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ABSTRACT

We consider the problem of sensor selection so as

to minimise error in estimated location of target. An

algorithm based on selecting a sensor in a direction in

which the error is minimized has been proposed. The ideal

direction is obtained by minimising one of the measures

obtained from the intersecting region of the error annuli.

The algorithm has a linear computational complexity

and is better suited in comparison with the information

theoretic approaches. We have addressed the problem of

finding out an average number of sensors after which there

is no improvement in the accuracy of estimated location.

Index Terms— Target localization, Sensor selection, Tri-

lateration

I. INTRODUCTION

We consider the problem of estimating the lo-

cation of a moving target ’T’ in a 2 dimensional

plane. A collection of sensors are spread across the

plane. The locations of the sensors are known to

a central server. The sensors can communicate with

the central server on multi hop paths established and

maintained by routing protocols [1], [2].

The target tracking network operates in two

states: the surveillance state during the absence

of any target and the tracking state which is in

response to a moving target. Thus, the power sav-

ing operations, which is of critical importance for

extending network lifetime, should be operative in



two different modes as well. In this paper, we

study the power saving operations in both states of

network operations. During surveillance state, only

that number of nodes are awake which ensure that

the target is detected as soon as it enters the region.

In tracking state, the sensors in the neighbourhood

of target wake up and start tracking the target. The

clocks on all the sensors are time synchronised [3],

[4], [5]. When the target comes in the range of

sensors, the sensors estimate the distance at which

the target is located at an instant of time. The

sensors then send the measurements to the central

server and the central server estimates the location

of the target.

The position of the target can be determined when

distance measurements from a set of minimum three

sensors are available. The error in the location esti-

mate can be reduced by using measurements from

an increasing number of sensors. However, using

a large number of sensors involves taking large

number of measurements and communicating all

measurements to the central server. This consumes

battery power and thereby reduces the life of the

sensor network.

Firstly, though using increasing number of mea-

surements improve the accuracy of location esti-

mate, there is a marginal improvement in accuracy

after a while. We address the problem of finding

out an average number of sensors after which there

is no significant improvement in the accuracy of

estimated location. In this paper, we show that

while 3 is the minimum number of measurements to

determine the location of the target, 4 measurements

give good results.

Secondly, it is necessary to point out which 3 or

4 sensors should be chosen for location estimation.

Improvement in accuracy due to measurement from

one set of sensors may be very different from

improvement in accuracy due to measurement of

another set of sensors. This depends upon the posi-

tion of the sensor and the measurement error. Use

of selected sensors help in obtaining a better quality

localization information of the target. In this paper,

we address the problem of ”given 2 sensors, select

3rd or 4th sensor to improve the given estimate of

target location”.

We use least square estimation to estimate the

location with n distance measurements. Our results



are applicable to maximum likelihood estimation as

well.

Location determination is a fundamental prob-

lem in wireless mobile network applications. It

arises in robotics, navigation and surveillance. In

[6] on tracking networks, location of the object

is approximated as the location of sensor when

the object comes in the range of that sensor. The

location resolution is the sensing range of a sen-

sor. The resolution improves when measurement

from multiple sensors are considered. Distance can

be estimated using signal strength as in [7], [8].

Distance estimation with TDOA techniques gives

better accuracy as used in [9], [10]. [11] presents

acoustic target tracking in which there are cluster

heads which know positions of its slave sensors.

Data gathered from slave sensors is processed by

the cluster head to generate localization results. [12]

describes dynamic convoy tree based collaborative

method of tracking objects. Nodes within range of

the object form a convoy tree and collaborate to

locate the object.

The localization problem has been solved using

Bayesian filtering techniques where the state of the

target is represented by a probabilistic distribution.

This approach is used effectively in robotics [13],

[14], [15] and sensor networks [16], [17], [18], [19],

[20].

