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ABSTRACT

In this paper we propose a method for selecting an appropriate
subset of sensors with a view to minimize estimation error
while tracking a target with sensors spread across in a 2-
dimensional plane. In particular, we address the problem of
”given N sensors, select n < N sensors to improve the given
estimate of target location”. Only the selected sensors need to
measure distance to the target and communicate the same to
the central ”tracker”. This minimizes the bandwidth and energy
consumed in measurement and communication while achieving
near minimum estimation error. In this paper, we have proposed
that the sensors be selected based on three measures viz. (a)
collinearity, (b) spread, and (c) proximity to the target. We use
least square error estimation technique to compute the target
location using distance measurements subject to multiplicative
errors from multiple sensors.

Index Terms— Target tracking, Target localization, Sensor
selection

I. INTRODUCTION

We consider the problem of estimating the location of a
moving target ’T’ in a 2-dimensional plane. The target is
moving at a speed of at most s kmph. Similarly, the direction of
its movement can change at a rate no more than η radians/sec.
For a sample trajectory of a moving target in a 2-dimensional
plane, please see Figure 1.
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Fig. 1. Trajectory of the target ’T’ in 2-dimensional plane.

For the present, we assume that the target is not aware of its
own location, or, if it is aware of its location, then it does not
share this information with any other device. In either case,
we assume that it is possible for sensors, such as s1 located at
[x1,y1], to ”measure” the distance from/to the target (located

at say (x0,y0)), and thereby estimate the location of target ’T’.
Several methods for measuring distance between a sensor and
the target are available. See [1], [2] for methods based on radio
signal strength (RSSI) and [3], [4] for methods based on time
difference of arrival (TDOA).

Irrespective of the method used to measure distance, the fact
remains that all such measurements are subject to error. Two
models have been studied in the literature, viz. (a) additive,
and (b) multiplicative. These are subsequently described in
some detail (see also our earlier paper [5]). In this paper, we
largely confine ourselves to using the multiplicative model for
errors.

Even though the distance between a given sensor and the
target is known only with some error, it is possible to use
distance measurements from 3 or more sensors to ’estimate’
the location of the target. This, of course, assumes that (a)
the location of the sensors is known to the central device
responsible for estimating the location of the target, (b) the
sensors are time synchronized so that all available sensors can
”measure” distance at about the same time, and (c) the sensors
are able to communicate their measurements to this central
device. In this paper, this central device is referred to as the
”tracker”.

Since the target is moving and since a sensor must be
within a certain distance from the target (before it can detect
the presence of the target and measure distance), we assume
that there are several sensors spread across the 2-dimensional
plane. In fact, we require that an adequate number of sensors
be located in and around any given point in the 2-dimensional
plane. If ρ number of sensors are randomly and uniformly
distributed per unit area then the expected number of sensors
within range r0 of the target at any location, E(ζ) = ρπr2

0.
However, this is not enough. We insist that the probability
that the number of sensors capable of measuring distance
to the target, ζ, is 3 or more, viz. P(ζ ≥ 3), is nearly 1
(see also [6]). Preferably, there are more than 3 sensors so
that one may either (a) use measurements from all available
sensors to estimate the location of the target, or (b) compute
an estimate based on measurements from a subset of 3 or
more sensors suitably selected to minimize estimation error. In
this paper we follow the second approach since it allows one
to minimize communication overheads and conserve battery
power available to sensors. Accordingly, this paper is about



suitably selecting n sensors (typically 3 or 4) from a given set
of N sensors so as to minimize error in location estimation.

II. MOBILE TARGET TRACKING

With this background, we are now in a position to outline
the overall scheme for tracking the target as it moves in the
2-dimensional plane.

