO and RSCP to determine which set of features enables the
best prediction.

For evaluation, we tested each candidate empirical model with
a dataset comprising equal numbers of high and low throughput
observations, to avoid any bias. Accuracy for High (Low) period
is computed as the fraction of actual High (Low) observations that
we correctly predict as High (Low). Figure 9 shows the overall de-
tection accuracy, and the accuracy for the individual classes, when
various features are used as ingredients in the empirical model. By
including as features the standard deviation, min, and max values
of RSCP and ECIO over a short period (typically 3 seconds, al-
though in Section 6 we evaluate other window sizes), the predic-
tion accuracy is around 85% for predicting whether we will see
good throughput. In other words, when we predict good through-
put, we are right 85% of the time. However, we achieve a lower
accuracy of 68% when predicting low throughput; in other words,
when we predict low throughput, we in fact see high throughput
32% of the time. The reason for the lower accuracy is that our
predictor is conservative, tuned to reduce misprediction of the high
throughput class. This is important, since mispredictions of high
throughput can cause the radio to be woken up and data transfer
performed at an inappropriate time, leading to low throughput and
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classes (many High points overlap with Low points)

-18

-15

-12

-9

-6

-3

0

0 50 100 150 200 250 300 350 400 450 500 550

EC
IO

 (
d

B
)

Time 

Figure 8: Temporal variation in ECIO with background traffic

wasted energy. On the other hand, mispredicting an actual high
throughput period as low only leads to missed opportunities for
downloading and hence increased delay, which is often less critical
for background communication.

The predictions of high and low throughput based on the empir-
ical model discussed above is what we term as LoadSense. We use
LoadSense to make predictions of throughput class, and thereby in-
fer the load conditions in a cell at runtime. Low throughput implies
that the network is congested (Busy) and high throughput implies
lightly loaded cell (Idle).

4. PEEK-N-SNEAK DESIGN
In this section, we describe the Peek-n-Sneak protocol that en-

ables a large number of mobile devices that are connected to the
same cell tower to coordinate their data transfers, without using
any explicit message exchange.

Lack of support or visibility from the operator is a key challenge.
One workaround might be to coordinate data transfers across dif-
ferent nodes using a central “controller” in the cloud. However,
there are significant energy costs of doing so. Devices would need
to continuously inform the controller of the current load conditions
in their respective cells as well as keep the controller updated with
their background transfer needs and deadlines. This will incur sig-
nificant energy consumption on the client device for every such
update, since the radio has to transition to high power active state
(CELL_DCH state) before the device can communicate, even with
the controller. Also, there would be a significant radio-tail energy
cost, before the radio transitions back to the idle state.
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Instead, the Peek-n-Sneak protocol operates by implicit distributed
coordination among the clients attached to a cell, thereby avoiding
the energy costs of a centralized solution. The Peek-n-Sneak pro-
tocol operation is illustrated through an example in Figure 10. At
a high level, the design is similar to the CSMA protocol used in
WiFi. However, Peek-n-Sneak operates at much coarser timescales
compared to packet-level coordination used in WiFi. For example,
slot duration for sensing the channel using LoadSense is 3 seconds
in Peek-n-Sneak compared to 9 µseconds used in WiFi. The sec-
ond difference is that clients with user initiated foreground com-
munication access the channel immediately and do not follow the
Peek-n-Sneak protocol.

Whenever there is some data to be downloaded from the Internet
but the download can be delayed (e.g., background updates to so-
cial networking applications), the request is sent to the background
transfer service running locally on the mobile device. The client
then performs LoadSense to determine whether the channel is idle
or busy. When the channel is sensed as idle, the client starts a ran-
dom backoff timer. Whenever a client is counting down idle slots,
if the channel becomes busy due to either foreground communica-
tion or due to some other background client winning the random
backoff contention, the counter is frozen as in WiFi. Finally, to en-
sure fairness and avoid starvation of other clients, after acquiring
the channel for background transmission, each client voluntarily
stops its transfer after it has transferred a maximum transfer unit
(MTU) worth of data.