Information theoretic approach is used in [16],

[17] to address sensor selection and data aggregation

problem. Entropy based approach was proposed in

[19]. We present a method to select sensors on the

basis of ideal direction in which the sensor should

be selected. This does not require high computations

power. We have considered more conservative error

model as opposed to Gaussian error in information

theoretic probability distribution based techniques.

II. ERROR MODELS

Uniform distribution model leads to the most con-

servative estimate of uncertainty giving the largest

standard deviation. We have used multiplicative and

additive uniform distribution error models to make

simulations robust.

Let dA
i and dM

i be the actual and measured

distance between target and the ith sensor. Let εmeas

be the fractional error in measurement.



A. Uniform random additive error

Let ea
i be the error in the distance measurement

of ith sensor.

ea
i � dA

i
� dM

i

dM
i � dA

i
� γ

εmeas

2

with � 1 � γ � 1.

The error is uniformly distributed with endpoints

as � εmeas
2 and

� εmeas
2 with a standard deviation σa

and mean zero.

ea
i �

� � εmeas

2 �
εmeas

2

�

σa �
1�
3

	 εmeas

2




Measurement error for chosen n sensors is

Emeasa
n with a mean Emeasa

mean.

Emeasa
n �

i � n

∑
i � 1

	
ea

i



2

Emeasa
mean �

εmeas

4

The mean Emeasa
mean is independent of of dis-

tance from target.

B. Uniform random multiplicative error

Let em
i be the error in the distance measurement

of ith sensor.

em
i � dA

i
� dM

i

dM
i �

	
1

� γ
εmeas

2



dA

i

with � 1 � γ � 1.

The error is uniformly distributed with endpoints

as
	
1 � εmeas

2



dA

i and
	
1

� εmeas
2



dA

i with a standard

deviation as σm and mean as zero.

em
i �

� � εmeas

2
dA

i �
� εmeas

2
dA

i
�

σm �
1�
3

	 εmeas

2



dA

i

Measurement error for chosen n sensors is

Emeasm
n with mean Emeasm

mean.

Emeasm
n �

i � n

∑
i � 1

	
em

i



2

Emeasm
mean �

εmeas

4

i � n

∑
i � 1

dA
i

2

Emeasm
mean is dependent on the distance from the

target.

Multiplicative error in distance measurement is

more interesting in comparison with additive error



in measurement since in real life, the error is depen-

dent on the distance from which measurement has

been done. The distance estimates in wireless radio

networks is obtained with Radio Signal Strength

(RSSI) measurement or TDOA. In both cases, the

error in measurement is dependent on the distance

from the node. Thus the multiplicative error model

is more relevant. We have considered the multiplica-

tive error model as the basis of all our discussions.

Corresponding discussion and results for additive

error model have been described in the Appendix.

III. LEAST SQUARE ESTIMATE

n distance measurements di, i � 1 ����� n from n

sensor locations
	
xi � yi



to unknown location

	
x � y




result into a non linear system of n equations. Refer

equation 1.

	
x � xi


 2 � 	
y � yi


 2 � dM
i

2
(1)

with i � 1 � ����� � n.

While estimating location, a least square estimate

to n non linear equations is to be found out. Fol-

lowing optimisation problem needs to be solved.

minimise
i � n

∑
i � 1

em
i

2 (2)

The problem of local minima and large number of

computations in optimization techniques can be cir-

cumvented by choosing an appropriate initial guess.

The initial guess is obtained by solving a linear

system of equations resulting out of subtraction

of non linear equations in 1. This results into an

overdetermined system of linear equations that can

be represented as matrix equation Ar � C. r is

chosen such that average error in all the equation

in the linear system is minimized. This is achieved

by using pseudo-inverse of matrix A. Using solution

of the linear system as an initial guess, any suitable

optimization technique can be used to find solution

to optimization problem in equation 2. Results with

Steepest Descent and Levenberg Marquardt have

been presented.

