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Abstract. Although machine learning models achieve high clas-
sification accuracy against benign examples, they are vulnerable to
adversarial machine learning (AML) attacks which generate adver-
sarial examples by adding well-crafted perturbations to the benign
examples. The perturbations can be increased to enhance the attack
success rate, however, if the perturbations are added without consid-
ering the semantic or perceptual similarity between the benign and
adversarial examples, the attack can be easily perceived/detected. As
such, there exists a trade-off between the attack success rate and the
perceptual similarity. In this paper, we propose a novel Semantic-
Preserving Adversarial Transformation (SPAT) framework which fa-
cilitates an advantageous trade-off between the two metrics. SPAT
modifies the optimisation objective of an AML attack to include the
goal of increasing the attack success rate as well as the goal of main-
taining the perceptual similarity between benign and adversarial ex-
amples. Our experiments on a variety of datasets including CIFAR-
10, GTSRB, and MNIST demonstrate that SPAT-transformed AML
attacks achieve better perceptual similarity while maintaining the at-
tack success rates as the conventional AML attacks.

1 Introduction

In recent years, machine learning (ML) models have surpassed tradi-
tional algorithms and have been successfully used in various applica-
tions such as image classification [11, 47], object detection [5], and
natural language processing [2, 41]. However, despite their remark-
able performance, such ML models are highly vulnerable to small
and imperceptible noise that are called adversarial perturbation. In-
puts generated by these perturbations called adversarial examples,
can significantly degrade the performance of an ML model. As ML
models are used in security-sensitive systems, these adversarial ex-
amples pose a significant security risk and raise concerns about the
integrity of these systems.

An adversary generates these adversarial examples by solving an
optimisation problem to maximise the classifier’s loss while keep-
ing the adversarial perturbation amount minimum. Existing adver-
sarial attack algorithms for classification generally consider simple
Lp threat models. In an adversarial threat model, a predefined set
of perturbations is established to manipulate the input and generate
an adversarial example. Many existing attack and defence strategies
use bounded threat models that restrict the adversarial examples by
L2 or Linf distance [15,27]. Norm-constrained adversarial perturba-
tions in the input space uncovered some intriguing properties of neu-

ral networks and also gave us insights into the generalisation power
of the neural networks.

However, metrics such as the L2 norm distance are insufficient to
evaluate structured data, such as images, as they assume pixel-wise
independence. Moreover, adding adversarial perturbation directly to
the input data sometimes renders the input semantically unaccept-
able. Perturbing a face image could change the structural properties
of the face, which might not look like an actual face. Hence, the
challenge in an adversarial noise-based attack is twofold: determin-
ing how much adversarial perturbation to add and where to add it.

Adding adversarial perturbation in an appropriate place will not
only help preserve the semantics of the input but also remove the
bound on the perturbation amount. For instance, changing the colour
of a person’s hair from black to red will be semantically meaningful,
and the noise amount will be much higher than the Lp bound. Fur-
thermore, the adversary may require larger perturbations to achieve
higher adversarial strength, leading to more noticeable changes in
the original image. This trade-off between adversarial effectiveness
and semantic correctness will always exist if p-norm bounds are ap-
plied. Also, recent work shows that defences trained on Lp bounded
perturbation are not robust against new types of unseen attacks [21].
Therefore, exploring diverse adversarial examples, especially those
with “unrestricted” magnitudes of perturbation, has attracted much
attention in academia and industry [3].

To address this issue, some studies employ threat models which al-
low spatial perturbations [12,44,45] and recolouring [1,25] of an im-
age. Hosseini et al. [18] manipulated the hue and saturation of an im-
age to create adversarial perturbations. Even though they are able to
generate natural-looking adversarial images, changes such as colour,
saturation, and textures are easily perceptible to humans. A success-
ful adversarial attack without constraints should have the ability to
cause significant harm while remaining imperceptible and semanti-
cally correct. However, the task of measuring semantic correctness
remains a difficult challenge, as visual patterns are complex and sub-
jective measures of similarity often rely on human perception.