Collisions: Unlike WiFi, where only one client transmits at a
time in a cell, cellular networks allows multiple clients to com-
municate simultaneously. For example, in LTE, time-frequency
resource blocks are allocated to clients. When there are no other
clients in the network, all resources can be allocated to one user.
This is a case where link quality is what determines achievable
throughput. However, with an increasing number of clients, the
scheduler multiplexes available resources among the active clients.

When two or more clients start downloading at the same time, each
may experience a lower throughput than what it would have got if it
were the only client operating in the cell. Thus, “collision” in Peek-
n-Sneak merely implies sharing of the channel that results in lower
throughput, rather than the total loss of throughput as is typical in
WiFi collisions.

However, we still would like to avoid the lower throughput due
to sharing. So, during download, Peek-n-Sneak at a client contin-
ues to monitor the throughput that the client receives. If the client
detects that its throughput is lower than predicted (say, because of
another client initiating a foreground transfer or collisions among
background clients), it has the option to suspend its background
transfer. Before doing so, the client estimates the energy consump-
tion for the ongoing data transfer, if the download were continued
to completion at the current throughput, and compares it with the
energy cost of suspending the transfer (thereby incurring the radio-
tail energy cost) and resuming it at a later point in time when the
expected throughput is higher. If the energy savings is higher than
a certain threshold for the suspend-and-resume option, the client
pauses the download and goes back into sensing mode to determine
when it should resume.

Finally, Peek-n-Sneak not only coordinates background clients,
it also ensures that background traffic does not overlap with fore-
ground traffic. Thus, foreground communication also enjoys better
performance since they have to contend with fewer clients for re-
sources. One exception to this conservative policy is that when
there is already a background transfer that is active at the point
when one or more foreground clients start downloading, the back-
ground transfer continues unless it experiences a significant drop in
throughput because of (significant) contention with the foreground
communication.

5. IMPLEMENTATION DETAILS
We describe two engineering challenges we faced while imple-

menting our system. First, from an energy efficiency viewpoint,
LoadSense should ideally be implemented inside the cellular mo-
dem as it would avoid the energy cost of waking up the CPU pe-
riodically to poll the radio for obtaining channel measurements.
The cellular modem can perform an asynchronous callback to the
CPU whenever the channel is idle. However, since current cellular
modems do not support such a callback feature, our implementa-
tion uses CPU-based polling to query the modem. Second, the fre-
quency of polling the channel parameters impacts how quickly and
accurately LoadSense can estimate channel load. We explored two
ways to poll the modem, each of which entails a different polling
frequency.

Our first version of the system was completely built on the mo-
bile client. We used the Radio Interface Layer (RIL) API calls
to query the modem to obtain pilot power and power ratio values.
However, the current RIL API does not provide fine-grained sam-
ples, and we observed that, irrespective of how frequently we in-
voke the API, the values only changed every two to three seconds.
We evaluated LoadSense using this setup (see section 6), and ob-
served that the accuracy is quite low (<70%). To address this issue
we employed a different setup to measure pilot power and power
ratio using a desktop tool provided by the modem vendor. For both
3G and LTE equipped client devices, we used a Windows Desktop
tool called QXDM from Qualcomm. Our 3G experiment setup con-
sisted of multiple phones running the Windows Phone 7.5 OS, each
tethered to a separate Windows laptop running the QXDM tool. For
LTE, since there are no LTE capable phones currently supported in
the LTE network in India because of a mismatch in spectrum band,
we used multiple LTE USB dongles for the experiments. We can



read the power ratio and pilot power values for both 3G and LTE
interfaces in realtime at a high frequency ( 5 per second in the radio
idle state).

