
Real Time Operating Systems

Kunal, Mayank, Mohit
Nilay, Rahul

What is a Real Time System ?

● Capable of guaranteeing timing requirements
of the processes under its control

● Fast – low latency
● Predictable – able to determine task’ s

completion time with certainty
● Both time-critical and non time-critical tasks to

coexist

Hard vs Soft

● A hard real-time system guarantees that real-time
tasks be completed within their required deadlines.

● Requires formal verification/guarantees of being to
always meet its hard deadlines (except for fatal
errors).

● Examples: air traffic control , vehicle subsystems
control, medical systems.

● A soft real-time system provides priority of real-time
tasks over non real-time tasks. Also known as “ best
effort” systems. Example – multimedia streaming,
computer games.

Classification

● The type of system can be either a uni-
processor, mp or distributed system.

● Moving to an mp or distributed real time
systems adds lots of difficulty by requiring
real time communication and
synchronization mechanisms between the
processors.

Classification

● There are two different execution models:
● In a preemptive model of execution a task

may be interrupted (preempted) during its
execution and another task run in its
place.

● In a non-preemptive model of execution
after a task that starts executing no other
task may execute until this task concludes
or yields the CPU.

Classification

● A static system is a system where all
tasks are knows at design time including
their release times (full apriory
knowledge).

● A dynamic systems is a system that can
dynamically create and destroy tasks at
runtime (No full apriory knowledge).

Classification

● In many real time systems the tasks have
different priorities.

There are two possible models :
● static-priorities : the priorities of tasks

don’ t change during execution
● dynamic-priorities the priority of tasks

may change during execution

Characteristics

● Single purpose

● Small size

● Inexpensively mass-produced

● Specific timing requirements

QNX

Features Missing in RTOS

● Support for variety of peripheral devices.
● Protection and Security mechanisms
● Multiple Users
● Multiple Modes
● Dynamic Allocation of memory

Reasons
● Real-time systems are typically single-purpose.
● Real-time systems often do not require

interfacing with a user.
● Features found in a desktop PC require more

substantial hardware that what is typically
available in a real-time system.

● High overhead required for protected memory
and for switching modes.

● Memory paging increases context switch time.
● Creates fragmentation adding to timing

unpredictability.

Memory Management

● Address translation may occur via --
– Real-addressing mode where programs

generate actual addresses.
– Relocation register mode.
– Implementing full virtual memory. Example

LynxOS and OnCore Systems.

Address Translation

● Amount of time from when an event occurs
to when it is serviced.

Even t Latency

`

Ev ent Latency

● Dispatch latency is the amount of
time required for the scheduler to
stop one process and start another.

Real Time CPU Scheduling

● Periodic processes require the CPU at specified
intervals (periods)

● p is the duration of the period
● d is the deadline by when the process must be

serviced
● t is the processing time

Scheduling of tasks when P2
has a higher priority than P1

Rate Monotonic Scheduling

● Assumption -- a periodic task model
with preemption, no resource sharing,
deterministic deadlines, static priorities.

● Priority is assigned based on the inverse
of its period

● Shorter periods = higher priority;
● Longer periods = lower priority

● Algorithm is optimal in a way: if there is a feasible
schedule for a periodic task load where Pi<=Di on a
single processor with fixed priorities then RM will find
a feasible schedule.

● Liu and Leyland show that the schedulable utilization
of RM is bounded by :

 where N is the number of real time tasks.

● RMS can meet all the deadlines if CPU utilization is
less than 69.3%.

)12(/1

1

−<= ∑
=

N
N

i i

i
N

period

execu tion
U

69.0~)12(lim /1 =−
∞→

N

n

example

● If we have the following set of tasks:
task1: period=deadline=3 execution time=1

task2: period=deadline=5 execution time=3

Then the schedule will look like this:

2 3 4 5 6 7 8 9 1010

1

1

2

1

3 4

2 2

Missed Deadlines with
Rate Monotonic Scheduling

Earliest Deadline First
Scheduling

● Priorities are assigned according to deadlines:
 the earlier the deadline, the higher the priority;
 the later the deadline, the lower the priority.

Proportional Share Scheduling

● T shares are allocated among all processes in
the system.

● An application receives N shares where N < T.

