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Abstract—We consider a two user fading Multiple Access
Channel with a wire-tapper (MAC-WT) where the transmitter
has the channel state information (CSI) to the intended receiver
but not to the eavesdropper (eve). We provide an achievable
secrecy sum-rate with optimal power control. We next provide
a secrecy sum-rate with optimal power control and cooperative
jamming (CJ). We then study an achievable secrecy sum rate by
employing an ON/OFF power control scheme which is more easily
computable. We also employ CJ over this power control scheme.
Results show that CJ boosts the secrecy sum-rate significantly
even if we do not know the CSI of the eve’s channel. At high SNR,
the secrecy sum-rate (with CJ) without CSI of the eve exceeds
the secrecy sum-rate (without CJ) with full CSI of the eve.

Index Terms—Channel state information, Cooperative jam-
ming, Fading Channel, Multiple Access Channel, Secrecy sum-
rate, Wire-tap channel

I. INTRODUCTION

Security is one of the most important considerations in
transmission of information from one user to another. It
involves confidentiality, integrity, authentication and non-
repudiation [1]. We will be concerned about confidentiality.
This guarantees that the legitimate users successfully receive
the information intended for them while any eavesdropper is
not able to interpret this information. We will be concerned
with the eavesdroppers who are passive attackers, e.g., they
attempt to interpret the transmitted information without inject-
ing any new information or trying to modify the information
transmitted.

Traditional techniques to achieve confidentiality in this setup
are based on cryptographic encryption ([2], [3]). However now,
Information Theoretical Security is also being actively studied
([1], [4]). This does not require the secret/public keys used
in cryptographic techniques. Key management, especially for
wireless channels can be very challenging. Also, information
theoretical security, unlike for cryptography based techniques
can provide provably secure communication. Information the-
oretic security can also be used in a system in addition to
cryptographic techniques to add additional layers of protection
to the information transmission or to achieve key agreement
and/or distribution.

1Vireshwar Kumar is currently a PhD student at Virginia Tech. University,
USA

The Information theoretic approach for secrecy systems was
first investigated by Shannon [5] in 1949. Wyner [6] considers
communicating a message secretly over a wiretap channel
in the form of degraded broadcast channels, without using
a key. Wyner’s work was in turn extended by in [7] to the
Additive White Gaussian Noise(AWGN) channel. Csiszàr and
Körner [8] considers a general discrete memoryless broadcast
channel, and show that the secrecy capacity is positive if the
main channel to the intended user is more capable than of the
eavesdropper, and zero if the wiretapper’s channel is less noisy.
The fading channel was studied in [9] where power allocation
schemes without CSI of the eavesdropper’s channel to the
transmitter were also obtained. In [10], a wire-tap channel with
slow fading was studied where an outage analysis with full CSI
of the eavesdropper and imperfect CSI of the eavesdropper was
performed.

Information theoretic security for a Multiple Access Chan-
nel (MAC) were obtained in [12] and [13]. In [12], each
user treats the other as an eavesdropper while in [13], the
eavesdropper is at the receiving end. In [13], Tekin and Yener
propose a technique called cooperative jamming in which a
user that is not transmitting, can send a jamming signal so that
the eavesdropper is more confused. This significantly improves
the secrecy rate region. A fading MAC was also studied by
Tekin and Yener [14], where they assume that the CSI of the
eavesdropper’s channel is perfectly known at the transmitting
users. The secrecy capacity region of a MAC is still an open
problem.

In this paper, we consider a fading MAC-WT assuming no
CSI of the eavesdropper at the transmitting users. Since the
eavesdropper may not transmit any signal (it is passive), the
transmitters often will not know its channel. We obtain a power
control scheme that maximizes the sum secrecy rate and then
also employ cooperative jamming over this scheme. It will
be shown that cooperative jamming can significantly increase
the secrecy rate. But these optimal policies are difficult to
compute. Thus, next we consider a computationally simpler
ON/OFF power control policy. We obtain its thresholds to
maximize the secrecy sum-rate. Finally, we also incorporate
cooperative jamming over this power control policy. With this,
at high SNR, the secrecy sum-rate exceeds the sum-rate when
CSI of the eavesdropper is perfectly known at the transmitter
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Fig. 1. Two user Fading Multiple Access Channel

but the cooperative jamming is not used.
The rest of the paper is organized as follows: In Section II,

we define the channel model and state the problem. In Section
III, we obtain the optimal power control policy with and
without cooperative jamming. Section IV discusses ON/OFF
power control policy with and without cooperative jamming.
In Section V, we compare the different policies numerically.
Finally in Section VI, we conclude this paper and discuss the
future work.

