JOURNAL OF ALGORITHMS 19, 161-172 (1995)

Fractional Cascading Revisited*

Sandeep Sen

Department of Computer Science and Engineering, Indian Institute of Technology,
Delhi, New Dehi 110016, India

Received December 3, 1990; revised March 1994

We present an alternative implementation of the fractional cascading data
structure of Chazelle and Guibas (Algorithmica 1 (1986), 133-162) that performs
iterative search for a key in multiple ordered lists. The construction of our data
structure uses randomization and simplifies the algorithm of Chazelle and Guibas,
vastly making it practical to implement. Although our bounds are asymptotically
similar to the earlier ones, there are improvements in the constant factors. Qur
analysis is novel and captures some of the inherent difficulties associated with the
fractional cascading data structure. In particular, we use tools from branching
process theory and derive some useful asymptotic bounds. The probability of
deviation from the expected performance bounds decreases exponentially with
number of keys. Also, under a restricted model, we obtain efficient bounds for
updates in the data structure. © 1995 Academic Press, Inc.

1. INTRODUCTION

The problem of searching for a key in many ordered lists arises very
frequently in computational geometry (see Chazelle and Guibas [2] for
applications.) Chazelle and Guibas [1] introduced fractional cascading as a
general technique for solving this problem. Their work unified some
earlier work in this area and gave a general strategy for improving upon
the naive method of doing independent searches for the same key in
separate lists. In brief, they devised a data structure that would enable
searching for the same key in # lists in time O(log M + n) where M is the
size of the longest list. If N is the total size of all the lists then this data
structure can be built in O(N) preprocessing time and takes O(N) space.
We shall give a more precise description of their data structure in the next

* Part of this research was done when the author was a post-doctoral Member of Technical
Staff at AT & T Bell Labs, Murray Hill, New Jersey, during the year 1990~-1991. A prelimi-
nary version of this paper appeared in the “Proceedings of the 3rd Scandinavian Workshop
on Algorithmic Theory, Helsinki, Finland, July 1992.”

161

0196-6774 /95 $12.00

Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

162 SANDEEP SEN

section. Their solution, although, elegant, is difficult to implement, and
they leave open the question of simplifying it to be useful in practice.

In this paper, we give an alternative implementation of their data
structure that uses randomization. While retaining the salient features of
their data structure, we are able to simplify its construction considerably to
an extent that is practical. The motivation of the new technique has been
derived from skip lists (Pugh [10]). However, our method requires new
analytical techniques that may have further applications. In particular, we
use tools from branching-process theory and derive some useful asymptotic
bounds. It may be noted that this technique (now known as dynamic
sampling) had its origin in an earlier version of the present work [12] and
Sen [13]. Subsequently these ideas have been generalized in the context of
dynamic maintenance of data structures by Mulmuley and Sen [9] and
Mulmuley [6, 7].

Our work still leaves open the issue of dynamic maintenance of frac-
tional-cascading data structure that attains optimal performance. However,
it does simplify part of the scheme which turns out to be useful for
obtaining optimal bounds for random updates. We describe this mode in
Section 4. The bounds for space and preprocessing time that we obtain for
the static case are expected worst case and hold with probability 1 —
27 %) The search time holds with high probability, i.e., 1 — 1/N* for any
fixed & > 0. The following notation will be used in the paper. We say a
randomized algorithm has resource (time, space, etc.) bound O(g(n)) if
there is a constant ¢ such that the amount of resource used by the
algorithm (on any input of size 7) is no more than cag(n) with probability
>1-1/n% for any a > 1.

2. DESCRIPTION OF FRACTIONAL CASCADING

In this section, we give a brief description of the problem setting and the
approach taken by Chazelle and Guibas. Consider a fixed graph G = (V, E)
of |V| = n vertices and |E| = m edges. The graph G is undirected and
connected and does not contain multiple edges. Each vertex v has a
catalog C, and associated with each edge e of G is a range R,.

A catalog is an ordered collection of records where each record has an
associated value in the set R U {=, —=}. Note that the value of a record is
distinct from the record. The records are stored in a nondecreasing order
by their values, and more than one record can have the same value. A
catalog is never empty (has at least a > and a —). A range is an interval
of the form [x, y},[—, y],[x, <}, or [— o, =]. The graph G together with
the associated catalogs and ranges is called a catalog graph. This is the
basic structure to which fractional cascading is applied.