One way to model semantic correctness is to mathematically
model human perception. An adversarial example is said to be se-
mantically correct if it is perceptually similar to the original input,
typically determined by how less the perceptual is distance between
two inputs. To formalise, we can define true perceptual distance
s∗(x1, x2) between two inputs x1 and x2 to be how humans perceive
two different inputs. For a given threshold, λ∗, if s∗(x1, x2) ≤ λ∗, it
is safe to say that inputs x1 and x2 are similar given that the value of
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λ∗ may vary from domain to domain and input to input. True percep-
tual distance is a mathematical formalisation of human perception.
We assume that, when presented with two images, we implicitly try
to make a judgement by deciding on a threshold. Since it is implicit,
it is not trivial to approximate the true perceptual distance s∗(., .).

However, some works in the literature have tried to approxi-
mate it using the L2 distance and the Peak Signal-to-Noise Ratio
(PSNR) [20]. PSNR is a metric used to quantify the quality of a
reconstructed or compressed image by measuring the ratio of the
maximum possible power of the original signal to the power of the
noise introduced during compression or reconstruction. However,
these measures do not always align with human vision when it comes
to changes in images like blurring and spatial transformations. This
motivated other metrics, such as SSIM [43], GMSD [46], FSIM [48],
and VIF [35] to model it. Recently, it has been established that the
internal activation layers of a convolutional neural network approx-
imate the true perceptual distance, Learned Perceptual Image Patch
Similarity (LPIPS) [49], that closely models human perception.

Hence, the final goal of the adversary is to generate an adversarial
example such that it should (1) evade the classifier, and (2) be per-
ceptually similar to the original input, i.e. LPIPS distance between
the original input and the generated adversarial example should be
minimum. In this work, we address both of the adversary’s goals by
generating adversarial examples that having high attack success rates
along with low LPIPS scores depicting high perceptual similarity and
semantic correctness. To achieve this, we model the data manifold
using autoencoders, and then instead of perturbing the input space
of the data, we add perturbation to the manifold space of the input
data. Since the underlying manifold of a dataset is a set of all the
meaningful data, adding a small perturbation yields a semantically
meaningful adversarial example. Our contributions include:

• We propose a unified algorithmic framework, SPAT, to transform
any conventional AML attack to its semantic-preserving version
while maintaining a comparative attack success rate. SPAT mod-
ifies the objective function of the conventional AML attack to
maintain perceptual similarity between the adversarial and benign
examples. We have published our code for reproducibility and fur-
ther study [38].

• We propose a constrained loss function for autoencoder that uses
class information to learn a latent representation that avoids the
problem of class invariance. While perturbing the latent space of
the autoencoder, data points often leave the corresponding class
manifold to other class manifolds rendering invalid adversarial ex-
amples. The proposed loss function concentrates inputs of a par-
ticular class on a few latent units of the autoencoder. Perturbing
those units helps restrict the adversarial examples to stay in the
same class.

• We test the generated adversarial examples against state-of-the-art
robust models from the existing literature. We found that adversar-
ial examples generated using SPAT method lower the state-of-the-
art robust accuracy of the classifiers making them stealthier than
prior adversarial attacks.

2 Related Work

The study of AML saw mushroom growth after Szegedy et al. [39]
found adversarial examples for image classification models. After
observation of this phenomenon on deep neural networks, an arms
race started between researchers to formulate new ways for crafting
adversarial examples [6, 15, 28, 30]. Most of these attacks have fo-
cused on digital inputs, such as images and text. With the growing

deployment of DNNs in the physical world, some researchers have
also demonstrated the feasibility of adversarial attacks in the physical
world [24].

To make the attack more imperceptible and stealthy, some re-
searchers used elements such as patches [4] and stickers [13]. How-
ever, even though patches and stickers were not a matter of concern
initially, recent studies have motivated researchers to look for spu-
rious patches and stickers in the physical world making them less
effective. Some works also tried to modify the colour and texture of
the input sample to craft adversarial examples [18, 34, 45]. Qiu et
al. [31] tried to leverage attribute-conditioned image editing to craft
indistinguishable adversarial examples. Even though they are able to
generate natural-looking adversarial images, changes such as colour,
saturation, and textures are easily perceptible to humans.

