On health data architecture design

Subhashis Banerjee

Computer Science and Engineering
IIT Delhi

Law Economics Policy Conference, Delhi
November 27, 2018
Why do we need it?

- Electronic Health Records and individual health.
- Diagnostics
- Public health monitoring.
- Socio-economic studies.
- Epidemiology.
- Research.

Caveat: Data cannot be substitute for fundamentals - PHCs, doctors, ...

Concerns: Privacy; potential imbalance between private and public.
Stunting in (North) India

Source: NFHS-4
Outline

- Objectives of a health data system design
- Operational considerations
- Design considerations: alternatives
Objectives: Health records (what should be recorded?)

- Birth record and certificate.
- Immunisation records.
- PHC records, all medical episodes, prescriptions and doctor’s opinions.
- Tests, imaging, radiology and pathology reports.
- Hospital case records, discharge certificates.
- Lifestyle indicators (dietary habits, smoking, drinking, activity patterns), chronic conditions.
- Optionally record history of self-medication (quackery included), home measurements of BP, sugar, etc., Garmin, FitBit and other wearables.
- **Genetic data?**
- Death record and certificate.
Objectives: Health records and access

- Federated data collection and management of health records.
- Individual centric architecture. Individual is the data controller.
- Ensure that no access to health records is possible without consent.
- Selectively grant read/write access to health professionals, hospitals, test and imaging centres, insurance.
- All accesses to be logged in a non-repudiable and immutable manner.
- No duplicated data at hospitals, PHCs? Restrict post-treatment access?
Objectives: Analytics

- Diagnostics
- Regular operational surveillance (anomalies and alerts)
 - Epidemic and endemic conditions like dengue, malaria, TB, cholera, typhoid, . . .
 - Malnutrition, vitamin or other micro-nutrient deficiencies in populations and regions.
- Epidemiological studies
 - Purpose specific analytics.
- Research and non-profit studies
 - May require aggregated digests and anonymised longitudinal data.
- Commercial research
 - Anonymised and aggregated data.
 - Data economics? Consent? Payments?
Objectives: Privacy and security

- **Access control**
 - Only *programmatic access* through secure APIs.
 - Only legitimate and authenticated access, enabled by consent and authorisation.
 - No unauthorised linking with other data and personal identifiers.
 - Non-repudiable and immutable logs of all accesses. Access control also for the logs.

- **Purpose limitation**
 - Ensure that no access violates purpose of consent or authorisation.
 - Accessing programs to provide proofs/guarantees.
 - ex-ante rather than ex-post.

- **Regulatory framework.**
Operational considerations: things to watch out for

▶ UHID derived from a **national digital identity**.

▶ **Digital literacy?** Network access in remote areas? Authentication, authorisation and consent methods?

▶ Local caching of data?

▶ **Inter-operability**. Data portability or where-is?

▶ APIs and use cases.

▶ **Standardisation** and inter-operability of software and Apps at PHCs, hospitals and clinics, imaging and test centres, pathologists, radiologists.

▶ **A comprehensive law** harmonious with digital identity, data protection and IT Acts. No money bill please!
Design considerations: Blockchains?

- Permissioned Blockchains to maintain non-repudiable logs of all data generation and data access.
- PHR data compartmentalised and encrypted with a hierarchy of personal keys. User in control of data.
- Each consensus participant maintains all data; either in monolithic databases, or in decentralised, distributed, fault tolerant, peer-to-peer file systems such as the IPFS.
- Consent and authorisation architecture based on smart contracts.
Design considerations: Blockchains?

- **Advantages:**
 - Transparency, correctness, non-repudiation, immutable.
 - Basic framework well tested and standard (except scalability, of course).
 - Can support federated generation of information.
 - Multiple central authorities (miners).
 - Distributed protocol (but not really decentralised in terms of storage and computations).
 - Can support APIs.
 - Smart contracts natural for consent and authorisations architecture.
Design considerations: Blockchains?

▶ **Disadvantages:**
- State capacity?
- PoW or BFT may require *excessive redundant computation*? Power plants?
- Still require **strong regulatory framework** for *access control* (prevent bypass of access through smart contracts) and **purpose limitation**. Centralised DPA? Replicated at each consensus participant?
- Support *access for analytics* through smart contracts? Private keys? Centralisation? Devil lies in details?
Design considerations: Monolithic?

▶ **Advantages:**
 ▶ Easier, from a state-capacity point of view.
 ▶ Can be made secured, fault tolerant.
 ▶ Regulated access control and purpose limitation easier to implement?
 ▶ Non-repudiable and immutable through fault tolerance and regulated access control?

▶ **Disadvantages:**
 ▶ Transparency.
 ▶ Convincing people.
Design considerations: Others

- Interface design for individuals, PHCs, ...
- Digital literacy? Interface design for consent.
- Methods for **access control** and **purpose limitation**.
- Limits of anonymization of medical data with guarantees against re-identification attacks?
- Key management. Reset? Hierarchy of master keys (Merkle tree based?) will imply centralisation.
- Connectivity? Caching design? Lazy commits?
- Above all, **whitepapers** and **public consultations**.