Let Lk = [xk,yk] be the actual location of the target at time
tk. Let L̂k−1 = [x̂k−1, ŷk−1] and L̂k = [x̂k, ŷk] be the estimated
location of the target at time tk−1 and tk, respectively. (Please
see Figure 2.) The latter estimate L̂k is obtained based on (a) an
a-priori estimate of the target’s location L̄k = [x̄k, ȳk], and (b)
measurements made at tk by sensors σ1

k ,σ
2
k , and σ3

k located at
λ1

k ,λ
2
k , and λ3

k , respectively. The a-priori estimate L̄k = [x̄k, ȳk]
may have been obtained based on its estimated location at two
time instants tk−1 and tk−2 (see Figure 2).
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Fig. 2. Estimated location of the target on the basis of a-priori estimate.

The new estimate of the location of the target at time tk+1

is obtained thus:

• Step 1: Given the estimated location of the target L̂k and
L̂k−1 at times tk, and tk−1, respectively, compute an a-
priori estimate L̄k+1 at time tk+1 as

L̄k+1 = αk+1(L̂k − L̂k−1)

where, αk+1 = tk+1−tk
tk−tk−1

. (See Figure 2.) This a-priori esti-
mate is simply an extrapolation of its location assuming
that the average velocity during [tk, tk+1] is the same as
the average velocity during and [tk −1, tk].

• Step 2: Given that the target is approximately located
at L̄k+1, identify an appropriate subset of 3 sensors1, viz.
σ1

k+1,σ
2
k+1, and σ3

k+1 from a given subset of sensors {si}.
• Step 3: Sensors σ1

k+1,σ
2
k+1, and σ3

k+1 obtain distance
measurements d1

k+1,d
2
k+1, and d3

k+1, respectively, and
communicate the same to the central ”tracker”.

• Step 4: The ”tracker” computes a least square error
estimate of the target location, L̂k+1, such that ∑i=3

i=1 e2
i

is minimized. Here, ei = ‖L̂k+1 −λi
k+1‖

1
2 − di

k+1, and

1or possibly more.

‖L̂k+1 − λi
k+1‖ is the Euclidean distance between esti-

mated location of target L̂k+1 and λi
k+1 = [xi

k+1,y
i
k+1],

the location of sensor σi
k+1. This method is described

in Section IV.

In this paper, we focus attention on Step 2, viz. that of
selecting an appropriate subset of 3 (or more) sensors with
a view to minimize the estimation error. Note that only the
selected sensors need to measure distance to the target and
communicate the same to the central ”tracker”. This minimizes
the bandwidth and energy consumed in measurement and
communication while achieving near minimum estimation
error.

Section III describes related work in the area of target
tracking and sensor selection. Location estimation has been
described in Section IV, while Section V and Section VII
describe the method and the algorithm for sensor selection,
respectively. We present simulation results in Section VII.

III. RELATED WORK

Several researchers have focused attention on the problem of
estimating the location of a fixed target, given measurements
from a subset of sensors. Their findings are reported in [1],
[3], [7], [8], [9], [10], [11], [12], and [13]. Their approaches
differ from each other on the basis of (a) the number of sensors
required, (b) the nature of measurements, and (c) the technique
used to estimate the location.

• Priyantha et al [3] estimate location of the target using
trilateration using distance measurements based on TDOA
from 3 different sensors.

• Bahl et al [1] estimate location of the target using
trilateration, but using RSSI measurements. They build
a radio map of the site and locate targets based on its
radio signal strength measurements.

• Triangulation is used in robotics [13] to estimate the
location of the robot. This requires 3 or more angle of
arrival (AoA) measurements to estimate the location of
the robot.

• Information theoretic approach has been used in sensor
networks in [8]. Bayesian filtering is used to estimate
location of the target. Multiple measurements of different
types can be used in this approach.

In this paper, however, we use distance measurements from
a given set of 3 or more sensors. The estimate is a least square
error estimate.

Tracking of mobile targets using sensor networks has been
studied in [14], [15], [16], [17], and [18].

• In [14], [15] the location of the target is approximated by
the location of a sensor when the target comes within the
range of that sensor. The resulting resolution is the same
as the range of sensors. The resolution can be improved
if measurements from multiple sensors are considered.