Some studies explored on-manifold adversarial examples for craft-
ing natural-looking adversarial examples. As the real-world data
lie on a near-low dimensional unknown manifold, it was assumed
that adversarial examples usually leave the underlying data mani-
fold [14, 40]. This assumption was broken when Gilmer et al. [14]
found on-manifold adversarial examples on a toy dataset. This was
later validated for real datasets by [3,36,50]. Other works [10,37,50]
used autoencoder-based models to create on-manifold adversarial ex-
amples. The study in [10] used a Stein-variational autoencoder to
learn adversarial examples while the study in [50] used a Generative
Adversarial Network (GAN) to learn the manifold and perturbed the
inputs on the manifold. Recently, the study in [37] used an ensem-
ble of autoencoders to learn the semantic space of the inputs. Like
the above methods, we utilise a vanilla autoencoder to approximate
the underlying data manifold. However, unlike the above works, we
give a generalised algorithmic framework that utilises existing ad-
versarial attack methods to search for adversarial examples in the
approximated manifold.

One of the primary issues in crafting on-manifold adversarial ex-
amples is the problem of class invariance which was not discussed
in [50] and [10]. The authors in [37] acknowledged this problem and
proposed a solution by using different autoencoders to learn differ-
ent class manifolds. This method does not scale well with a higher
number of classes. In contrast, we propose class-constrained autoen-
coders that add an additional penalty to the vanilla-autoencoder loss
function to make the distribution of the data in the latent space far
away from each other. Even though on-manifold adversarial exam-
ples have been found on real-world datasets, the scope and limita-
tions of this method still remain unexplored.

3 Proposed Approach

Notations. Let D = {xi, yi}mi=1 is a set of m samples, where
any x ∈ D is sampled from X ⊂ Rn with its associated label
y ∈ D is sampled from Y and Y is a discrete set of labels of size
k, y ∈ {1, 2, . . . , k}. Let fc(.) be the classifier with parameter θ that
maps fc : X �→ Y . It is safe to assume that the classifier is well-
trained to correctly classify an input sample x as its corresponding
label y with state-of-the-art accuracy. Let fe(.) denote the encoder,
with parameter φ, that maps the input space to the latent space, i.e.
fe : X �→ Z , and for x ∈ X , fe(x) = z where z ∈ Z is of
dimension d and d � N . Further, fd(.) denote the decoder, with
parameter ψ that maps the latent space to the output space by re-
constructing the input, i.e., fd : Z �→ X , and x′ = fd(z), where
x′ is the reconstructed output. The encoder fe(.) and the decoder
fd(.) together constitute the autoencoder fa(.) with parameter ω,
fa(.) = fe(.) � fd(.) and ω = {φ, ψ}. The output from the en-
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coder fe(.) is passed along as an input to the decoder fd(.). For no-
tation simplicity, parameters θ, φ, ψ, ω of the corresponding models
fc, fe, fd and fa will be omitted further in this paper.

3.1 Problem Formulation

The method of generating adversarial examples can be broadly clas-
sified into two major categories: Maximum Allowable Attack and
Minimum Norm Attack. The maximum allowable attack solves an
optimisation problem that aims to maximise the loss of the classifier
against the correct class such that the perturbed input gets misclassi-
fied and the adversarial perturbation lies within an ε bound, i.e.,

argmax
δ

L(fc(x+ δ), y)

s.t. ‖δ‖p ≤ ε.
(1)

The minimum norm attack solves an equivalent optimisation prob-
lem that aims to find the minimum adversarial perturbation that gets
the input misclassified, i.e.,

argmin
δ

‖(x+ δ)− x‖p
s.t. fc(x+ δ) 
= y.

(2)

Unlike Equation (1), Equation (2) seeks to optimise adversarial per-
turbation instead of constraining it to a predefined limit. In this work,
we will transform both formulations to their semantic variant which
will be responsible for generating perceptually similar adversarial
examples.