We also implemented a background transfer service (BTS) app
that takes requests for downloading data with an optional deadline
parameter. When a new background request is in the queue, the
BTS app employs the Peek-n-Sneak protocol to determine when
to initiate the data transfer. To perform LoadSense, the BTS app
requests the desktop application for pilot power and power ratio
values for a certain period of time and then predicts whether the
channel is busy or idle based on the expected throughput class.

6. EVALUATION
In this section, we evaluate the LoadSense primitive and the

Peek-n-Sneak coordination protocol. All experiments are conducted
over commercial cellular networks in Bangalore (BSNL 3G Net-
work and Airtel LTE network). We use the HTC Maaza phone
running the Windows Phone 7.5 OS for the 3G experiments and
the Huawei E392 USB dongle for the LTE experiments.

We first start with micro-benchmarks to evaluate the accuracy
of our LoadSense technique. We then demonstrate the effective-
ness of Peek-n-Sneak through several experiments in both static
and mobile settings, over both 3G and LTE networks.

6.1 Micro-benchmark
In order to evaluate the accuracy of LoadSense, we need to com-

pare the LoadSense prediction (high/low) with the observed cellu-
lar throughput at a given mobile. However, since LoadSense works
when the radio is in RRC disconnected state, we don’t know the
exact cellular throughput available when the radio is passively esti-
mating load. Therefore, as soon as the LoadSense technique comes
up with a prediction, we perform an active TCP download (for 20
seconds) immediately after the prediction and measure the actual
throughput achieved and use this as our ground truth. While the
ground truth could change between the prediction and measure-
ment intervals, this is mitigated in our experiments since 1) as we
discuss below, our prediction interval is fairly short (3 seconds) and
2) the autocorrelation findings in Section 2 indicate that the avail-
able throughput typically remain stable over ten seconds or more.

We classify measured cellular throughput below a certain thresh-
old (unless specified otherwise, we used throughput of 1.5 Mbps in
our 3G experiments and 7 Mbps in our LTE experiments) as low,
and as high otherwise. Similarly, LoadSense also makes a low or
high prediction based on its observations. As mentioned earlier,
the detection accuracy of LoadSense is computed as the fraction of
measured throughput values classified as High (Low) that are pre-
dicted accurately by LoadSense as being High (Low) and use this
as our metric for evaluating the effectiveness of LoadSense.

Finally, note that signal quality (pilot power) is also automati-
cally taken into account in our load estimation. LoadSense predicts
the throughput available as being low when the pilot power at the
mobile radio is poor and/or when there is high amount of conges-
tion due to competing mobile traffic.

6.1.1 Detection time
We first evaluate how long a client needs to observe the channel

before being able to make an accurate prediction. The observation
window plays a role in how quickly we can predict load changes.
Moreover, detection time also determines the length of the slot used
in Peek-n-Sneak protocol.

Figure 11 shows overall accuracy of predictions for both high
and low throughput classes for different observation windows. When
the observation window is less than 3 seconds the number of sam-
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Figure 11: Detection time vs Accuracy for 3G
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Figure 12: Detection time vs Accuracy for 3G using RIL APIs

ples available for power ratio parameter and pilot power are few,
leading to low accuracy (65%). The accuracy steadily improves
to 75% with an increase in the size of the observation window
mainly owing to increased number of observations available for
LoadSense. However, accuracy does not improve significantly be-
yond 3 seconds, which suggests that a 3-second observation of
channel condition is sufficient to capture most of the load char-
acteristics in a cell and predict the throughput class for the next few
seconds effectively. Also, it is preferable to have a short detection
time in order to keep the random backoff overhead of Peek-n-Sneak
low. We observed similar behavior on LTE networks. For the rest
of our experiments we choose a detection time of 3 seconds for
both 3G and LTE.