FRACTIONAL CASCADING REVISITED 163

For notational purpose, if the value k is an endpoint of the range R, ,,
then k appears as the value of some record in both C, and C,. Moreover,
if two ranges R, , and R, , have an endpoint in common, it appears twice
in C,. The space required to store a catalog graph in N = £ _, |C,|. This
includes the space to store the graph itself. A catalog graph G is said to be
locally bounded by degree d if for each vertex v and each value of x € R
the number of edges incident on v whose range includes x is bounded
by d.

The input to a query is an arbitrary element k in the universe and a
connected subtree I1 = (V, E) such that k € R, for all edges ¢ in the
subtree and ¥V ¢ V, E C E. The output of the query for each vertex v € V
is an element y such that predecessor(y) < k <y. We shall refer to the
pair { predecessor(y), y) of elements as the straddling pair of k.

THEOREM 1 (CHAZELLE-GUIBAS). Let G be a catalog graph of size N and
locally bounded degree d. In O(N) space and O(dN) time it is possible to
construct a data structure that allows multiple look-ups (query) in a subtree of
size p in time O(pd + log N). If d is sized this is optimal. In addition, if the
underlying catalog graph G is restructured to a constant degree graph, then the
search time and the preprocessing time can be improved to O(p log d + log N)
and O(N), respectively.

3. ANATOMY OF THE DATA STRUCTURE

Our data structure is very similar to that of [1] in the sense that we
retain their idea of using an augmented catalogs A, for every vertex v
such that C, C 4,. But we shall use a different method for the construc-
tion of the augmented catalogs. An augmented catalog A, is also a linear
list of records whose values form a sorted multiset. Augmented catalogs in
neighboring nodes of G will contain a number of records with common
values. The corresponding records are linked together to correlate loca-
tions in the two catalogs. The objective is that given the location of a
record in A4, we would be able to find its location (the straddling pair) in
the augmented catalog of a neighbor of v in constant additional time.
More formally, for each node u and an edge e connecting u and v in G,
we maintains a list of “bridges” from u to v, B,,, which is an ordered
subset of records in A4, and that are contained in the range R,. The
endpoints of R, are the first and last records of B,,. In node v, we
maintain for each bridge in B,, a companion bridge in B,,. Recall that
the value of a record is distinct from the record. Moreover each bridge is
associated with a unique edge of G, implying that if a given value in A4, is
chosen to be a bridge in both B, , and B,,,, then it is duplicated and stored
in different records of A4,,.

ur uw?

164 SANDEEP SEN

!

l
iszp—S lgap=3

]
S 5 2%

Fic. 1. Gaps, bridges, and augmented catalogs.

ridge

u

A pair of consecutive bridges associated with the same edge e = (u, ")
defines a gap. Let a, and b, be two consecutive bridges in B,, and a,
(respectively, b,) be the companion bridges in B,,. If value(a,) <
value(b,), then the gap of b, includes all elements of A4, positioned
strictly between a, and b, and all elements of A, between a, and b, (the
bridges are not included). By definition, the gap of b, is the same as gap
of b,. One of the key strategies used by Chazelle and Guibas [1] is
to maintain the invariant that no gap exceeds 64 — 1 in size.

We now take a closer look at the information maintained with each
record. Both C, and A4, are maintained as linked lists. A record of C, has
the fields key and up-pointer. The key contains the value and the up-pointer
is a pointer to the next record. Each record of A, has several other fields:

(1) key: stores the value k of record r.

(2) C-pointer: holds a pointer »(r), the successor of r in C,.

(3) up-pointer, down-pointer: pointers to successor and predecessor
in A4

vt

In addition, a bridge element also has pointers to its companion bridge and
the label of the edge for which it is a bridge. If r is a bridge in B,, then it
stores the label uv.

FRACTIONAL CASCADING REVISITED 165

To answer a multiple look-up query (x, IT), where x is the key value and
I1 is the subtree, one begins by locating x in the first node of the subtree
IT and then uses the following properties:

LEMMA 1 (CG). If we know the position of value x in A ,, we can compute
the position of x in C,, in one step.