• In [17] the location of the target is computed by mini-
mizing a function of the error in making acoustic mea-
surements. Groups of sensors called clusters are formed.
Acoustic measurements from all the sensors in the cluster



are used by the cluster head to compute the location of
the target.

• In [16], [18], the target is tracked by a group of sen-
sors that form a logical tree for the purpose of sharing
measurement data.

In this paper, and as described earlier in Section II, a group
of sensors in and around an a-priori estimated location of the
target is selected. This group changes as and how the target
moves within the 2-dimensional plane.

With respect to sensor selection, several papers [5], [8], [9],
[11], and [12] have used different approaches.

• Zhao et al have proposed in [8] and [9] that sensors
responsible for measuring distance (using acoustic sig-
nals) be selected such that (a) the use of communication
bandwidth is minimized, and (b) the error in locating the
target is minimized. The selection procedure however,
assumes that an a-priori estimate of the location is
available. Further, the estimate is based on Bayesian
maximum likelihood estimator.

• Wang et al [11] also assume a-priori knowledge of the
target location also expressed as a Gaussian probabil-
ity distribution function. The error in TDOA or AoA
measurements by sensors is also specified as a Gaussian
probability distribution. While the estimate of the target
location is based upon Bayesian filtering, the sensors
selected to provide measurements are those that maximize
the entropy difference between the a-priori and posteriori
estimates of the target location.

• Isler et al [12] use AoA measurements from multiple
sensors. The target location is estimated based on the
region of intersection of two or more 2-dimensional
cones resulting from uncertainty in AoA measurements.
Sensors which minimize the area of such intersection are
selected. This scheme requires an a-priori knowledge of
the location of the target.

• In our earlier work [5], we have considered the problem of
selecting the nth sensor given (a) distance measurements
from (n−1) sensors (these measurements are subject to
multiplicative errors), and (b) an a-priori estimate of the
target location. The nth sensor thus selected minimizes
the area of intersection of error annulus.

The work reported in this paper is different from our earlier
work. Here, we have proposed that the sensors be selected
based on three measures viz. (a) collinearity, (b) spread, and
(c) proximity of sensors from the target. We use least square
error estimation technique to estimate the target location.

IV. TARGET LOCATION ESTIMATION

Before discussing ways to select a subset of sensors, we
discuss the method used to obtain a least square error estimate
of the location of the target at time tk. For convenience we drop
the subscript k in tk and instead discuss the estimate at time
t. The estimation problem can be stated thus:

Given distance measurements d1, d2, . . . , dn from sensors
s1, s2, . . . , sn, respectively located at λ1 = [x1,y1], λ2 = [x2,y2],
. . . , λn = [xn,yn], compute an estimate L̂ = [x̂, ŷ] such that

i=n

∑
i=1

{
√

(x̂− xi)2 +(ŷ− yi)2 −di}2

is minimum. The measurements are possibly subjected to
unknown measurement errors.

This is a standard non-linear optimization problem. Of the
standard algorithms available, we have experimented with
(a) Steepest Descent algorithm [19], and with (b) Levenberg
Marquardt algorithm [19] to compute the optimal [x̂, ŷ]. In
either case, the method requires an initial ”guess”. We have
proposed that this guess be obtained by solving

(n
2

)

linear
equations2. If n > 3, then the system of

(n
2

)

linear equations is
overdetermined, and therefore the initial guess is itself based
on a linear least square error solution to these equations.

Our experience shows that (a) the number of iterations in
Steepest Descent method were less than 20, while these were
less than 6 in case of Levenberg Marquardt, and (b) the above
method for computing the initial guess is reasonably adequate
in helping one to descend to the optimum.

No. of Error in
Sensors Optimized Estimate

3 7 m
4 2.6 m
5 2.5 m

TABLE I

LOCATION ESTIMATION ACCURACY AND NUMBER OF MEASUREMENTS.