We also evaluated the detection time needed when using the RIL
APIs to poll the modem directly from the phone. Figure 12 shows
the prediction accuracy for different observation windows. The
main issue with the current implementation of RIL is that it pro-
vides very coarse grained samples. We find that even at 10 second
interval, the accuracy achieved is still below 70% due to very few
samples of channel measurements. In addition, a large detection
time elongates the slots used in the Peek-n-Sneak protocol and re-
duces efficiency. Thus, we employ the desktop-assisted setup to
obtain fine-grained channel measurements for the rest of the exper-
iments. Note that this issue is not an inherent bottleneck since the
modem is able to provide fine-grained measurements through the
tool. This just shows that the current set of RIL APIs is not well
suited for our needs.

6.1.2 Throughput Threshold
Next, we evaluate the sensitivity of detection accuracy with re-

spect to the throughput threshold parameter that is chosen for clas-
sifying the low and high throughput classes. Figure 13 shows the
accuracy for different threshold values. For 3G networks, we ob-
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Figure 13: Throughput threshold vs Accuracy for 3G

served that accuracy peaks at around 1.5 Mbps throughput. For val-
ues both above and below this threshold the accuracy is lower. A
deeper look at the dataset revealed that 1.5 Mbps is close to the me-
dian value for the throughputs we observed in the 3G network. The
SVM based technique in LoadSense is able to learn a good clas-
sifier when the threshold value splits the dataset into equal sized
classes. In LTE experiments we observed the throughput thresh-
old value which achieves best accuracy is 7 Mbps. While we can
improve the accuracy for different throughput thresholds by tun-
ing the classifier or using a different classifier, we believe using the
median throughput to separate the high/low classes is a reasonable
operating point for a primitive such as LoadSense.

For the rest of the experiments, we choose 1.5 Mbps for 3G and
7 Mbps for LTE as the thresholds respectively for classifying busy
and idle periods. We consider the channel to be Busy (Idle) when
predicted throughput is Low (High).

6.1.3 Energy Consumption
Energy consumption has two components – (1) Sensing energy

spent running LoadSense continuously in the background and (2)
Transfer energy spent for the actual data transfer as well as over-
heads (wakeup and tail). Due to the engineering constraints of our
system implementation, we used a combination of two setups to
estimate total energy. To compute sensing energy, we used the
mobile only implementation of our system which invokes RIL call
periodically (once per second) to capture the computational over-
head. Since the desktop assisted implementation achieves the best
accuracy, we use this to monitor the radio on time and RRC state
changes and use these values to estimate the transfer energy spent
(including the CPU energy of the background transfer with the dis-
play switched off) during the course of an experiment. We then
compute the sum of these two components to estimate the total en-
ergy spent. Note that, if the cellular modem implemented the Load-
Sense primitive, the cost of the first component can be eliminated.

Figures 14 shows a snapshot of power drawn by the device over
time without LoadSense and with LoadSense, respectively. The av-
erage power draw increases only by 12mW from 10mW to 22mW
corresponding to sensing overhead of running LoadSense contin-
uously. In the experiments to follow, for computing total energy
cost of Peek-n-Sneak we add both the transfer energy as well as the
above sensing energy cost (12mJ).

6.1.4 Location Sensitivity
In addition to just measuring load in a cell with background traf-

fic that already exists, we also looked at settings when we used our
own clients to generate traffic in a controlled setting. The objec-
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Figure 14: Power draw with and without LoadSense

tive is to determine how well LoadSense can be used to detect the
presence or absence of synthetic background traffic at different lo-
cations inside a cell. In addition, this analysis forms the basis for
the Peek-n-Sneak protocol which uses LoadSense to implicitly in-
form the outcome of a contention round to other clients running
LoadSense. We used one mobile client referred to as interferer to
periodically download data for 60 sec and remain idle for 60 sec.
Another mobile client referred to as observer runs LoadSense con-
tinuously to detect whether the channel is busy or idle. Note that in
this experiment, we know for sure that the channel is loaded when
interferer is active. However, since we do not have control over
other users in a cell, there can be times when interferer is idle, but
the channel could still be busy.