This can be done by using the C-field pointer.

LEMMA 2. If we know the position of value x in A, and e = (v,w) is an
edge of G such that x € R, then we can compute the position of x in A, in
O(|Gap,(x))) time. Gap(x) is the set of elements in the gap (corresponding to
edge e) which x points at.

From the position of x in A4, follow up-pointers until a bridge is found
that connects to A4,,. Note that Chazelle and Guibas [1] maintained the
invariant that all gap sizes are less than 6d, which yields a search time of
O(log N + d|I1)). This invariant was maintained during the construction of
all the augmented catalogs which is done incrementally. Their algorithm
starts with empty catalog and then for each vertex v, the records of C,, are
inserted in increasing order into A,. Between any two insertions, the gap
invariants are restored. Note that a single insertion into A4, can alter the
gaps leading to insertion of a new bridge which introduces new records and
this could continue as a long chain of events.

We propose the following modification. Instead of explicitly maintaining
gap invariants, we choose a newly inserted element r in A, to be a bridge
with probability p. (We shall determine the exact value later.) This process
is repeated for each edge incident on v whose range covers r. If r is
chosen to be a bridge for an edge (v, w), it leads to the insertion of a new
record in A,, and possibly even in A, if x is already a bridge. These new
records are treated exactly the same way as described above (i.e., choose
each with probability p to be a bridge element). For each new record in
the augmented catalog, we initialize the following fields:

(i) C-pointer: Can be determined from the predecessor and the
successor elements in the augmented catalog. If this element came from
C,, then update the C-pointers for all the elements in 4, between this
record and the previous record of C,.

(ii) Edge field: if the element is a bridge element, then it contains
the edge for which it is a bridge.

For each new record of C,, this process is continued until there are no
more bridges to insert.

166 SANDEEP SEN
4, ANALYSIS

Let us first analyze the running time for a multiple look-up query. Given
the position of x in A, we follow the up-pointers until we find a bridge
b, that connects to A,. Since each element is chosen to be a bridge
element with probability p, the expected length of a gap is 2 /p. Thus from
Lemma 1, the expected search time is O(log N + |II|/p).

Moreover, if |[I| > log N, we can show that the search time is
O(log N + |IT|/p) using the observation that the search time is a sum of
O(log N) independent random variables with a geometric distribution and
parameter p (Sen [11]). There is however an oversight in the above
reasoning since the query is a tree of size |I1| which can assume various
forms. In particular, II can be any of the positional trees of maximum
degree d. A positional tree has its edges out of any vertex labeled from the
set {0,1,..., d — 1} where d is the maximum degree. It can be shown that
there are 2?06 4D gych trees for IT < Vn. When 1/p is proportional to d
(as we shall prove later) and 4 is bounded, then the search time holds with
high likelihood. Note that there are O(N) choices for the root of this tree
and O(N) combinatorially distinct search paths given the search tree
(corresponding to the O(N) intervals induced by all the key values).

LEMMA 3. The new scheme allows multiple query in a subtree 11 in
expected time O(log N + |I1|-d). If the local degree d is bounded by a
constant then the query time is O (log N + |I1)); i.e., the bound holds with
high probability.

Remark. 1If II is Q)(n), then the number of positional trees is bounded
by ¢ for some constant ¢ (see Theorem 10 in Manber and Tompa [5]).
Hence the search time exceeds O(nd) with probability less than 2%,

The more challenging aspect of the analysis is to bound the time and
space required to construct the data structure. If we look more closely at
the way the records are added to the augmented catalogs, we can model
the underlying stochastic process by a branching process. The root corre-
sponds to an inserted record from C,, and the children correspond to the
bridges that are created by this record. Each bridge that corresponds to
two children, is created with probability p. For each new record inserted
from the C’s the time and the space needed is proportional to the total
progeny of this branching process. Each node can have up to 2d children
where the actual number of children is a random variable that takes values
0, 2, 4,...2d. The probability that this random variable takes value 2k is
the same as the probability that a binomial random variable with parame-
ters (d, p) takes value k (i.e., there are k bridges created). The mean u of

FRACTIONAL CASCADING REVISITED 167

this distribution is clearly 2pd and the generating function G(s) can be
derived to be (g + ps?)?. Here ¢ = 1 — p.