3.2 SPAT Attack

For a sample x ∈ X with corresponding class label y ∈ Y , the
goal is to craft an adversarial example xadv such that it evades the
classifier fc and it is perceptually similar to x. Hence, the adversary’s
goal here is two-fold; how much adversarial perturbation to add and
where to add it. We propose a unified framework SPAT that modifies
a conventional AML algorithm to craft corresponding perceptually
similar adversarial examples.

As we operate under a white-box setting, the adversary has the
knowledge of training data distribution D. Hence, we train the au-
toencoder fa using the training data. Given the sample x, the trained
autoencoder fa can efficiently reconstruct the input x with minimum
errors. The input x is first passed to the encoder fe to get the latent
code z, z = fe(x). Since the latent layer of an autoencoder mod-
els the semantic space of the inputs, to preserve the semantics of the
crafted adversarial example xadv similar to x, the adversarial pertur-
bations are added in the latent space Z learned by the autoencoder.
These adversarial perturbations yield adversarial latent codes zadv ,
i.e., zadv = z + δz , where δz is the adversarial perturbation in the
latent space. Then the perturbed zadv is passed to the decoder fd to
generate reconstructed output x′ = h(zadv). This reconstructed out-
put is the adversarial input to the classifier model fc, i.e., xadv = x′.
The proposed attack framework for SPAT is illustrated in Figure 1.

Since the latent space of an autoencoder approximates the under-
lying data manifold, we add the noise to the underlying data manifold
instead of adding directly to the input data. As a n-dimensional man-
ifold is a topological space with each point possessing a neighbor-
hood that is similar in structure to an open subset of n-dimensional
Euclidean space, i.e. locally linear, the resultant latent vector zadv
after adding a small adversarial perturbation δz will also lie on the

manifold. However, it is important to note that the success of this ap-
proach depends on the quality of the autoencoder and the adversarial
example generation technique used.

Encoder

Decoder Classifier

Figure 1: Framework for SPAT attacks.

This completes one of the two above-mentioned adversary’s goals,
where to add the adversarial perturbations. To accomplish the goal,
how much adversarial perturbations to add, prior techniques optimise
the function mentioned in Equations (1) and (2) to obtain the desired
adversarial perturbations. In this framework, pre-formulated opti-
misation functions are extended to obtain adversarial perturbations
for the latent space. The modified objective for getting optimal δz ,
where δz is the adversarial perturbations for the latent space, is to:
“maximise the loss of the classifier against the correct class such
that the reconstructed output from the perturbed latent code gets
misclassified and the perturbation lies within an ε bound.”

Hence, the modified formulation of the objective function will be:

argmax
δz

L(fc(fd(z + δz)), y)

s.t. ‖δz‖∞ ≤ ε.
(3)

where z is the encoding obtained by passing x to the encoder, z =
fe(x).

To solve the above-mentioned optimisation problem and obtain δz ,
all the prior methods are extended to obtain the optimal latent adver-
sarial perturbations δz . Instead of calculating the adversarial pertur-
bations δ with respect to the input x, we back-propagate it to the
latent layer of the autoencoder, and we calculate the perturbations δz
with respect to the latent layer using the prior techniques. Formally,
we pass the input sample x to the encoder fe to get the latent code,
z = fe(x). Then we treat the decoder fd and the classifier fc as a
single unified classifier fdc = fd � fc that maps fdc : Z �→ Y . We
run the adversarial attack algorithms by considering the target classi-
fier as fdc and inputs to perturb as z. On successful completion of the
attack, it gives corresponding δz and zadv . Then the input is recon-
structed from the perturbed adversarial latent code zadv to obtain a
semantically preserved adversarial example. The detailed algorithm
is mentioned in Algorithm 1.

3.3 Mitigating Class In-Variance

Even though adversarial examples generated using SPAT attacks are
perceptually similar to the original image, they often suffer from the
class in-variance problem. This problem makes an adversarial exam-
ple invalid. By definition, an adversarial example is said to be invalid
if after adding adversarial perturbations, the image is misclassified to
some other class, but the image actually looks to be from that class
to a human.
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Figure 2: Latent space distribution of MNIST in vanilla autoencoder
obtained using t-SNE.