The third and somewhat more important outcome of the
experiments conducted by us helps to demonstrate that while
3 sensors is an absolute must to locate the target, availability of
distance measurement from a 4th sensor significantly reduced
the estimation error. However, a measurement from a 5th

sensor provides only marginal improvement in the estimate.
See Table I.

V. SENSOR SELECTION

The positions of sensors relative to each other and relative
to the position of the target play an important role in location
estimation accuracy. The sensor selection technique proposed
in this paper is based on three factors, each of which affects
the accuracy of estimated location of the target. These are (a)
collinearity of sensors, (b) deviation from the ideal spread, and
(c) proximity of selected sensors from the target.

A. Collinearity of Sensors

Consider the distribution of sensors s1, s2, and s3 in a 2-
dimensional plane shown in Figure 3, and let the distance
measurement be d1, d2, and d3. If, for the moment, we assume
that the error in distance measurements in near zero, then it
can be concluded that the target is either located at position A,
or at position B. Note, this conclusion could also have been

2These are obtained by subtracting equations of the type
√

( x̂− xi)2 +( ŷ− yi)2 − di = 0 from one another, thereby resulting in
(n

2

)

linear equations.
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Fig. 3. Ambiguity in target location in case of collinear sensors.

arrived at using distance measurements from sensors s1 and
s2, or s1 and s3, or s2 and s3. That is, measurement from a
third sensor does not add value. The reason is, of course, that
the sensors s1, s2 and s3 are collinear. Distance measurement
from another sensor which is not collinear will additionally
be required to resolve whether the target is at location A,
or at B. We, therefore, define a measure of collinearity, that
will subsequently be used to select an appropriate subset of
sensors. This measure of collinearity is defined as the residual
error resulting from a linear least square fit through the given
n sensors. That is, the collinearity coefficient

Φ = min(m,c)

n

∑
i=1

{yi −mxi − c}2 (1)

where m is the slope and c is the y-intercept of a straight line
fit y = mx+ c through s1, s2, and s3.

Note, if the collinearity coefficient is small, the sensors are
almost collinear. In that case the location estimation error is
possibly large3. But if the collinearity coefficient is large, the
location estimation error is likely to be small. These results
have been discussed at length in our earlier work [5].

B. Proximity of sensors to target

Having established one heuristic based on collinearity of
sensors for selecting a subset of sensors, we now discuss how
far the sensors are preferably placed. Below, we establish the
fact that given a choice, the sensors are preferably placed as
close as possible to the target. This conclusion is based on the
assumption that measurement error is multiplicative in nature.
That is, if the actual distance between a sensor si and the
target is δi, and the measured distance is d i, then the error is
assumed to be | ei |=| di − δi |= εδi, where the parameter ε,
0 ≤ ε ≤ 1, helps indicate the amount of error as a percentage
of the actual distance. As an example, if the measurement
error is 20% (ε = 0.2), and the actual distance is 20m, then
the measured distance is between 16m to 24m.

We will now show how the uncertainty in the location of
the target increases with increase in the distance of the sensor
from the target.

3Another reason for the large error in estimated location is that we can not
have a good initial ”guess” of the location of the target.
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Fig. 4. Role of proximity of sensors from the target.
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Consider a case where three sensors s1, s2, and s3 are at
distance δ from the target with equal visual angles4, αi = 2π

3
(see Figure 4). Consider the region of intersection of the error
annuli corresponding to the computed distance between the
a-priori estimated location of the target and the three sensors.
Clearly, the region formed around the a-priori estimate of its
location is the one in which the probability that the target
is located is the maximum. For simplicity, this latter region
is approximated by a hexagon obtained by intersecting bands
formed by tangents to the error annuli. The largest diagonal
of the parallelogram corresponds to the maximum uncertainty
in the location of the target. The length of largest diagonal,

l =
εδ

sin(π
3 )

where ε indicates the amount of error in distance measurement
as a percentage of the actual distance. The error in location
estimation is linearly proportional to the distance of the sensors
from the target. This is also confirmed with the help of
simulations where the δ, the distance of the three sensors s1,
s2, and s3 (see Figure 4) is simultaneously increased from 10m
to 50m and the error in estimated location is observed. This
is plotted in Figure 5.

