The affine subgroup

In an affine space $ {\cal A}^n$ an affine transformation defines a correspondence $ {\bf X} \leftrightarrow {\bf X'}$ given by:

$\displaystyle {\bf X'} = {\bf A} {\bf X} + {\bf b}
$

where $ {\bf X}$ , $ {\bf X'}$ and $ {\bf b}$ are $ n$ -vectors, and $ {\bf A}$ is an $ n \times n$ matrix.

Clearly this is a subgroup of the projective group. Its projective representation is

$\displaystyle {\bf T} = \left[
\begin{array}{cc}
{\bf C} & {\bf c} \\
{\bf0}_n^T & t_{33}
\end{array}\right]
$

where $ {\bf A} = \frac{1}{t_{33}}{\bf C}$ and $ {\bf b} = \frac{1}{t_{33}}{\bf c}$ .

The affine subgroup preserves the hyperplane at infinity.

$\displaystyle \left[
\begin{array}{cc}
{\bf A} & {\bf b} \\
{\bf0}^t & 1
\end{...
...\left(
\begin{array}{c}
x_1 \\ x_2
\end{array}\right) \\
0
\end{array}\right)
$

On the other hand, a general projective transformation moves points at infinity to a finite point.

$\displaystyle \left[
\begin{array}{cc}
{\bf A} & {\bf b} \\
{\bf v}^t & v
\end...
...ray}{c}
x_1 \\ x_2
\end{array}\right) \\
v_1 x_1 + v_2 x_2
\end{array}\right)
$



Subhashis Banerjee 2008-01-20