We vary the locations of the observer while keeping the interferer
in one location inside an office building. The distance between the
clients are as far apart as 800 meters at some locations, where the
observer is outdoors. During each experiment we ensured that both
clients were attached to the same cell tower. At each location we
run LoadSense every 3 seconds for a duration of 10 mins, which ac-
counts for a total of 200 predictions per location. Figure 15 and 16
depict the accuracy of predictions using LoadSense at four differ-
ent locations using 3G and LTE, respectively. At each location,
accuracy is shown for two periods – times when the interferer is
on and times when the interferer is off. Overall, LoadSense detects
presence of background interferer accurately more than 80% of the
time irrespective of the location of the observer in both 3G and LTE
networks. The accuracy drops by 10-20% in the case of idle period
prediction but this could be due to lack of accurate ground truth
information for classifying idle periods (there could be other active
users attached to the cell that we are unaware of). This experiment
shows that the detection accuracy of LoadSense is high enough to
be useful for coordinating background data transfers. Each client
running Peek-n-Sneak can use LoadSense to coordinate their con-
tention, since they can effectively detect each others downloads.

6.2 Macro-benchmarks
We evaluate Peek-n-Sneak using multiple phones using a variety

of synthetic and real workloads.
To evaluate Peek-n-Sneak in a typical multi-phone setting, we

setup 6 stationary phones connected to the same cell and performed
a combination of experiments with foreground and background traf-
fic. The objectives of the experiment are twofold – (1) to evaluate
the impact of the Peek-n-Sneak protocol on energy consumption
and latency, and (2) to see how well Peek-n-Sneak performs in a
network where other clients do not employ Peek-n-Sneak. A client
may not employ Peek-n-Sneak if it is either performing foreground
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Figure 16: Detecting synthetic background traffic from different
locations in a LTE cell

transfers which cannot be time-shifted or if it does not implement
Peek-n-Sneak. The latter setting captures the benefits of Peek-n-
Sneak during an incremental deployment of the protocol.

6.2.1 Multiple Phone Experiments
For these experiments, we emulate a periodic syncing background

workload where each phone downloads 5 MB of data from an In-
ternet server every 15 mins. We ensure that downloads across the
clients are not synchronized since in realistic settings the syncing
schedules of individual phones are independent of each other. In
the beginning of the experiment, every client sleeps for a random
duration of time (up to 4 mins), before initiating a sync request for
download. In the first set of experiments we look at a homogeneous
setup where all clients are using Naive or all are using the Peek-n-
Sneak protocol. Naive clients basically download data as soon as
the request is generated (as is the common practice today), while
in Peek-n-Sneak, the clients download data according to the proto-
col with a deadline set to 15 mins (if a low load opportunity does
not arise, the download is triggered anyway to ensure completion
within 15 mins). The numbers in the plots are an average of 5 runs.
Due to complexity of settings up multiple clients, experiments were
conducted over several days at different times of the day.

We vary the number of active clients in each experiment from
1 to 6 and run either Naive or Peek-n-Sneak on each client. In
each configuration, we performed 5 runs and computed the average
metrics over these runs. Figure 17 shows the average total energy
in Joules consumed by Naive and Peek-n-Sneak for different num-
ber of active clients. As mentioned earlier, we include the com-
pute overhead of running LoadSense while the client is waiting for
the right opportunity to download. First, we see that as the num-
ber of active clients increase, energy consumption for each client
increases significantly for the Naive approach. This is due to in-
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Figure 17: Average total energy consumption for Naive and Peek-
n-Sneak with increasing load
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Figure 18: % savings for Peek-n-Sneak with increasing load con-
sisting of only background downloads

creased contention between different downloading clients. Peek-n-
Sneak implicitly serializes downloads and each client gets to access
the channel without contention from other active clients. Thus, en-
ergy consumption only increases by 23% when going from 1 to 6
active clients using Peek-n-Sneak, while with the Naive approach,
the corresponding energy increase is as high as 340%. Energy sav-
ings come at the cost of increased latency. The average latency
(Figure 19) to download is higher with Peek-n-Sneak, but remains
within 3 mins of when the sync request is generated. Moreover, for
background workloads, which are not initiated by the user, a small
increase in latency may not impact user experience.