We are now ready to consider the selection of (say) 3
sensors based on their proximity from the target. Let the target
’T’ be actually located at [0,0]. Let sensors s1, s2, s3, and
s4 be located at locations λ1, λ2, λ3, and λ4, respectively.
Then, given that everything else is the same, e.g. the extent of

4The visual angle is the angle incident upon the target from the two sensors.
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Fig. 6. Selection of sensor based on proximity to the target.

collinearity and spread (discussed in Subsection V-C), which
of the following two selections of sensors (a) s1, s2, and s3

(see Figure 6 (a)), or (b) s1, s2, and s4 (see Figure 6 (b)) is
likely to result in a better estimate of the location of the target.

The answer to this question is clearly (a) since we assume
multiplicative measurement error because of which | e3 |= ε |
δ3 |<| e4 |= ε | δ4 |. As a consequence, the estimation error is
likely to be smaller in case of (a) as opposed to case (b).

But in order to address a similar question in respect of
two selections of (a) sensors s1, s2, and s3, and (b) sensors
s4, s5, and s6, where none of the sensors is common, we

define a cumulative measure for proximity È =

√

∑n
i=1 | ei |2 =

ε
√

∑n
i=1 δi2.

But note, the above formula for È refers to the actual
distance δi, which, however, are not available. For that matter,
even measured distance d i is unavailable since measurements
are made only after a subset of sensors are suitably selected.
Necessarily, then, the measure of proximity must be based
upon the estimated distance between the given sensor si and
an a-priori estimate of the location of the target. Thus if an
a-priori estimate of the target is L̄, and the sensors (under
consideration) are s1, s2, . . . , and sn, then the proposed
measure of the proximity is

E = ε

√

n

∑
i=1

‖λi − L̄‖2 (2)

Clearly, if one were to select the n sensors for which
ei = ε‖λi − L̄‖, i = 1,2, . . . ,n is the smallest then the above
measure of proximity is minimized. However, this approach is
not going to be useful since one would need to consider other
measurements, such as collinearity and spread (discussed in
next Subsection) before selecting a subset of sensors.

C. Spread

If the sensors responsible for distance measurements are
well distributed around the target, for instance with equal
visual angles between each other, then the estimation error
is likely to be small. This is so since the area of intersection
of the error annulus will be small [20]. (Please see Figure
7 (a) for ideal distribution of 3 sensors and Figure 7 (b) for
non-ideal distribution of 3 sensors.)

We therefore propose a measure of the extent to which the
visual angles deviate from the ideal spread of sensors. The

Fig. 7. Region of intersection of annulus for 3 sensors.

ideal situation corresponds to n visual angles αi = 2π
n , for

i = 1,2, . . . ,n. Please see Figure 7 (a) for an example of the
ideal spread for 3 sensors where αi = 2π

3 for i = 1,2, . . . ,3.
A measure which captures deviation from the ideal spread in
case of n sensors, viz. αi = 2π

n , i = 1,2, . . . ,n, can be defined
thus:

∆(λ1
,λ2

, . . . ,λn) =

√

i=n

∑
i=1

(
2π
n

−αi)2 (3)

where λi, i = 1,2, . . . ,n is the location of sensor5 si, αi, i =
1,2, . . . ,n are the actual visual angles between sensors si and
si+1, respectively. In the ideal case when αi =