II. CHANNEL MODEL AND PROBLEM STATEMENT

We consider a system with two users who want to communi-
cate over a fading AWGN MAC to a legitimate receiver. There
is also an eavesdropper who is trying to get access to the output
received by the legitimate receiver. Transmitter k chooses
message Wk for transmission from a set Wk = {1, 2, ...,Mk}
with uniform distribution. These messages are encoded into
{Xk,1, ..., Xk,n} using (2nRk , n) codes. The legitimate re-
ceiver gets Yi and the eavesdropper gets Zi at time i. The
decoder at the legitimate receiver estimates the transmitted
message as W̃ = (W̃1, W̃2) from Yn ≡ {Y1, ..., Yn}. The
legitimate receiver should receive the message reliably while
the eavesdropper should not be able to decode it. It is assumed
that the legitimate receiver as well as the eavesdropper know
the codebooks.

The channel model can be mathematically represented as:

Yi = h̃1,iX1,i + h̃2,iX2,i +NR,i (1)

Zi = g̃1,iX1,i + g̃2,iX2,i +NE,i (2)

where h̃k,i and g̃k,i are the complex channel gains from the
transmitter k to the legitimate receiver and the eavesdropper
respectively. Also {NR,i} and {NE,i} are Additive White
Gaussian Noise (AWGN) with each component distributed as
N (0, 1), where N (a, b) is Gaussian distribution with mean a
and variance b. Also let |h̃k,i|2 = hk,i and |g̃k,i|2 = gk,i, for
k = 1, 2. We assume that {hk,i, i ≥ 1} and {gk,i, i ≥ 1}
are independent, identically distributed (iid), and that each
sequence is independent of the other.

We use collective secrecy constraint to take the multi-access
nature of the channel into account:

∆n
L =

H(WL|Zn)

H(WL)
(3)

where L ⊆ {1, 2}, Zn = (Z1, ..., Zn) and WL = {Wk; k ∈
L}. For each n we need codebooks such that the average

probability of error to the legitimate receiver goes to zero and
∆n
L → 1 as n→∞ for each L ⊆ {1, 2}.
Let hi = (h1i, h2), gi = (g1i, g2i). Then from [14], if the

CSI hi, gi are known at both the transmitters and the receiver
at time i, the following rate region for the MAC is achievable
which satisfies the secrecy constraints (3) :

R1 ≤ Eh,g

{[
log

(1 + h1P1(h, g))(1 + g2P2(h, g))

1 + g1P1(h, g) + g2P2(h, g)

]+}
,

(4)

R2 ≤ Eh,g

{[
log

(1 + g1P1(h, g))(1 + h2P2(h, g))

1 + g1P1(h, g) + g2P2(h, g)

]+}
,

(5)

R1 +R2 ≤ Eh,g

{[
log

1 + h1P1(h, g) + h2P2(h, g)

1 + g1P1(h, g) + g2P2(h, g)

]+}
,

(6)
where P1(h, g) and P2(h, g) are the transmit powers satisfying

E [Pi(h, g)] ≤ P̄i, i = 1, 2. (7)

Also to achieve these rates Gaussian signalling is used.
In [14], the optimal power allocation policy which maxi-

mizes the sum secrecy rate (7) has been found. In this paper,
we extend this result to the case when the CSI of the legitimate
receiver is known but the CSI of the eavesdropper may not be
known at the transmitter; only its distribution is known. Since
we are assuming a passive eavesdropper, this will often be
a more reasonable assumption, i.e., there is no transmission
from the eavesdropper to the transmitters for them to estimate
its channel.