No. of Acc. Acc. Acc. Acc.

iterations 0.01% 0.1% 1% 10%

Steepest Descent 2 3 4 8

Levenberg Marquardt 6 6 6 6

TABLE I

CONVERGENCE IN OPTIMIZATION TECHNIQUES

It is observed from both fig. 1, 2 and table I

that the initial guess is good since the optimization
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techniques have a fast convergence. As seen in fig. 2

Steepest Descent converges in less than 20 iterations

and in 6 iterations in case of Levenberg Marquardt.

There is significant improvement in the location

estimation error with optimization over the initial

guess as seen in table II. Location estimation error

with the optimized techniques is 7% as against the

initial guess with error of 18% with three sensors.

With four sensors the intila guess has an error of

5% and the error with optimized technique is just

2.6%.

IV. OPTIMUM NUMBER OF SENSORS

Multiple measurements improve the accuracy of

location estimate and reaches a saturation point after

some number of measurements. As can be seen

from figure 3, 4 sensors are enough to gain a good

accuracy after which the improvement in accuracy

is not significant. See Table II, the error reduces by

62.8% when the number of sensors increase from

three to four and less than 3.85% when number of

sensors increase from four to five.

Error in 3 4 5

Estimates Sensors Sensors Sensors

Initial estimate 18% 5% 4.1%

Optimised estimate 7% 2.6% 2.5%

TABLE II

LOCATION ESTIMATION ACCURACY AND NUMBER OF SENSORS

V. SENSOR SELECTION

The relative positions of sensors with respect to

each other and with respect to the target position

play an important role in location estimation accu-

racy [21]. Choosing suitable sensors would avoid

communication overheads and still satisfy the loca-
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Fig. 3. Location estimation error in initial guess and in optimised

result

tion estimation accuracy constraints. Now we would

like to mathematically establish the factors which

affect location estimation accuracy. Based on these

factors sensor selection policies can be made.

A. Collinearity

When the sensors are collinear, no more infor-

mation is added as compared when information is

available from only two sensors as seen in figure

4. The ambiguity in the sensor position is not

resolved. The ambiguity gets resolved only when

a non collinear sensor is chosen.

Simulations with a definition of measure of

collinearity have been done. The measure of

collinearity is defined as the residual error while

trying to fit a line passing through the given n

sensors. Fig. 5 shows a plot of location estimation

S1

S3

S2

Target

Ambiguity in target position

Fig. 4. Ambiguity in target location in case of collinear sensors
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Fig. 5. Effect of collinearity on location estimation error

error with respect to the residual error in least square

error line fitting. When the residual error is low,

the sensors are almost collinear and the location

estimation error in such cases is very high.

As seen in fig. 6, the direction of collinearity is

dependent upon the perpendicular distance xcoord

of the target from the line passing through the two

sensors and the distance d from the target.

θ � π � cos
� 1 	 x

d



(3)



Target

S3

x
d

S1

S2

θcos
� 1 � x

d �

Fig. 6. Direction of collinearity

where θ is the direction in which the sensor

becomes collinear with the rest of the two sensors

(refer fig 6), x = xcoord = perpendicular distance

to the line passing through the n � 1 sensors, d is

the distance of the sensor from the target and x � d.

Refer fig. 7, 6. In the simulation setup, two sensors

were placed at an equal distance from the target

with x � 50. The third sensor at a distance d was

placed at different angles from 0 to π. Refer fig. 7.

The average location estimation error at angles from

was plotted. refer fig. 8 where x � 50. As can be

seen the collinear direction is at 120o when d � 91

and is 161o when d � 51. In another case (refer fig.

9) with x � 100, the collinear direction is 180o.

B. Distance from the target

In case of multiplicative error in measurement,

error is proportional to the distance to be measured.