2π
n , the deviation

∆(λ1
,λ2

, . . . ,λn) = 0. When all the sensors are collinear with
the target and are on one side of the target, this measure of the
spread is the maximum. In this case, αi = 0, i = 1, 2, . . . , n-1,

and αn = 2π. As a consequence, ∆(λ1,λ2, . . . ,λn) = 2π
√

n−1
n ,

which for n = 3, is 5.13, and for n = 4, ∆ = 5.44.
Consider a case where three sensors s1, s2, and s3 are placed

as shown in Figure 8. Sensors s2 and s3 are placed at an
angle θ with sensor s1. An increase in θ from 0 to π results

5These are suitably sorted (and thereafter numbered) according to the angle
that it forms with the x-axis (assuming that the target is at [0,0]).



in different values of deviation from the ideal spread, ∆, as
shown in Figure 9.

Now consider the region of intersection of the error annuli
corresponding to the computed distance between the a-priori
estimated location of the target and the three sensors (see
Figure 7). The latter region is approximated by a polygon
obtained by intersecting bands formed by tangents to the error
annuli. The largest diagonal of the parallelogram corresponds
to the maximum uncertainty in the location of the target. The
length of the largest diagonal, l, and the corresponding error in
estimated location (using least square error technique) vs. θ are
shown in Figure 10. From Figures 9, 10, it can be observed that
(a) the error in estimated location increases with an increase in
the length of the largest diagonal, l, and (b) with an increase
in the value of deviation from the ideal spread, ∆, the error in
estimated location increases too.

s1

s2

s3

θ
θ

Fig. 8. Role of deviation from the ideal spread, ∆.
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In a more generalized scenario, to see the effect of deviation
from the ideal spread on the error in estimation of location of
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Fig. 11. Effect of spread of 3 sensors on location estimation error.
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Fig. 12. Effect of spread of 4 sensors on location estimation error.

the target, we placed n sensors, all at the same distance from
the target. This ensured that the effect of error in distance
measurement was constant. The n sensors (3 or 4 as the
case may be) were systematically placed at a wide variety of
locations, thereby yielding different values for deviation from
the ideal spread.

Figure 11 shows the results with 3 sensors. The location
estimation error is low for placements that result in smaller
deviation from the ideal spread, ∆. Similar behavior has been
observed in case of 4 sensors (see Figure 12).

Here again, as with measure of proximity, the deviation for
the ideal spread must be calculated on the basis of an a-priori
estimate of the location of the target.

VI. ”CSP” ALGORITHM FOR SENSOR SELECTION

In this paper, we propose that a subset of n sensors, from
those sensors which have adequate available battery power, be
selected such that

• the collinearity coefficient is maximized,
• deviation from the ideal spread is minimized, and
• the measure of proximity to the target is minimized.

This is a multi-objective optimization problem. Below, we
propose an algorithm, ”CSP” to solve this problem. Though
it results in an approximate solution, the resultant error in
estimated location is generally expected to be near minimum.
For a given φ0, and δ0:
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• Step 1: Eliminate a selection of subset of n sensors (out
of

(N
n

)

) for which the collinearity coefficient, Φ ≤ φ0.
• Step 2: Of the remaining selections, consider only those

for which deviation from the ideal spread, ∆ < δ0.
• Step 3: Finally, select that subset of n sensors for which

E is the minimum.

Having eliminated all selections that are near-collinear, we
are left with subsets of sensors (or selections) that need to be
compared on the basis of their respective deviations from the
ideal spread, ∆, and measure of proximity, E. This comparison
is best carried out by plotting them on a 2-dimensional plot,
as in Figure 13.

If one were to compare the 6 different selections C1 through
C6, it would be clear that C3 and C6 are ”poorer” selections
compared to C2 or C4 in both respects, ∆, and E. However, the
same is not true of C1, C2, C4, C5. They are ”equally good”.
They present different trade-off between the two criteria for
selecting sensors.

An application of Step 2 of the above algorithm, however,
suggests that we discard C1 on the basis of ”deviation from
the ideal spread” being large. Step 3 then identifies C2 to be
the ”best” selection.

