
RTker

Anubha Verma
Shikha Kapoor

Features

Modular Design
 Isolation of Architecture/CPU dependent and

independent code – Easy to Port

Pluggable Scheduler
Two level Interrupt Handling
Small footprint
Oskit’s Device Driver Framework

Pluggable Scheduler

 Scheduler - part of the Application
 Kernel interacts with the scheduler through

an API
 Application developer needs to implement

the scheduler API
Can optimize on Data Structures & Algorithms

for implementing the scheduler

 Can optimize on scheduling overheads.

 The kernel interacts with the scheduler through a set of functions.

 Whenever a new thread is created the kernel calls a scheduler
function passing as argument the newly created thread.

 Subsequent scheduling of the thread & of all other threads in the
system is for the scheduler to decide.

 At each context switch time (on a timer interrupt) the kernel calls a
scheduler function to find out which thread to schedule next.

Block Diagram

Interrupt Handling in a real time operating system and a general
purpose operating system .

● Minimum possible interrupt latency.

● Bounded maximum interrupt latency.

The delay in execution of the Interrupt Service Routine(ISR) from
the time the device raises the interrupt is called interrupt latency.

 Interrupt latency arises mainly because of the three factors -

● Kernel's disabling the interrupts to protect the kernel data
structures from the interrupt service routines

● Kernel's processing time to call the ISR

● Device driver's disabling of interrupts because device
specification required it.

Two Level Interrupt Handling

 Two level Interrupt Handling
 Top Half Interrupt Handler

 Called Immediately – Kernel never disables interrupts
 Cannot invoke thread library functions - Race Conditions

 Bottom Half Interrupt Handler
 Invoked when kernel not in Critical Section
 Can invoke thread library functions

 Very Low Response time (as compared to Linux)

Rtker supports interrupt handling mechanism wherein it
remains responsive to the device while deferring accessing to
the shared data structures.

Immediate ISR
•kernel vectors to it in case of an interrupt
•may run with interrupts disabled
•should not call any kernel library function
•Typically it acknowledges the device about the interrupt.

Bottom Half ISR
•may be activated from the Immediate ISR
•scheduled in a thread context by a special thread called the
bottom half thread
•it runs in the context of a different thread and is free to make
any kernel library call.
•Typically it does data transfers to/from the kernel.

Kernel Level Synchronization

The following dummy code illustrates how
synchronization while accessing a shared kernel data
structure is done without disabling interrupts.

 oskit_u32_t dummy(void)
 {
 do_Context_Switch=0

/*

 Access any shared kernel data structure

 */
 do_Context_Switch=1;
 }

rtker's Device Driver Framework

 Motivation --> easy portability of existent device drivers.

 OSkit's Device Driver Framework has been used for
rtker. Rtker has provided implementation of all the
functions of OSkit's Device Driver Framework. These
functions in turn call the rtker's functions for thread
synchronization.

 Using the glue codes provided by OSkit, any Linux
Device Driver can be incorporated into this RTOS
without any change .

Thread Library
struct thread_info {

void *(*run) (void *);
void *arg;
unsigned int type; //PERIODIC, APERIODIC, RECOVERY,

//IDLE_THREAD, BOTTOM_HALF thread.
unsigned int stack_size;
int readyTime; int execTime;
int deadline;
struct thread_info *recov_info; }

 Thread Creation: struct tcb *thread_create(struct thread_info *tinfo)

 Thread Suspend: unsigned int thread_suspend(struct tcb *t)

 Thread Resume: unsigned int thread_resume(struct tcb *t)

 Thread Reset: unsigned int thread_reset(struct tcb *t)

 Thread Self: struct tcb * thread_self(void)

Typical Real Time Operating Systems support various
priority handling policies, like priority ceiling and priority
inheritance.

In rtker, the scheduling of threads (and hence priorities)
is not handled by the kernel but by the user defined
scheduling algorithm.

Functions like get priority and set priority in the
Scheduler API can be invoked by the semaphore
library for implementing the desired priority control
policy.

Semaphore Library & Scheduling API

Thread Control Block

struct tcb {
 u32_t status; // THREAD_ON_CPU, THREAD_READY,

THREAD_SUSPENDED THREAD_BLOCKED, THREAD_EXITED or
THREAD_MISSED_DEADLINE.

 struct reg_context thread_context;
 void *stack;
 struct thread_info thread_params;
 u32_t executedTime;
 struct tcb *recoveryTask;
 u32_t sched_field;
 u32_t magic_key;
};

 Set of functions which the application developer is expected to
code is a part of the sched_info structure . A pointer to the structure
is passed as argument to rtker_init() , during rtker initialization.

struct sched_info{
 spinlock_t sched_lock;
 oskit_u32_t (*init)(struct tcb *main_tcb);
 oskit_u32_t (*new_thread)(struct tcb *);
 struct tcb *(*heir_thread)(struct tcb *);
 oskit_u32_t (*set_mode)(struct tcb *,oskit_u32_t);
 oskit_u32_t (*reset_thread)(struct tcb *);
 oskit_u32_t (*delete_thread)(struct tcb *);
 oskit_u32_t (*set_priority)(struct tcb ,oskit_u32_t);
 oskit_u32_t (*get_priority)(struct tcb *);
 void (*tick)(void);}

Scheduler

The thread and the semaphore libraries are totally hardware independent.
They interact with the hardware dependent code through three functions and
some macros.

Modularity

void CPU_Context_Initialize(struct reg_context *the_context,void
*stack_base,
 unsigned int stack_size,
 void *(*entry_point)(void *,void *),
 void *(*thread_fun)(void *),
 void *thread_arg);

void CPU_Context_Switch(void *curr_thread, void *heir_thread)

int rtker_init(struct sched_info *sched);

This is the function for initialization of the Real Time Kernel. The
argument passed is the pointer to the scheduler structure. This
function is also responsible for setting up the interrupt tables, setting
up the timer, registering the timer interrupt service routine etc

Thread Init Function

void *thread_init_function(void *(*start_add)(void *),void
*param)

 {
 spin_unlock(&(scheduler->sched_lock));

do_Context_Switch=1;
start_add(param);
do_Context_Switch=0;
spin_lock(&(scheduler->sched_lock));

 Re initialize the context of the thread
scheduler->set_mode
(curr_thread,THREAD_EXITED); Context Switch
to a new thread

}

Schedule Function
void schedule(void) {
 Check the Bottom Half

do_Context_Switch = 0;
 spin_lock(&(scheduler->sched_lock)); -------------(1)

heir_thread=scheduler->heir_thread(curr_thread);
 if (!heir_thread) { heir_thread=idle_thread; }
 if (heir_thread!=curr_thread) {

struct tcb *out_thread=curr_thread;
curr_thread=heir_thread;
CPU_Context_Switch(&(out_thread->thread_context), &

(heir_thread->thread_context));
}

spin_unlock(&(scheduler->sched_lock)); ----------(2)
do_Context_Switch=1;

}