From Feller (3], a branching process is finite if u < 1. Hence we choose
p such that 2pd < 1, that is, p < 1/2d. This gives an expected gap length
of greater than 4d. From [3], if the generating function for the total
progeny is denoted by #(s), then ¢ = sG(¢). In our case G(t) = (q + pt?)°.
Moreover, the mean is 1 /(1 — w), which is 1/(1 — 2pd) in our case. If we
choose p = 1/3d, this yields a mean progeny of 3. This in turn implies a
total expected space bound of O(L, . , C,) which is O(N).

We can get stronger bounds by estimating the probability of deviating
from the mean value. The usual procedure is to use Chernoff bounds but
in our case it is complicated by the fact that we cannot get an explicit
generating function for d > 2 (since it involves solving equations of high
degree). Instead we take an indirect approach. The total space and time
for construction of the data structure is the sum of N independent and
identical random variables Y,, 1 </ < N, each of which is the total
progeny of a branching process.

If 4 =21%.,Y, then from Chernoff bounds,

Prob[A > X] < s~ *1(s)", (1)

where #(s) is the generating function for each Y;. For X > ¢N, for some
fixed ¢, this can be rewritten as

SC

Prob[A 2 cN] < (t(s))N.

We shall prove that for some s > 1, there exists a constant ¢ such that
t(s)/s° < 1. Let F(s,t) =t — s(g + pt?)?. Then

F(s,t) =1 — 2pds(q +pt2)d_‘

Hence F(1,1) = 1 — 2pd and for 2pd < 1, F(1,1) # 0. From the Implicit
Function Theorem (see Appendix) it follows that there exists a neighbor-
hood of (s = 1, t = 1), such that

F(s,t) =F(1,1) et =1(s).

Since F(1,1) = 0 this implies that there is a value s > 1 + € for which
t(s) <1+ & for some €, 6§ > 0 independent of N. By choosing ¢ large
enough, t(s)/s¢ can be made less than 1 and hence the probability of
deviation from the mean decreases as 1,/2%),

For each new record in A, we need O(d) time to determine if it will be
a bridge with respect to any of the d (maximum) neighbors. Moreover

168 SANDEEP SEN

inserting a new bridge takes time proportional to gap size whose expected
value is O(d). Thus the total time for inserting O(N) bridges is a sum of
O(N) independent geometric random variables with parameter p. (Unlike
the argument for ensuring search time with high probability, where we
needed to consider all distinct query trees, we simply bound this sum.) This
is O(Nd) with probability 1 — 27" using standard techniques like
Chernoff bounds.

To complete the analysis for the time bound for building the data
structure, we have to ensure that the total number of C-pointer updates is
also O(N). For any new record inserted into A, from C,, the total
number of C-pointer updates can be bound by the total number of records
(i.e., the space bound). The records of C, are inserted in an increasing
order and thus any record in A, has its C-pointer updated at most once
(not including when it is first created). Hence we state the following result

THEOREM 2. Let G be a catalog graph of size N and locally bounded
degree d. QOur algorithm constructs a data structure for iterative search in
O(N) space and O(dN) time that does iterative search in expected time
O(og N + d{T1)). The bounds for preprocessing time and space hold with
probability 1 — 2~ N),

Remarks.

(1) The bounds for preprocessing time and search time can be
improved to O(N) and O(log N + log dIT1]), respectively, by using the
same modifications as Chazelle—Guibas to restructure the catalog graph to
a fixed degree graph.

(2) Chazelle and Guibas also arrived at the figure 4d for minimum
gap size from the observation that a lower gap size in their analysis leads
to infinite time and space bound for construction. However, they give
examples where the actual algorithm halts even when they use gap sizes of
less than 4d. Our analysis captures a more fundamental reason for this
phenomenon. Although the mean u < 1 guarantees that the process is
finite, the process dies out with probability x where x = G(x) even when
u > 1. Thus one can have a gap length of less than 44 and still terminate.
The motivation for this is clearly a reduction in search time which is
inversely proportional to the gap size.