The complexity of the above algorithm is O(nN3) where
N is the total number of sensors which have detected the
target, n is the number of sensors to be selected, and n << N.
However, this should not be a major deterrent since we propose
to replace one sensor every time a new estimate is required to
be obtained. Specifically, we assume that as the target moves,
if sensors {s1, s2, s3} have made measurements at time tk,
then at time tk+1, we drop one of the sensors s1, s2, or s3

and select a sensor s4 suitably so as to minimize the error in
estimated location of the target. In this case, the number of
possible selections to be analyzed is 3(N−2). As a result, the
complexity of the algorithm is O(N).

The above algorithm considers the three parameters viz.
collinearity, spread, and proximity, in that order. Clearly, there

are other possibilities resulting from considering the three
parameters in different order. These options are tabulated in
Table II and evaluated in detail using simulation.

Algorithm Code Order of parameters considered

1 CSP Collinearity, Spread, Proximity
2 SCP Spread, Collinearity, Proximity
3 CPS Collinearity, Proximity, Spread
4 SPC Spread, Proximity, Collinearity
5 PCS Proximity, Collinearity, Spread
6 PSC Proximity, Spread, Collinearity

TABLE II

ALGORITHMS WITH DIFFERENT ORDERING OF THE THREE PARAMETERS.

VII. SIMULATION RESULTS

Simulations were carried out with N sensors (N = 10 or 20)
randomly placed within 100m of the ”actual” location of the
target. The sensing range is also r0 = 100m. The measurement
error was assumed to be 15%, that is ε = 0.15. The target
was assumed to be at [0,0] and the a-priori location of the
target was also assumed to be [0,0]. n = 3 sensors were
subsequently selected according to the algorithm given above.
Therein, the threshold for collinearity coefficient, φ0 = 40m2,
and the threshold for the deviation from the ideal spread, δ0 =
2 or δ0 = 4. The results averaged over ten random placements
of N sensors have been tabulated in Table III and IV.

We have also compared the results obtained using the above
algorithm with other methods for sensor selection that are
based on (a) minimum measure of proximity to the target
only, and (b) minimum deviation from the ideal spread only.
The error in estimated location based on our algorithm is
also compared with the error resulting from selecting the
”best” possible subset of sensors. The latter is obtained by
exhaustively computing the least square error estimate for
each possible subset of sensors. From Table III it may be
observed that the proposed algorithm results in significantly
lower estimation error when compared with algorithms based
on (a) proximity only, and (b) deviation from the ideal spread
only. In fact, the resulting estimation error is close to the error
resulting from the ”best” possible subset of sensors.

Selection Selection Selection Absolutely
based on based on based on The best
proximity spread proposed subset of

N only only algorithm sensors
(δ0 = 2)

10 16.55m 7.66m 6.84m 5.53m
20 8.75m 7.51m 5.02m 4.16m

TABLE III

n = 3, φ0 = 40m2.

Further, it is observed that the error is significantly lower
for δ0 = 2, as opposed to δ0 = 4 (see Table IV). This can
be explained thus: by assigning larger threshold, viz. δ0 = 4,
one is effectively reducing the significance of the parameter,
”deviation from the ideal spread”. Therefore, it is important



Selection Selection Absolutely
based on based on The best
proposed proposed subset of

N algorithm algorithm sensors
(δ0 = 2) (δ0 = 4)

10 6.84m 8.50m 5.53m
20 5.02m 6.42m 4.16m

TABLE IV

n = 3,φ0 = 40m2.

to choose appropriate values of the thresholds for parame-
ters, ”deviation from the ideal spread”, δ0, ”coefficient of
collinearity”, φ0, and possibly e0, where e0 is the threshold
for ”measure of proximity”. This is a difficult problem. One
method of arriving at a suitable value for the threshold is to
retain a certain fraction (say 50%) of candidate selections. As a
result, the proposed algorithm ”CSP”, above, may be rewritten
as:

• Step 1a: Compute φ0 as the median collinearity coeffi-
cient, considering all selections of subsets of n sensors
(out of

(N
n

)

).
• Step 1b: Eliminate all selections of n sensors for which

the collinearity coefficient, Φ ≤ φ0.
• Step 2a: Compute δ0 as the median deviation from the

ideal spread, considering only remaining selections.
• Step 2b: Of the remaining selections, consider only those

for which deviation from the ideal spread, ∆ < δ0.
• Step 3: Finally, select that subset of n sensors for which

E is the minimum.