Figure 18 shows the percentage savings for Peek-n-Sneak over
Naive for radio energy and total energy. The compute overhead of
running LoadSense and Peek-n-Sneak is very low and does not im-
pact total energy savings. Average energy savings go up to 62% in
the 6 client experiment, mainly owing to reduced contention and
also since LoadSense ensures that the expected throughput is high,
before initiating a download, thereby resulting in shorter down-
load time. In the experiments, we find that download throughput
in Peek-n-Sneak is 150% higher compared to Naive with 6 clients.
However, the improved throughput gains do not translate to equiva-
lent energy savings mainly due to the cost of aborted transfers (and
the associated overheads such as radio tails). Since there can be
background data transfers that are not under our control, Peek-n-
Sneak clients stop the data transfer as soon as the throughput drops
below the low threshold and then again looks for periods when it
can download. Every interruption causes additional energy due to
radio wakeup and tail overheads.

Next, we perform experiments with a combination of Naive and
Peek-n-Sneak clients. The Naive clients can be seen either as fore-
ground clients that want the data downloaded right away or as back-
ground clients that do not implement Peek-n-Sneak (corresponding
to an incremental deployment scenario).
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Figure 19: Average download latency for Naive and Peek-n-Sneak
with increasing load consisting of only background downloads
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Figure 20: % savings for Foreground and Peek-n-Sneak clients for
different Foreground-Background client combinations

Similar to the previous setup we have 6 clients, and we choose
different combinations of clients doing foreground traffic (Naive)
and clients doing background traffic (Peek-n-Sneak). Figure 20
shows energy savings for foreground clients and background clients
separately compared to the case where all 6 clients follow Naive
irrespective of whether they are doing foreground or background
traffic. The first thing to note here is that even in a scenario where
there is only 1 client following Peek-n-Sneak and 5 naive clients
performing foreground traffic, we achieve savings as high as 68%
for the Peek-n-Sneak background client. The energy savings re-
main stable above 65% even as the number of background clients
increase. This is due to implicit coordination achieved by Peek-n-
Sneak which serializes the data transfers. A beneficial side-effect
of Peek-n-Sneak is that even clients with foreground traffic achieve
energy savings as a result of reduced contention from the Peek-
n-Sneak clients. As the proportion of background clients running
Peek-n-Sneak increases, energy savings for foreground clients steadily
improves, reaching as high as 60%. This experiment shows that
Peek-n-Sneak clients can coexist and achieve savings even in net-
works where other clients may not be following the protocol, as
is typically the case during incremental deployment of new proto-
cols.

6.2.2 Workload Size
So far we only looked at fixed size background workloads. We

now evaluate the impact of varying background workload size on
the savings achieved by Peek-n-Sneak. In this scenario, we had
1 phone downloading the specified workload using Peek-n-Sneak
while we had 5 other phones performing foreground traffic in the
same cell (similar to the heterogeneous setup in the previous exper-
iment with 6 clients).
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Figure 21: % savings for Peek-n-Sneak for different download
sizes
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Figure 22: Average download size in MB per 15 min sync interval
during work hours for Email and RSS feed reader applications

In this experiment, we vary the download size over a wide range
of values that correspond to different real-world background work-
loads (email sync, app updates and music downloads). We repeat
each experiment 10 times using both Naive and Peek-n-Sneak ap-
proaches to perform the download using the 3G network and mea-
sure the average savings of Peak-n-Sneak over Naive. Figure 21
shows download size varying from 100 KB to 20 MB and the corre-
sponding average total energy savings achieved by Peek-n-Sneak.
For small download sizes (<1 MB) we find that radio overheads
(wakeup and tail) dominate the energy cost of the actual data trans-
fers, resulting in negligible energy savings. We find that savings
steadily increase with download sizes up to a certain point (5 MB)
and then saturates (46%). The reason for the saturation is that large
background downloads are often interrupted by presence of fore-
ground traffic. While the Peek-n-Sneak protocol avoids download-
ing during these periods, it still ends up paying the cost of putting
the radio to sleep (tail overhead) and waking it up, thereby limiting
the energy savings.