III. OPTIMAL POWER CONTROL WITH MAIN CSI ONLY

A. Power control without Cooperative Jamming

In this section we consider power control which maximizes
the sum secrecy rate when only the main channel (to the
legitimate user) CSI is known at the transmitters. Let Pk(h)
be the power used by a policy when the main channel gain is
h = (h1, h2). We need the following notation

φsx1,x2
= 1 + s1x1 + s2x2 (8)

where s is the channel state (h or g) and xk is the power
used. The following theorem can be proved via standard
techniques. The proof is given in the detailed version of this
paper[11] and is skipped here due to lack of space.

Theorem 3.1: For a given power control policy
{Pk(h)}, k = 1, 2, the following secrecy sum-rate

Eh,g


[

log

(
φhP1,P2

φgP1,P2

)]+ (9)

is achievable. �
The policy that maximizes (9) is not available in closed

form, but can be numerically computed (see Appendix). An

 

 



example will be provided in Section VI. We will also consider
a simpler ON/OFF power control policy.

Next we consider power control with cooperative jamming.

B. Optimal Power Control With Cooperative Jamming

The optimal power policy obtained in the last section
depends on h. If both the main channels h1 and h2 are
good, both the transmitters send their coded symbols. If a
transmitter’s channel is bad, it may not. When a transmitter
is not sending its data, it can help the other user by jamming
the channel to the eavesdropper.

Let {Pk(h)}, k = 1, 2, be the power control policy when
the users are transmitting and {Qk(h)}, k = 1, 2, be the power
control policy when the users are jamming. To satisfy (7) , we
need

Eh,g[Pk(h) +Qk(h)] ≤ P̄k, k = 1, 2. (10)

Then we can prove the following theorem.

Theorem 3.2: With the above power control policies se-
crecy sum-rate

Eh,g


[

log

(
φhP1,P2

+ φhQ1,Q2
− 1

φgP1,P2
+ φgQ1,Q2

− 1

)(
φgQ1,Q2

φhQ1,Q2

)]+ (11)

is achievable. �
The detailed proof is given in [11].

We will obtain the power control policy that maximizes the
sum rate in the Appendix. We will see in Section VI that
cooperative jamming can significantly improve the sum-rate.

We also propose a simple ON/OFF power control policy
with cooperative jamming.

IV. FADING MAC WITH ON/OFF POWER CONTROL

The optimal policy obtained in Section III can be computed
only numerically and its structure is not known. The following
ON/OFF policy is easier to compute and is intuitive:
User k transmits with a constant power Pk if hk > τk, where
τk is an appropriate threshold. Hence the following cases arise:

1) h1 > τ1, h2 > τ2 : Both transmit;
2) h1 > τ1, h2 < τ2 : User-1 transmits;
3) h1 < τ1, h2 > τ2 : User-2 transmits;
4) h1 < τ1, h2 < τ2 : No user transmits.
From average power constraint we get:

P̄1 = P1Pr(h1 > τ1) (12)

and
P̄2 = P2Pr(h2 > τ2). (13)

where Pr(A) denotes the probability of event A.
Let

A1 , {h1 > τ1, h2 < τ2}, A2 , {h1 < τ1, h2 > τ2}

and
A12 , {h1 > τ1, h2 > τ2}. (14)

The secrecy sum-rate by this policy is given by

RB = Eh,g


[

log

(
φhP1,P2

φgP1,P2

)
1A12

]+
+ Eh,g


[

log

(
φhP1,0

φgP1,0

)
1A1

]+
+ Eh,g


[

log

(
φh0,P2

φg0,P2

)
1A2

]+ (15)

where 1{} is the indicator function.
When hk and gk have Exponential distribution with densi-

ties

f1(h) =
1

γ1γ2
e−

h1
γ1 e−

h2
γ2 , f2(g) =

1

µ1µ2
e−

g1
µ1 e−

g2
µ2 (16)

where γ1 = E(h1), γ2 = E(h2), µ1 = E(g1) and µ2 = E(g2),
then

P1 = P̄1e
τ1
γ1 , P2 = P̄2e

τ2
γ2 . (17)

We numerically obtain the secrecy sum-rate for thresholds
τ1 and τ2 which maximize the sum-rate (15).