Figure 3: Latent space distribution of MNIST in class-constrained
autoencoder obtained using t-SNE.

Algorithm 1 SPAT

Require: Data samples D = {xi, yi}mi=1

Require: Classifier fc
Require: Encoder and decoder fe and fd

1: Sample {x, y} from the data samples D
2: z ← fe(x)
3: fdc = fd� fc
4: δz ← X(fdc, z, y)
5: zadv ← z + δz
6: x′ ← fd(z

adv)
7: xadv ← x′

7: Return xadv

Three out of four prior works that explored adversarial examples in
the semantic space did not report or address this issue. [37] reported
this problem and addressed the same by using different autoencoders
for learning different class-manifold corresponding to that class. By
this method, each autoencoder will have the representation knowl-
edge of only one class. As they do not model the manifold of any
other class, perturbing the latent representation will not generate any
invalid adversarial examples. However, the space complexity of this
method for training class-specific autoencoder will increase linearly
with the number of classes, O(N). This method will not be effec-
tive against classification task with high number of classes such as
Imagenet [19].

To mitigate this problem, SPAT uses just one autoencoder and adds
an additional constraint on the latent dimension to decrease the prob-
ability of crafting invalid adversarial examples. In a vanilla autoen-
coder, the encoder learns those features that can best describe the
data and the original data can be reconstructed from them; i.e., it
learns representative features. In the proposed autoencoder, called
class-constrained autoencoder, the dimension of the latent space is
made equal to the number of classes; d = k, where k is the num-
ber of classes. Along with the reconstruction loss on the generated
output, a classification loss is also imposed on the latent layer of the
autoencoder. Hence, for a data sample {x, y}, classifier fc, encoder
fe, and decoder fd,

z = fe(x), x′ = fd(z),

L = Lcls(z, y) + Lrecon(x, x
′).

Here, Lrecon represents the traditional reconstruction loss computed
between the original and the reconstructed image, and Lcls repre-
sents the classification loss computed on the latent code and the ac-
tual class. The intuition behind this constraint is that this will force
the encoder to learn representative and predictive features to better
classify the data. This will push the latent codes far from each other,
prioritising clear decision boundaries between them. Hence, this will
increase the gap between the data samples and thereby decrease the
probability of moving to another class in the semantic space while
applying perturbation. The difference in the distribution structure of
the latent code obtained using t-SNE of vanilla and class-constrained
autoencoder is shown in Fig. 2 and 3.

4 Evaluation

Here, we conduct an extensive evaluation of SPAT.

Table 1: Classifier specifications for MNIST (architecture and hyper-
parameters) and CIFAR-10 (hyperparameters).

(a) Architecture for the MNIST classifier

Layer Type MNIST Model

Linear 784× 512
ReLU -
Linear 512× 100
ReLU -
Linear 100× 10
Softmax 10

(b) Hyperparameters for MNIST, CIFAR-10, and GTSRB classifiers

Hyperparameters MNIST CIFAR-10 GTSRB

Optimizer Adam SGD Adam
Learning Rate 0.0001 0.05 0.001
Momentum - 0.9 -
Weight Decay - 5e-4 -
Batch Size 64 64 64
Epochs 10 50 25
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Figure 4: Qualitative comparison of conventional PGD and SPAT-PGD on CIFAR-10. The first row is original image, second row have adver-
sarial images generated using PGD, third row is corresponding PGD noise, fourth row have adversarial images generated using SPAT-PGD,
and the end row have SPAT-PGD noise.