● This ensures each application will receive N / T
of the total processor time.

REAL TIME APPLICATION
INTERFACE

(RTAI)
● Strictly speaking, not a real time

operating system like VxWorks or QNX
● Linux lacks real time support
● RTAI offers services of the Linux kernel

core, adding features of a real time
operating system

● RTAI is module oriented.

Complementary Layers in RTAI

1.HAL (Hardware Abstraction Layer) -- provides an interface
to the hardware, on top of which both Linux and the hard
real-time core can run.

2.Linux compatibility layer -- provides an interface to Linux,
with which RTAI tasks can be integrated into the Linux
task management, without Linux noticing anything.

3.RTOS core -- offers the hard real-time functionality for
task scheduling, interrupt processing, and locking.

4.LX/RT (Linux Real-Time) -- makes soft and hard real-time
features available to user space tasks in Linux. Puts a
strong emphasis on offering a symmetric real-time API

5.Extended functionality packages.

Task Management

● A task is created with the following function:
int rt_task_init (RT_TASK *task, void (*rt_thread)(int), int data,
int stack_size, int priority, int uses_fpu, void(*signal)(void))

 Another difference between both versions is that a POSIX
thread initialization makes the task active immediately, while the
task created by a rt_task_init() is suspended when created, and
must be activated explicitly.
 Via the signal parameter of rt_task_init(), the application
programmer can register a function that will be executed
whenever the task it belongs to will be scheduled, and before
that task is scheduled. The ASR is run with interrupts disabled

Scheduling
● Tasks can configure periodic scheduling and one-shot scheduling

RTAI has static priority-based scheduling (“ SCHED_FIFO”) as its default
hard real-time scheduler

● But if offers also Round Robin time-sliced scheduling (“ SCHED_RR”), Rate
Monotonic Scheduling, and Earliest Deadline First.
When multiple scheduler schemes are used, RTAI has made the (arbitrary)
choice to give EDF tasks a higher priority than tasks scheduled with other
policies.
rt_set_sched_policy(RT_TASK *task, int policy, int
rr_quantum_ns // time slice in nanoseconds, lying between // 0
(= default Linux value) and // 0x0FFFFFFF (= 1/4th of a second)
)

● RMS: the RMS scheduler is (re)initialized by the function void
rt_spv_RMS(int cpuid), to be called after the operating system
knows the timing information of all your tasks.

● EDF: this scheduler must know the start and termination times
of all your tasks, so a task must call the function
void rt_task_set_resume_end(RTIME resume_time, RTIME
end_time); at the end of every run of one cycle of the task.

Interrupt Handling

● An interrupt handler must be registered with the operating
system via a call of the following function:

● int rt_request_global_irq (unsigned int irq, void
(*handler)(void));

● Installed handler takes care of properly activating any Linux
handler using the same irq number, by calling the void
rt_pend_linux_irq (unsigned int irq) function, which “ pends” the
interrupt to Linux (in software!).

● Linux processes interrupts as soon as it gets control back from
RTAI. Note that, at that time, hardware interrupts are again
enabled for RTAI.

● From an RTAI task, one can also register an interrupt handler with
Linux, via

● int rt_request_linux_irq (unsigned int irq, void (*handler)(int irq, void
*dev_id, struct pt_regs *regs), char *linux_handler_id, void *dev_id);

● This forces Linux to share the interrupt. The handler is appended to
any already existing Linux handler for the same irq and run as a
Linux irq handler.The handler appears in /proc/interrupts, under the
name given in the parameter linux_handler_id.

● Floating point register saving is on by default in RTAI interrupt
handlers. One
can also select which CPU must receive and handle a particular
IRQ, via the rt_assign_irq_to_cpu(int irq, int cpu) function.
rt_reset_irq_to_sym_mode(int irq) resets this choice, back to the
symmetric “ don’ t care” behaviour.

Semaphores
● RTAI has counting semaphores, binary semaphores and recursive

semaphores.RTAI semaphores have priority inheritance. and
(adaptive) priority ceiling.

● 1)Priority inheritance. A low-priority task that holds the lock
requested by a high-priority task temporarily “ inherits” the priority of
that high-priority task, from the moment the high-priority task does
the request.
2)Priority ceiling. Every lock gets a priority level corresponding to
the priority of the highest-priority task that can use the lock. This
level is called the ceiling priority.