V. FADING MAC WITH ON/OFF POWER CONTROL AND
COOPERATIVE JAMMING

Cooperative jamming has been found to increase the
sum-rate substantially. Therefore, we now use it with the
ON/OFF policy studied in Section IV. A user when not
transmitting its data jams the channel for the eavesdropper.
Also it transmits with different powers taking into account
the channel gain of the other user. The following cases arise:

1) h1 > τ1, h2 > τ2 : Both transmit with power P1a, P2a;
2) h1 > τ1, h2 < τ2 : User-1 transmits with power P1b,

user-2 jams with power Q2;
3) h1 < τ1, h2 > τ2 : User-2 transmits with power P2b,

user-1 jams with power Q1;
4) h1 < τ1, h2 < τ2 : None transmits or jams.
The powers and the thresholds in the above scheme are

chosen to satisfy the average power constraints.
The secrecy sum-rate for this power control policy is given

by:

RCJB = Eh,g


[

log

(
φhP1a,P2a

φgP1a,P2a

)
1A12

]+
+ Eh,g


[

log

(
φhP1b,Q2

φgP1b,Q2

)
1A1

]+
+ Eh,g


[

log

(
φhQ1,P2b

φgQ1,P2b

)
1A2

]+ (18)
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When hk and gk have Exponential distribution

P̄1 = P1ae
− τ1γ1 e−

τ2
γ2 + P1be

− τ1γ1 (1− e−
τ2
γ2 )

+Q1e
− τ2γ2 (1− e−

τ1
γ1 ), (19)

P̄2 = P2ae
− τ1γ1 e−

τ2
γ2 + P2be

− τ2γ2 (1− e−
τ1
γ1 )

+Q2e
− τ1γ1 (1− e−

τ2
γ2 ). (20)

VI. NUMERICAL RESULTS

In this section, we compare the sum rates obtained via the
different power control schemes proposed in this paper. The
receiver’s AWGN noise has variance 1. The fading for each
channel is Rayleigh distributed with parameters γ1 = γ2 =
µ1 = µ2 = 1. The optimal sum rates are plotted in Fig.1
for different powers P1 = P2. We observe that cooperative
jamming substantially improves the sum-rate (up to 75%).
Of course, for each case knowledge of the eavesdropper’s
CSI at the transmitter improves the sum-rate. At high SNR,
the cooperative jamming can provide sum-rate without CSI
higher than the full CSI case without cooperative jamming.
Also, optimal ON/OFF power control is sufficient to recover
most of the sum rate achievable by the optimal policy (for no
eavesdropper’s CSI and no jamming, ON/OFF provides rate
very close to the optimal).

VII. CONCLUSION AND FUTURE WORK

In this paper, we provide achievable secrecy sum-rate in
a fading MAC with an eavesdropper when the eavesdropper’s
channel is not known to the transmitter. We obtain the optimal
power controls that optimize the secrecy sum-rate. We also
obtain the optimal power control when cooperative jamming
is also employed. It is shown that cooperative jamming can
substantially improve the secrecy sum-rates. We, then, ob-
tain more easily computable ON/OFF power control schemes
which provide secrecy sum-rates close to the optimal.

It is shown that via these techniques, one can recover most
of the secrecy sum-rate achievable with the perfect knowledge
of the CSI of the eavesdropper.

For future work one can consider the schemes when partial
CSI of the legitimate receiver’s channel is available at the
transmitter.