0 deg

180 deg

xcoord

S1 S2

T

Fig. 7. Experimental Setup
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Lower the distance from the target, lower is the

error in measurement of distance and thus lower the

resultant error in localization. Sensors were placed

at a constant distance from the target. Location

estimation error was observed at different distance

from target. As seen in fig. 10, the error is linearly

increasing with the distance from the target. We

assume that all the nodes are not so much near

that target that they interfere with each others mea-

surement. Distance is immaterial in case of additive

error model since the error is not dependent on the

distance as seen in section on Error Models.

C. Ideal Direction

Given position of one sensor, obtaining the ideal

direction in which to choose the next sensor is

trivial. It is obvious that the ideal direction is per-

pendicular to the line passing through the target and

Target

S1 S2

80

5050

64o

Fig. 11. Linear approximation

the first sensor. However, measurements from two

sensors still leave ambiguity in sensor location as

in the case of collinear sensors. Thus, measurement

from more than two sensors is necessary. In case

of given n � 1 sensors, there is an ideal direction

in which the nth sensor should be chosen, where

n � 3. The technique of finding ideal direction in

case of choosing the third sensor has been detailed

in the next section. Given the sensor position of two

sensors, there is an ideal direction in which if we

choose the third sensor, the error is low compared

to other directions. Thus a sensor should be chosen

such that it is in the ideal direction and nearest to

the target as well.

The argument in the paper has been based on the

intersection polygon of error annuli. The probability

that sensor is located in this region is maximum in

the intersection region since the likelihood function
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εmeasd2sin � α �

d1
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εmeasd1sin � α �

dir1
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θ1

Fig. 12. Ideal direction in case of multiplicative error

p
	
zi

�
x



4 is maximum in the intersection region.

p
	
z

�
x



� c1

i � n

∏
i � 1

p
	
zi

�
x



(4)

where zi � i � 1 ��� � n are the measurements from n

sensors, x is the target state, p
	
z

�
x



is the likelihood

function which is proportional to the product of

p
	
zi

�
x



� i � 1 � ��� n when x is uniformly distributed

and zi are conditionally independent w.r.t x, p
	
zi

�
x




is the probability of measurement zi when the target

state is x. This is dependent upon the error model

of the measurement.

If distance measurements have a fractional error

of εmeas, the maximum probability region of the

estimated position is the overlapping area of inter-

secting annulus of width εmeas in case of additive

error and εmeasdA
i in case of multiplicative error

[21]. If the area is large then the error will be large

as well. For the purpose of computational simplicity

for the low capability sensors we consider a linear

approximation of area of intersection of annuli as a

parallelogram as shown in fig. 11.

Refer fig. 12 for multiplicative error model Fig.

25 in appendix is for additive error model. The paper

discusses choosing third sensor given two sensors.

The same technique is applied for choosing nth

sensor, given n � 1 sensors.

Refer fig. 12, α is the visual angle made by two

sensors with the target. The direction of longest axis

is dependent on θ1 when α � π
2 . In this case the ideal

direction is dir1
v , dir2

v .

θ1 � tan
� 1 d2sin

	
α




d1
�

d2cos
	
α




dir1
v � AoA2

� π
2

� θ1

dir2
v � dir1

v
� π � AoA2

� π
2

� θ1

When α � π
2 the direction of longest axis is

dependent upon α1. The ideal direction in this case

is dir1
h, dir2

h.



α1 � tan
� 1 d1sin

	
α




d2
�

d1cos
	
α




dir1
h � AoA1

� π
2

� α1

dir2
h � dir1

v
� π � AoA1

� π
2

� α1

The ideal direction is chosen as the direction of

the longest axis of the intersection polygon. This

will ensure that the next intersection polygon will

have a smaller longest axis. A comparison has been

made between the reduction in the length of longest

axis, reduction area , reduction in circumference of

the intersection polygon versus the location estima-

tion error.