● priority ceiling is in the POSIX standard (POSIX_PRIO_PROTECT),
the Real-Time Specification for Java (RTSJ), OSEK, and the Ada 95
real-time specifications. Priority inheritance is also part of standards
such as POSIX (POSIX_PRIO_INHERIT), and the RTSJ.

Real Time FIFO

● Used for deterministic transfer of data between
 threads.

● Designed so that the real-time task will never
be blocked when it reads or writes data

● API
– rt_create(unsigned int fifo, int sise)
– rt_destroy(unsigned int fifo)
– rt_fifo_put(fifo, char *buf, int count)
– rt_fifo_get(fifo, char *buf, count)

Timers

● How do we get correct time from a PC ?
● 8254 -- programmable interval timer/counter, that can

be treated as an array of four I/O ports in the system
software (from 0x40 to 0x43).

● Three are independent 16-bit counters and the fourth
is a control register for mode programming.

● Programmer configures the 8254 to selects the mode
and programs one of the counters for the desired
delay. After this delay, the 8254 will interrupt the CPU.

● Counters are fully independent, so each counter may
operate in a different mode.

● Linux programs the timer with mode 2 (rate generator,
periodic pace) and loads the counter0 with the macro HZ.

● RTAI provides both a periodic (mode 2 of the 8254) and a
oneshot timer (mode 0).

● Oneshot mode -- clock is reprogrammed after every
interrupt. More flexible because it allows to trigger off
some external event.

● Periodic mode -- programmed only at beginning and then
generates interrupts periodically. Much more efficient for
tasks that take regular samples.

● In oneshot mode time is measured on the base of the CPU
time stamp clock (TSC) and not on the 8254 chip, which is
used only to generate oneshot interrupts. This allows to
reprogram the counter with only 2 I/O instructions, i.e.
approximately 3 us.

HAL

● The RTHAL (Real-Time Hardware Abstraction Layer), is, not
surprisingly, very platform-dependent. Its code typically contains
lots of assembler code that builds the low-level infrastructure,
not only for the HAL, but also for the Linux compatibility layer ,
the core and for LX/RT

● rthal is the central data structure of RTAI’ s HAL: it collects the
variables and function calls that Linux uses for interrupts and
task switching.
1)ret_from_intr:it’ s not Linux but RTAI that decides what will be
done next, after an interrupt routine has finished
2)_switch_to:Pointer to the function that does a task switch.
3)void (*lxrt_global_cli)(void):This is used in LX/RT scheduling;

1) RTAI replaces Linux functions that work with the interrupt
hardware with pointers to functions.

2) RTAI introduces the rthal data structure to store all these
pointers.

3) RTAI can now switch these pointers to pointers to its own
functions whenever it wants.

● HAL can be used for other purposes than serving as a stub for the
RTAI core. That is, another kind of operating system could be
implemented on top of the RTHAL.

● At boot time, Linux runs as if nothing has happened, except for a
small loss in performance,due to the extra level of indirection
introduced by replacing function calls by pointers to function calls in
the rthal structure.

● When RTAI gets activated it switches the pointers to functions in the
rthal data structure from their Linux version to their RTAI version.
From that moment on, Linux is under control of the RTAI kernel,
because Linux works with what it thinks is the “ real” hardware through
the replacement functions that RTAI has installed. But these functions
give a virtual hardware to Linux, while RTAI manages the real
hardware.

LXRT
● The first generation used the idea to let a user space task run a

companion task in the kernel, i.e., the so-called “ buddy” in RTAI
language. This companion task executes kernel space functions
on behalf of the user space task.

● A user space task is made into an LX/RT user space task by
using only a couple of LX/RT calls. The task calls
rt_make_hard_real_time() (in include/rtai_lxrt.h) at the moment
it wants to switch to real-time, and rt_make_soft_real_time() to
switch back.

● So, the clue of the LX/RT procedure is to make the user space
task launch a trap handler that executes a real-time service for
the user space task; and all this is done through just one single
trap handler, by encoding the desired service. Hence, a special
LX/RT version must be made for all RTAI functions that one
wants to be available to user space tasks, and a unique code
must be given to each function.