4.1 Experimental Setup

To evaluate our attacks, we chose three popular datasets for conduct-
ing experiments: CIFAR10 [22], GTSRB [19], and MNIST [26]. Be-
fore performing the attacks, we trained three state-of-the-art classi-
fiers on these datasets. For MNIST, we use a custom architecture and
training paradigm. For CIFAR10 and GTSRB, we use a pre-defined
(but not pre-trained) architecture. Since it is essential to evaluate pro-
posed attacks on regular models as well as robust models (models
trained with adversarial images), we evaluated SPAT attacks against
five state-of-the-art robust models from the literature. For the evalua-
tion, we used the open-source robustbench [9] library, and we did the
evaluation of SPAT attacks only for CIFAR-10. For CIFAR-10, we
evaluated SPAT attacks against Wang et al. [42], two models from
Rebuffi et al. [32], Gowal et al. [16], and Sehwag et al. [33].

4.1.1 CIFAR10

CIFAR10 is a dataset of 32 × 32 coloured real-world images of 10
classes, with 50, 000 training images and 10, 000 test images. Since
it is a dataset of real-world images, it is relatively more complex than
the other two datasets. For training CIFAR10, we used the architec-
ture of Resnet-18 [17]. We used momentum-based SGD along with
the hyper-parameters mentioned in Table 1b. With this, we achieved
a test accuracy of 88.26%.

4.1.2 GTSRB

GTSRB (German Traffic Sign Recognition Benchmark) is a dataset
of more than 50, 000 images of traffic signs, with 43 classes, used for
benchmarking traffic sign recognition algorithms. We used Resnet-
34 [17] architecture without any pre-trained weights for training the
GTSRB from scratch. We used Adam as an optimiser along with the
hyper-parameters mentioned in the Table 1b. We achieved an accu-
racy of 96.35% on the test data.

4.1.3 MNIST

MNIST is a dataset of 28× 28 grayscale images of handwritten dig-
its, with 60, 000 training images and 10, 000 test images. We give
the model architecture for MNIST in Table 1a and hyper-parameters
used for training in Table 1b. After training, we achieved a state-of-
the-art accuracy of 99.5%.

4.1.4 Autoencoders

Along with classifiers, we also trained corresponding autoencoders
for all three datasets. For CIFAR-10, we used a Resnet-18 autoen-
coder with a latent dimension of 256. For training, we used Adam op-
timiser with a learning rate of 0.001. Since the CIFAR-10 dataset is
a collection of real-world images, its complexity makes it harder for
the autoencoder to reconstruct the input images. Hence, for CIFAR-
10, we trained the autoencoder differently than the way vanilla au-
toencoders are usually trained. To boost the exact reconstruction ca-
pability of the CIFAR-10 autoencoder, we add an additional loss
along with the reconstruction loss of the vanilla autoencoder. Given
Lrecon(x, x

′) is the reconstruction loss between the input x and the
reconstructed output x′ and Lcls(x

′, y) is the classification loss on
the reconstructed output x′, the resultant loss is mentioned as fol-
lows.

Lae = Lrecon(x, x
′) + Lcls(x

′, y). (4)

For GTSRB, we used a custom CNN autoencoder with no addi-
tional loss. We used the same hyper-parameters as we used for train-
ing the CIFAR-10 autoencoder. The model architecture is defined in
the Table 2b.

Finally, we used a class-constrained ANN autoencoder with a
100-dimensional latent layer for MNIST using the architecture in
Table 2a. We trained it for 20 epochs using Adam as the optimiser
with a learning rate of 0.001.
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4.1.5 Attacks

We took five different yet fundamental AML attacks for transform-
ing them into SPAT attacks. Those conventional AML attacks are the
following: Fast Gradient Sign Method (FGSM) [15], Projected Gra-
dient Descent (PGD) [27], Carlini & Wagner (C&W) [6], DeepFool
(DF) [28], and Elastic Net Adversarial Attack on DNNs (EAD) [7]
attacks. We applied SPAT and transformed these conventional AML
attacks into the following SPAT attacks: SPAT-FGSM, SPAT-PGD,
SPAT-C&W, SPAT-DeepFool, and SPAT-EAD. We used the IBM
art [29] library to carry out all our attacks. For evaluation, we used
1000 images from each dataset to carry all the conventional AML
attacks and corresponding SPAT attacks.