D. Time Complexity

The time complexity of finding intersection of

two polygons is O
	
a

�
b



[22] where a and b are

number of vertices of the two polygons. Intersec-

tion of two parallelograms (four vertices each) is

required for selection of the rrd sensor. To select 4th

sensor, intersection of two polygons, one parallelo-

gram with 4 vertices and the other with worst case

6 vertices is required. Thus the time complexity is

of O
	
n



where n is number of vertices of polygon

which does not exceed 6 for choice of up to 4th

sensor.

VI. DIRECTION BASED ALGORITHM

ChosenSet1 = φ;

ChosenSet2 = φ;

ChosenSensor = NULL;

� Compute ideal direction = IdealDir

� Compute collinearity direction = CollDir

� for (sensor si, i = 1 to n)

– Compute angle of arrival of si = AoASi

– Di f f Ideal = IdealDir - AoASi

� if (Di f f Ideal � δ1)

� ChosenSet1 = ChosenSet1
�

si

� endif

� endfor

� for (sensor si � ChosenSet1, i = 1 to cardinality

of ChosenSet1)

– Di f fColl = CollDir - AoASi

� if (Di f fColl � δ2)

� ChosenSet2 = ChosenSet2
�

si

� endif

� endfor



� for (sensor si � ChosenSet2, i = 1 to cardinality

of ChosenSet2)

– ChosenSensor = si which has minimum

distance from the target (applicable to only

multiplicative error model)

� endfor

The complexity of the above algorithm is O
	
n




where n is the number of sensors assuming that all

the n sensors do not get chosen in collinear set or

ideal direction set.

VII. SIMULATION AND RESULTS

The target was assumed to be at the origin of

the coordinate system. The setup is shown in fig.

7. Measurements from two sensors were available.

Results have been plotted for different positions of

two sensors in fig. 13, 14, 15, 16. In setup (refer

fig 13), two sensors are placed at same distance

from the target at the origin. The visual angle

α made by the two sensors is obtuse. Error in

location estimation was computed for every possible

position for the third sensor such that the target is

within the range of the sensor. The total range of

the location estimation error for different positions

was computed and was divided into four ranges. A

different symbol was printed for different range of

location estimation error.

� X (cross) : error � 1.5 (average error)

� * (star) : (average error) � error � 1 � 5 (average

error)

� + (plus) : 0 � 5 (average error) � error � (aver-

age error)

� . (dot) : 0 � 5 (average error) � error

As can be seen in fig. 13 the region of lowest

estimation error (dot) is in direction of the bisector

of the visual angle which is same as the direction

perpendicular to the line passing through the two

sensors. It can be observed that the error is max-

imum for the positions which are collinear to the

two sensors. In fig. 14, the two sensors are at equal

distance and the visual angle is acute. It can be

noted that the region of lowest estimation error is

the bisector of the external angle of the visual angle

in the triangle formed by the two sensors and the

target. This direction is parallel to the line passing

through the two sensors. There is no significant error

in these cases. In fig. 15, the visual angle is obtuse

and the distances of two sensor are unequal. In such

a case, the ideal direction is in the direction of the



longest axis of the intersection polygon. In this case

the direction computed is 30 � 208o. In fig. 16, the

visual angle is acute, ideal direction is in the direc-

tion of the longest axis of the intersection polygon.

In this case the direction computed is � 84 � 873o.

There is an error of around 5o in both the cases.

This error is due to the linearization approximation

of intersection area as a parallelogram.

In addition to the longest axis of the intersec-

tion polygon, the area of the intersection polygon

and circumference of the intersection polygon can

be measures of expected location estimation error.

These three measures have been compared. See

figure 17 for location estimation error vs length of

longest axis, fig. 18 for location estimation error

vs area, fig. 19 for location estimation error vs

circumference. It can be observed that the measure

of length of the longest axis represents error in

estimation of location. Location estimation error is

high when the length of the longest axis is high and

low when the length of longest axis is low.