APPENDIX
OPTIMAL POWER CONTROL

A. Without Cooperative Jamming

We provide the details for Rayleigh fading. Similarly one
can obtain the optimal powers for other distributions. Let
f1 and f2 denote the densities of h and g respectively. For
Rayleigh fading case, averaging over all fading realizations
of eve’s channel, i.e., g1 and g2, which give positive secrecy
sum-rate, we get

R =∫
h1

∫
h2

[
log
(
φhP1,P2

)
− 1

ξP1,P2

{P1µ1θP1 − P2µ2θP2}
]
f1(h)dh

(21)
where
φhP1,P2

is as defined in (8) and

ξa,b = aµ1 − bµ2, (22)

θP1 = e
1

P1µ1

[
Ei

(
1

P1µ1

)
− Ei

(
1

P1µ1
+
h1P1 + h2P2

P1µ1

)]
,

(23)

θP2
= e

1
P2µ2

[
Ei

(
1

P2µ2

)
− Ei

(
1

P2µ2
+
h1P1 + h2P2

P2µ2

)]
,

(24)
and

Ei(x) =

∫ ∞
x

e−t

t
dt. (25)

After writing the Lagrangian and invoking KKT (Karush-
Kuhn-Tucker) conditions (which are only necessary here as
the objective function need not be concave [15]), we get

h1
φhP1,P2

+
1

ξP1,P2

{
θP1

P1
− µ1 +

α1

h2φhP1,P2

+
P2 (α1 + α2)

φhP1,P2

}
+
P2µ1µ2

ξ2P1,P2

(θP1 − θP2)− λ1 = 0 (26)

h2
φhP1,P2

− 1

ξP1,P2

{
θP2

P2
− µ2 +

α2

h1φhP1,P2

+
P1 (α1 + α2)

φhP1,P2

}
−P1µ1µ2

ξ2P1,P2

(θP1
− θP2

)− λ2 = 0 (27)

where λ1 and λ2 are the Lagrangian multipliers and

α1 = h2µ1e
−
(
h1P1+h2P2

P1µ1

)
, (28)

α2 = h1µ2e
−
(
h1P1+h2P2

P2µ2

)
. (29)

 

 



We solve this set of equations numerically for optimum
power policy:

1) If we find positive solutions for P1 and P2 from (26) and
(27), both should be transmitting with their respective
powers.

2) If we do not find positive solutions for both and h1 > h2,
we solve (26) for P1 with P2 = 0.

3) If we do not find positive solutions for both and h1 < h2,
we solve (27) for P2 with P1 = 0.

B. With Cooperative Jamming

A user can transmit, jam or do nothing. We have different
expressions of secrecy sum-rate based on whether the users are
transmitting or jamming. Averaging (11) over all the fading
realizations (g1, g2) and if there is a positive solution P1 and
P2 from (26) and (27), both users will transmit, and the secrecy
sum-rate is given in (21).

When there is no solution of (26) and (27) such that
P1 > 0 and P2 > 0, and the channel of user 1 is better than
that of user 2, the secrecy sum-rate is∫
h1

∫
h2

[
log

φhP1,Q2

φh0,Q2

− 1

ξP1,Q2

{P1µ1 (βP1 − βQ2)}

]
f1(h)dh.

(30)
Similarly when the channel of user 2 is better than user 1,
the secrecy sum-rate is∫
h1

∫
h2

[
log

φhQ1,P2

φhQ1,0

− 1

ξQ1,P2

{P2µ2 (βQ1
− βP2

)}

]
f1(h)dh.

(31)
where
βP1

= e
1

P1µ1

[
Ei
(

1
P1µ1

)
− Ei

(
1

P1µ1
+ h1

µ1(1+h2Q2)

)]
,

βP2
= e

1
P2µ2

[
Ei
(

1
P2µ2

)
− Ei

(
1

P2µ2
+ h2

µ2(1+h1Q1)

)]
,

βQ1 = e
1

Q1µ1

[
Ei
(

1
Q1µ1

)
− Ei

(
1

Q1µ1
+ h2

µ2(1+h1Q1)

)]
,

βQ2 = e
1

Q2µ2

[
Ei
(

1
Q2µ2

)
− Ei

(
1

Q2µ2
+ h1

µ2(1+h2Q2)

)]
.

Now the problem is to maximize the above objective func-
tions appropriately for each case. This function may not be
concave. Hence, KKT conditions are necessary but not suffi-
cient. We solve the equations obtained via KKT numerically
to obtain optimal power policy.
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