6.2.3 Real Workloads
In this experiment, we collected real world traces for two back-

ground applications – email and RSS feed reader – that are config-
ured to sync every 15 mins. The RSS reader is setup to download
feeds from popular news sites and blogs. Figure 22 shows the aver-
age download sizes during each 15 min interval averaged over two
separate days from 9am to 6pm. We replayed the traces with Peek-
n-Sneak and computed energy savings. Again, as before, we had
five other phones generating foreground traffic.

Figure 23 shows the savings achieved during each sync inter-
val for Peak-n-Sneak as compared to Naive. We find that Peak-
n-Sneak achieves an overall energy savings of 29% for the back-
ground workload averaged over two days.
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Figure 23: % savings for Peek-n-Sneak per sync in 3G

6.2.4 Mobile Experiments
In these experiments, we apply LoadSense in mobile settings as

well where throughput variation is due to a combination of both sig-
nal and load effects. Since the mobile client remains in a cell for a
short period of time and channel conditions differ from cell to cell,
we disabled the random backoff in the Peek-n-Sneak protocol. We
simply employ LoadSense to identify periods when the throughput
is expected to be high to initiate a data transfer. We abort the trans-
fer when throughput falls below the default threshold. We compare
this scheme with the Naive scheme that simply downloads when
the request is generated. In addition, we also compare this with
a scheme that uses only signal to predict high throughput periods.
Prior work [15] has shown that signal correlates well with expected
throughput. We performed 25 mobile experiments while driving
around in different parts of Bangalore at various times of the day
on BSNL 3G network. An experiment consisted of running Naive,
Signal-only and Peek-n-Sneak schemes separately on a particular
route while downloading 10MB of data in 30 mins(two back-to-
back 5 MB sync workloads).

Energy savings for Signal-only scheme and Peek-n-Sneak over
Naive averaged over 25 runs is shown in Figure 24. Peek-n-Sneak
achieves an average total savings of 45% across these runs while
Signal-only achieved 23% savings. Thus, load awareness leads
to a doubling of the energy savings compared to the Signal-only
scheme. This is because often there are times when the signal is
quite good, but the cell is congested. Peek-n-Sneak is able to avoid
downloading data until both load and signal conditions are good,
thereby increasing energy savings.

Figure 25 shows the average time (in seconds) when the down-
load finished for the three schemes. Clearly latency increases for
both schemes compared to Naive as a result of waiting for the right
time to download. Latency for Peek-n-Sneak is the highest (2.3x
of Naive) as it is more conservative in downloading data. However,
in absolute terms, the additional delay is only about a couple of
minutes, which may be acceptable for background data transfers.

7. DISCUSSION
Other applications. Besides optimizing energy for background

applications, LoadSense can be applied in other settings. For ex-
ample, the typical signal bars shown on a phone indicate merely
the signal strength but does not take into account interference or
congestion in the cell; LoadSense can be used to provide an indica-
tion of the expected throughput for a foreground application, which
might be a more meaningful indicator for the user. Also, Load-
Sense can be used to estimate the number of people in a region.
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Figure 24: % energy savings for Peek-n-Sneak and Signal-only in
mobile settings
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Figure 25: Average download latency for Naive, Signal-only and
Peek-n-Sneak

For example, one can estimate road traffic conditions by correlat-
ing it with number of active users in a cell.