The results where next sensor has been selected

on the basis of direction of longest axis are pre-

sented in fig. 20. It can be observed how the location

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 13. Symmetrical placement of sensors, visual angle α � π
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Fig. 14. Symmetrical placement of sensors, visual angle α � π
2

estimation error reduces with length of the longest

axis as next sensor (third and fourth) is picked up

in the direction of longest axis.

Refer fig. 21, 22 for one of the sensor selection

scenario. The 2 sensors which are already selected

are shown with circles. The next two selected sen-

sors are shown dark. The error with selected 4

sensors is the minimum, that is 5.0712 as compared
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Fig. 15. Unsymmetrical placement of sensors, visual angle α � π
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Fig. 16. Unsymmetrical placement of sensors, visual angle α � π
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Fig. 21. Sensor Selection Scenario 1
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Fig. 22. Error with all combinations of 4 sensors: Scenario 1

with any other combinations of 4 sensors. Refer fig.

23, 24 for another sensor selection scenario. The

error with selected 4 sensors is 6.0665 which is not

the minimum, but is within best 5 combinations of

4 sensors.

Table III shows the comparison of location esti-

mation error with randomly selected 3 and 4 sensors

vs. sensors selected with our algorithm. As it can

be seen, there is an improvement of 60.4% in case
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Fig. 23. Sensor Selection Scenario 2
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Fig. 24. Error with all combinations of 4 sensors: Scenario 2

of 3 sensors and 30.213% improvement in case of 4

sensors. With 4 sensors selected with our algorithm,

there is an improvement of 80.165% when only

three sensors are selected randomly. See table IV.

VIII. CONCLUSION

In this paper, we show that while 3 is the

minimum number of measurements to determine

the location of the target, 4 measurements give

good results. We address the problem of ”given 2



Location Error 3 Sensors 4 Sensors

Random Sensors 22.941 9.9914

Selected Sensors 9.0812 6.9727

Improvement 60.416% 30.213%

TABLE III

IMPROVEMENT WITH SENSOR SELECTION

Location 3 Random 4 Selec. Improvement

Error Sens. Sens. over 3 random Sens.

22.941 6.9727 80.165%

TABLE IV

IMPROVEMENT WITH 4 SELECTED SENSOR OVER WORST CASE

SCENARIO OF 3 RANDOM SENSORS

sensors, select 3rd or 4th sensor to improve the given

estimate of target location”. An algorithm based on

selecting a sensor in a direction in which the error

is minimized has been proposed. The ideal direction

is obtained by minimising one of the measures

obtained from the intersecting region of the error

annuli. The algorithm has a linear computational

complexity and is better suited in comparison with

the information theoretic approaches. There is small

error of 5o in the mathematically computed ideal

direction and the experimental results which is due

to linear approximation of intersection area as a

polygon. We show that the ideal direction can

be chosen in the direction of longest axis of the

intersection area. This measure gives better results

than the measure of area and circumference of

the intersection area. There is an improvement of

80.165% with 4 sensors selected with the proposed

algorithm over worst case location estimation error

with 3 randomly selected sensors.

IX. APPENDIX

Refer figure 25 and 26 for uniform additive error

model.

The ideal direction in case of two sensors at equal

distance from the target behaves in the same manner

as of the additive error. Refer fig. 25 in appendix. In

this case the ideal directions are the bisectors of the

visual angle or the bisectors of the exterior angle of

triangle formed by the two sensors and the target.

Thus, we can conclude that if the distance of two

sensors are equal/comparable

� If the visual angle
�
α is � π

2

– the ideal direction is at bisector of the
�
α

(interior angle bisector).

� If the visual angle
�
α is � π

2



– the ideal direction is perpendicular to the

bisector of the
�
α (exterior angle bisector).

S2

Target
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d2d1

dir2
h dir1
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εmeassin � α � εmeassin � α �
α

θ1
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Fig. 25. Ideal direction in case of additive error
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Fig. 26. Additive measurement error
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