Table 2: Autencoder architecture for MNIST and GTSRB.

(a) Architecture for the MNIST autoencoder

Encoder Decoder

Layer Type Architecture Layer Type Architecture

Linear 784× 512 Linear 100× 264
ReLU - ReLU -
Linear 512× 264 Linear 264× 512
ReLU - ReLU -
Linear 264× 100 Linear 512× 784
- - Sigmoid -

(b) Architecture for the GTSRB autoencoder

Encoder Decoder

Layer Type Architecture Layer Type Architecture

Conv2d 3× 16× 3× 3 ConvTranspose2d 32× 32× 3× 3
ReLU - ReLU -
Conv2d 16× 32× 3× 3 ConvTranspose2d 32× 16× 3× 3
ReLU - ReLU -
Conv2d 32× 32× 3× 3 ConvTranspose2d 16× 3× 3× 3
ReLU - Tanh -

4.1.6 Metrics

To evaluate the proposed SPAT attacks, we used two different met-
rics. To examine the evasiveness of SPAT attacks, we used Attack

Success Rate which measures the percentage of adversarial exam-
ples that the model misclassifies when subjected to an adversarial
attack. A higher attack success rate indicates a more successful ad-
versarial attack. To measure the perceptual similarity of generated
adversarial images from SPAT attacks, we used LPIPS Score [49].
We used this to measure the perceptual similarity between the gen-
erated adversarial images of SPAT attacks and the original images.
The LPIPS score value ranges from 0 to 1; with 0 being both the
images are identical and 1 being both images are completely dis-
tinct. As an underlying model architecture for LPIPS score, we used
AlexNet [23]. An ideal attack would have a higher attack success rate
and a lower LPIPS score.

4.2 Results

We evaluated SPAT attacks against three classifiers trained for
CIFAR-10, GTSRB, and MNIST. To summarise our results, we cre-
ated attack success rate vs. LPIPS score trade-off plots for all three
datasets. We put the LPIPS score on the X-axis and the attack success
rate on the Y-axis. Since the goal is to generate adversarial examples

Figure 5: Trade-off between Attack Success Rate and LPIPS
Score of conventional AML attacks and SPAT attacks for
CIFAR-10.

Figure 6: Trade-off between Attack Success Rate and LPIPS
Score of conventional AML attacks and SPAT attacks for GT-
SRB.

Figure 7: Trade-off between Attack Success Rate and LPIPS
Score of conventional AML attacks and SPAT attacks for
MNIST.
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Table 3: Evaluation of adversarial samples generated using SPAT attacks (SPAT-DF & SPAT-C&W) against state-of-the-art robust models.

Robust Models Clean Accu-

racy

Robust Accu-

racy

SPAT-DF SPAT-C&W

Wang et al. [42] 93.25% 70.69% 66.80% 67.50
Rebuffi et al. [32] 92.23% 66.56% 60.93% 61.71
Gowal et al. [16] 88.74% 66.10% 53.90% 54.68
Rebuffi et al. [32] 88.50% 64.58% 57.03% 59.26
Sehwag et al. [33] 87.30% 62.79% 08.59% 09.26

with lower LPIPS scores and higher attack success rates, attacks at
the top-left corners of the plot indicate better attacks than the rest.

4.2.1 CIFAR-10

We evaluated the robustness of the Resnet-18 classifier trained on the
CIFAR-10 dataset using adversarial examples generated using SPAT
attacks and summarised the results in Figure 5. We found that SPAT
attacks achieve a higher attack success rate than their corresponding
conventional AML attacks. Even though some SPAT attacks such
as SPAT-DF and SPAT-FGSM have relatively lower attack success
rates than other conventional AML attacks such as DF and PGD, they
achieved better LPIPS score than other conventional AML attacks
including DF and PGD. Out of all the SPAT attacks, SPAT-PGD and
SPAT-C&W have achieved the most advantageous trade-off between
attack success rate and LPIPS score.