(3) To allow insertions /deletions from the catalogs, our procedure
for maintaining the augmented catalogs readily dynamized. The arguments
for query time and the space bound remain identical to those in the static
case. Unfortunately (as in the case of [1]), the bottleneck is maintaining

FRACTIONAL CASCADING REVISITED 169

the correspondence between the 4, and C,. In particular, we are unable
to get a meaningful bound on the number of C-pointer updates in the case
of inserting or deleting a record from C,. If the priority queue of Fries et
al. [4] is used to maintain this correspondence, both the search time and
update times are off by an O(loglog N) factor from the best possible.

Implementation of the two schemes was carried out on a SUN worksta-
tion for a comparative study. For data, random graphs of about 100 nodes
were generated, where each node had catalogs of about 1000 records.
Each record of the augmented catalog in the randomized case required 34
bytes as compared to 48 of the deterministic scheme. The number of
bridges created in the deterministic case was twice that of the randomized
scheme. This implies saving of a factor of 2.5 in space requirements.
The mean progeny appeared closer to 1/(1 — 2pd,,) than the predicted
1/(1 — 2pd) where d,, was the average degree. Moreover the number of
bridges added due to a single insertion was always more in the determinis-
tic case. The number of pointer traversals was also more than a factor of
two greater in the deterministic case. Experiments confirmed that for
p > 1/2d (gap size smaller than 44), the construction terminated.

An interesting feature of the randomized scheme was the ease with
which it could be made dynamic, i.e., one where insertions and deletions of
records are allowed. Note that the gap sizes do not have to be maintained
explicitly; thus there is no modification in the basic procedure. The
procedure for deletion is exactly the inverse of insertion. While worst-case
scenarios can be constructed which requires changing a large number of
C-pointers, the experiments showed that it has excellent behavior for the
data used. This could be attributed to the following reasons. Unlike the
deterministic case where the amortized insertion time is bound, the inser-
tion time in the randomized scheme is (expected) worst case. Moreover,
for random insertions (and deletions), the expected number of C-pointer
updates for any fixed record is actually constant.

By random updates, we imply that the records in the catalogs are
inserted (deleted) in a random order where all permutations are equally
likely. The N record values themselves can be chosen arbitrarily. This
model was used by Mulmuley [6] to obtain efficient bounds for a number
of dynamic schemes in computational geometry. It may be useful to view
this model as the following—at any instance when r objects are present,
all subsets of size r among the universe of N objects are equally likely to
occur. If the next operation is an insertion then any of the remaining
objects is equally likely to be inserted. If the next operation is deletion
then any of the objects present is equally likely to be deleted. The number
of C-pointer updates of a fixed record R in an augmented catalog A, is

170 SANDEEP SEN

the number of records in the catalog C, adjacent (successors in the
catalog) to R over a sequence of O(n) updates.

We can use backward analysis to get a bound on the expected number of
C-pointer changes for a sequence of O(n) random updates involving n
records of a C,. Let W, be 1 if the record adjacent to R changes at the jth
update step, i.e., causes the C-pointer of R to change. The probability that
W, is 1 is then the probability of the event that R is present in A4, and one
of the adjacent records in C, changes. Note that for the purpose of this
analysis, we can ignore the remaining records of A4, and look at the
relative orderings of R and only the n records of C,. Moreover, we can
pretend that all the records in the A4 ’s are known to us because the bridge
elements are generated independently of the other records. Let r be the
number of records currently in C, including R. From backward-analysis
argument, the probability that an inserted record is adjacent to R is
1/(r + 1) by conditioning on the set of size r + 1 (including the inserted
element) and deleting a random record. The probability that a deleted
record is adjacent to R is 1/r from the previous paragraph. Thus the
probability that W; is 1 can be bounded by r/n - 1/r < 1/n. The expected
value of W, is O(1/n) and the expected value of L W, is O(1). The
expected number of C-pointer changes for any fixed record caused by
O(N) updates over all the catalogs can be bounded by O(1). The updates
in the catalogs where R is not present do not matter. Since the total
number of records is O(N) (space bound), and the mean progeny is O(1)
for each record we obtain the following result.