The results corresponding to the above algorithm are tab-
ulated in Table V together with results that correspond to an
algorithm where 75%, 50%, and 25% of the possible selections
of subset of sensors are retained (and for both N = 10, and N
= 20). Two things can be concluded, viz. (a) the parameter,
deviation from the ideal spread should be given due weightage,
and (b) by suitably identifying the percentage of selections to
be retained one can approach the ”best possible selection”.

Further, we compare results of ”CSP” algorithm with re-
sults from other algorithms where the three parameters, viz.
collinearity, spread, and proximity are considered in different
order (see Table II). These results are presented in Table
VI with thresholds calculated based on medians. It can be
observed that the ”CSP” algorithm achieves near minimum
estimation error as compared to other algorithms.

For N = 20, the error resulting from the proposed algorithm
is always smaller since with larger number of randomly placed
nodes there is a possibility of finding a ”better” subset of
sensors.

VIII. CONCLUSION

We consider the problem of estimating the location of
a moving target ’T’ in a 2-dimensional plane. We focus
attention on selecting an appropriate subset of 3 (or more)
sensors with a view to minimize the estimation error. Only
the selected sensors need to measure distance to the target and

Min. Min.
CSP poss. (CSP poss.

φ0 δ0 (N = 10) (N = 10) (N = 20) (N = 20)
50% 50% 6.82m 5.53m 5.44m 4.16m
50% 25% 6.58m 5.53m 5.04m 4.16m
25% 50% 7.72m 5.53m 6.77m 4.16m
25% 25% 7.36m 5.53m 6.32m 4.16m
75% 25% 6.33m 5.53m 4.76m 4.16m
25% 75% 8.15m 5.53m 7.65m 4.16m

TABLE V

”CSP” ALGORITHM WITH DIFFERENT THRESHOLDS OF φ 0 , AND δ0 , (n =

3).

Min.
N CSP CPS SCP SPC PCS PSC poss.
10 6.82m 7.21m 7.78m 9.60m 7.26m 10.11m 5.53m
20 5.44m 7.29m 6.53m 11.23m 7.24m 11.62m 4.16m

TABLE VI

ALGORITHMS WITH MEDIAN THRESHOLDS (n = 3).

communicate the same to the central ”tracker”. This minimizes
the bandwidth and energy consumed in measurement and
communication while achieving near minimum estimation
error.

In this paper, we have proposed that the sensors be selected
based on three measures viz. (a) collinearity (b) spread, and
(c) proximity to the target. We use measurements subject to
multiplicative errors from multiple sensors. Further we use
least square error estimation technique to compute the target
location.

Our experiments have shown that while 3 sensors is an
absolute must to locate the target, availability of distance mea-
surement from a 4th sensor significantly reduces the estimation
error. However, a measurement from a 5th sensor can only
marginally improve upon the estimate. We have presented
results of our algorithm with n = 3.

The sensor selection is done by the central ”tracker” and
only selected sensors measure distance to the target and
communicate them to the central ”tracker” for estimating the
target location.

We propose that a subset of n sensors, from those sensors
which have adequate available battery power, be selected such
that (a) the collinearity coefficient is maximized, (b) deviation
from the ideal spread is minimized, and (c) the measure
of proximity to the target is minimized. This is a multi-
objective optimization problem. The proposed algorithm gives
an approximate solution. The results have shown that it is
possible to achieve near minimum error in estimated location
of the target.
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