4.2.2 GTSRB

We summarised the attack success rate and LPIPS score of adversar-
ial examples generated using SPAT attacks in Figure 6. We found
that, for GTSRB, almost all SPAT attacks have a higher or com-
parable attack success rate than all conventional AML attacks ex-
cept SPAT-FGSM. In terms of LPIPS score, SPAT attacks overcome
conventional AML attacks by a large margin. Overall, SPAT-PGD,
SPAT-C&W, and SPAT-EAD have better trade-offs between attack
success rate and LPIPS score than all other attacks.

4.2.3 MNIST

We summarised the results corresponding to MNIST in the Figure 7.
We found that SPAT-C&W and SPAT-PGD learned better trade-offs
than their corresponding conventional AML attacks. Surprisingly, for
others, conventional AML attacks performed better than SPAT at-
tacks. MNIST is a relatively simple dataset of grayscale images with
very low variance across the dataset. Since the goal of SPAT attacks
is to find where to put the adversarial perturbation, it is harder to find
places on the image to hide the adversarial perturbation. We argue
that this is a possible case for a relatively weak trade-off of SPAT
attacks against conventional AML attacks.

4.3 Evasiveness Against Robust Models

We further evaluate the evasiveness of SPAT attacks against five other
robust models. To perform the experiment, we used 1000 adversarial
examples generated using SPAT-DF and SPAT-C&W attacks from
the CIFAR-10 test dataset. We summarised the results in the Ta-
ble 3. The first column represents clean accuracy: the accuracy of
the model with benign examples. The second column is the robust

accuracy: the accuracy of a classifier when injected with adversar-
ial examples. This is the best-known robust accuracy obtained using
AutoAttack [8] and other adaptive attacks [9]. Rest two columns rep-
resent robust accuracy obtained using SPAT-DF and SPAT-C&W.

Since robust accuracy is a measure of the robustness of a classifier,
for an attack to be effective, it should lower the robust accuracy of
the target model. We found that SPAT-DF and SPAT-C&W lowered
the robust accuracy of all the robust models. Interestingly, we got
a lower robust accuracy for a recently proposed robust model [42].
Using the generated adversarial examples, we dropped its robust ac-
curacy by −3.89% using SPAT-DF and −3.19% using SPAT-C&W
respectively. Additionally, we saw a significant drop in the robust ac-
curacy of the model proposed in [33]. A difference in the adversarial
examples used for adversarial training can explain the drop in robust
accuracy in [33]. While other robust models in Table 3 used adversar-
ial examples from the original dataset, authors in [33] utilised gen-
erative models (GANs and diffusion models) to generate adversarial
examples. This distinction might have resulted in a higher reduction
in robust accuracy compared to other models.

In this work, we tried to achieve a higher attack success rate
while maintaining the perceptual similarity of the input image. We
achieved this by constraining the perturbation location to certain
parts of the input data that agree with the notion of semantic correct-
ness for the Human Visual System. Works such as one-pixel attacks
and adversarial patches tried perturbing a specific part of the input
data instead of perturbing the entire image. We believe these attacks
are special cases of constrained perturbations; for one-pixel, it is lim-
ited to just one pixel; for the patch, it is limited to the small rectangle
area; and for SPAT attacks, it is limited to a region which is explic-
itly found by the algorithm. We did a qualitative comparison of PGD
and SPAT-PGD for CIFAR-10 in Figure 4.

5 Conclusion

In this paper, we have proposed an algorithmic framework, SPAT,
that generates semantic-preserving adversarial examples with a high
attack success rate and high perceptual similarity with the benign ex-
amples. By perturbing the data manifold space using an autoencoder
with a constrained loss function, SPAT avoids the problem of class
invariance and produces valid adversarial examples. The generated
adversarial examples were tested against state-of-the-art robust mod-
els and were found to lower the robust accuracy of the classifiers
while making them more stealthy than the conventional adversarial
attacks. This work provides a promising approach to generating ad-
versarial examples that can evade detection by state-of-the-art attack
detection mechanisms, even those that employ unexpected changes
in the semantics of the input to detect an adversarial example. Further
research in this direction could potentially improve the robustness of
ML models against adversarial attacks.
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