Multi-user MIMO. LTE standard allows multi-user MIMO where
multiple antennas at the base-station can transmit different streams
to different clients at the same time. A mobile client may observe
total power in the channel increasing while available throughput
does not decrease until all streams at the base-station is exhausted.
LoadSense for such networks will require dynamic calibration to
learn the relation between interference levels and expected through-
put in such cells. However, in our experiments, we did not observe
such behavior. Perhaps this is because most LTE deployments to-
day use Frequency Division Duplex (FDD) which separates uplink
and downlink transmissions on different frequency bands and im-
plementing MU-MIMO on FDD systems is challenging.

Changing cellular standard to broadcast load information.
Clearly, the base station has the best knowledge of load levels in a
cell and if cellular standards allow the base station to broadcast this
information, LoadSense at the mobile clients would not be neces-
sary (though Peek-n-Sneak would still be necessary for coordina-
tion among different nodes). However, even if the standards sup-
ported such a feature, LoadSense may still be needed as operators
may not be willing to continuously broadcast cell load information
for competitive reasons.

8. RELATED WORK
Cellular measurement studies. Several papers have examined

the performance and other characteristics of cellular networks us-
ing measurements [12, 13, 17]. Study of spatio-temporal charac-
teristics of base station load in [13] show low correlation between
neighboring base stations and significant temporal changes in base



station load. These characteristics corroborate our measurement
study and imply that time- and space-shifting techniques, as em-
ployed in this paper for the static and mobile scenarios, will likely
be effective in “water-filling” unused cellular capacity using back-
ground traffic.

Throughput estimation Throughput estimation is typically per-
formed using active measurements, albeit using as few packets as
possible. For example. for estimating throughput on wired net-
works, there is a long list of research papers and tools available [3,
4, 7, 8, 16]. Other work have extended these techniques and devel-
oped new tools to estimate throughput over 802.11 standard-based
wireless LANs [10, 11].

However, to our knowledge, there does not exist any tool to date
that can accurately estimate throughput in cellular networks. In
fact, authors in [9] show that conventional bandwidth estimation
tools are ineffective in estimating throughput in cellular networks.
Furthermore, in order to save energy, we require passive estimation
of throughput when the cellular radio is in the RRC disconnected
state. Even sending a few packets to estimate cellular load can
result in significant drain in energy, thereby wiping out the gains
of such a load sensing approach. Therefore, instead of estimating
throughput, we use signal and interference power measurements of
the cellular radio to simply determine if the cell is loaded or not.
This is analogous to carrier sensing used in WiFi and exploited by
systems such as Idle Sense [6] to optimize throughput.

Cellular energy optimization Bartendr [15] is a system that
uses predicted mobility and future signal strength values to prefer-
entially schedule communication when the signal strength is high,
thereby reducing energy consumption due to mobile communica-
tion. However, Bartendr does not account for the current load in a
given cell. Therefore, preferentially scheduling communication at
a high signal strength alone may not be enough for reducing energy
consumption if the current cell is highly loaded. In this paper, we
show that incorporating load sensing in mobile settings (which also
encompasses signal-based scheduling since load estimation takes
mobile’s signal strength into account) can result in significant en-
ergy savings. There are also techniques that optimize radio tail
energy [14] by ensuring that transmissions from applications are
coordinated but these energy optimization are complementary and
additive to the energy savings obtained by scheduling transmissions
when the cellular network is lightly loaded.

9. CONCLUSION
Obtaining good throughput is key to reducing the energy con-

sumption of background communication over cellular networks.
We have shown experimentally that throughput depends not only
on the link quality but also on the cellular load. Given this, we have
developed the LoadSense technique, to obtain a measure of cellu-
lar load and predict the expected throughput class, while incurring
little overhead. In turn, LoadSense enables the Peek-n-Sneak pro-
tocol, which allows a set of devices to implicitly coordinate their
(background) communications, with a view to benefitting them all
in terms of higher throughput and lower energy drain.

On a broader note, cellular networks are reputed to be closed,
operator-controlled entities. Even so, our work shows that it is pos-
sible for end devices to glean information indirectly and be smart
about how they communicate, for the benefit of both the devices
and the network. Such a win-win proposition could nudge opera-
tors towards greater openness.
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