THEOREM 3. For a sequence of O(N) random updates in the catalogs
involving a total of N records, the expected amortized cost for an update is
Olog N + d), including the time for searching.

5. CONCLUDING REMARKS

Two of the outstanding problems posed by Chazelle and Guibas [1] still
remain open, namely, the issue of high local-degree graphs and maintain-
ing same asymptotic bounds in the dynamic scenario under worst-case
update. Both in the Chazelle and Guibas scheme and in our scheme, the
gap size seems to be tied inherently with the local degree of the graph. In
this respect, our analysis seems to provide a more concrete explanation,
namely its connection with the convergence of a branching process. We
conjecture that the gap size can be made proportional to the local degree
at each node instead of the maximum local degree of the graph—analyz-
ing such a branching process however appears to be very complicated.

FRACTIONAL CASCADING REVISITED 171

For the dynamic part, our experiments suggest that our algorithm has
very good average performance even without the schemes of Fries et al.
which were used by Chazelle and Guibas along with other complicated
data structures. We may mention here that in the context of dynamic
maintenance of data structures two distinct approaches have been pro-
posed: the dynamic sampling method [6, 7, 9] and the randomized multidi-
mensional search trees [8]. It is unclear how the latter methodology can be
adapted for our case since the bridges of the augmented catalog have a
natural correspondence to a sample and the only structures that we
maintain are linked lists.

ACKNOWLEDGMENTS

The author is very grateful to Paul Wright who pointed out the use of the Implicit Function
Theorem, to show existence of the generating function for s > 1. The author also acknowl-
edges Praveen Singh who implemented the two schemes as part of his Bachelor’s thesis.

APPENDIX: IMPLICIT FUNCTION THEOREM

We use the standard notation f, to denote the partial derivative of f
with respect to variable y.

THEOREM 4. Let f(x, y) be continuously differentiable in D. Let (x,, y,)
be any point in D such that f(x,, y,) # 0. Then there exist numbers & > 0
and € > 0 and a continuously differentiable function g(x) defined for |x — x|
< 8 and |y — y,| < €, then f(x,y) = f(xy,y,) =y = g(x).

REFERENCES

1. B. Chazelle and L. Guibas, Fractional cascading: 1. A data structuring technique,
Algorithmica 1 (1986), 133-162.

2. B. Chazelle and L. Guibas, Fractional cascading: I1. Applications, Algorithmica 1 (1986),
163-191.

3. W. Feller, “An Introduction to Probability Theory and Applications Vol. I,” Wiley, New
York, 1968.

4. O. Fries, K. Mehlhorn, and S. Niher, Dynamization of geometric data structures, in
“Proceedings, 1st ACM Computational Geometry Symposium, 1985,” pp. 168-176.

S. U. Manber and M. Tompa, The effect of number of Hamiltonian paths on the complexity
of a vertex-coloring problem, SIAM J. Comput. 13(Feb.) (1984), 109-115.

6. K. Mulmuley, Randomized multidimensional search trees: Dynamic sampling, in “Pro-
ceedings, 7th ACM Symposium on Computational Geometry, 1991,” pp. 121-131.

7. K. Muimuley, Randomized muitidimensional search trees; Further results in dynamic
sampling, in “Proceedings, 32nd IEEE Symposium on Foundations of Computer Science,
1991, pp. 216-227.

172 SANDEEP SEN

8. K. Mulmuley, Randomized multidimensional search trees: Lazy balancing and dynamic
shuffling, in “Proceedings, 32nd IEEE Symposium on Foundations of Computer Science,
1991, pp. 180-196.

9. K. Mulmuley and S. Sen, Dynamic point location in arrangements of hyperplanes,
Discrete Comput. Geom. 8 (1992), 335-360.

10. W. Pugh, Skip lists: A probabilistic alternative to balanced trees, Commun. ACM, 33(6)
(1990), 668-676.

11. S. Sen, Some observations on skip lists, Inform. Process. Lett., 39 (1991), 173-176.

12. S. Sen, Fractional cascading revisited, Bell Labs technical memorandum, Murray Hill, NJ,
1991.

13. S. Sen, Maintaining arrangements for point location, Bell Labs technical memorandum,
Murray Hill, NJ, 1991.

