Approximation Algorithms for some Important Geometric Problems

Subhas C. Nandy (nandysc@isical.ac.in)

Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India.

Outline

(1) Travelling Salesman Problem
(2) Rectangle Stabbing Problem

Travelling Salesman Problem

Problem

Input: An undirected graph $G=(V, E)$, with each edge $e \in E$ attached with an integer cost $w(e)>0$.

Objective: Find a Hamiltonian cycle of G with minimum cost.

Travelling Salesman Problem

Problem

Input: An undirected graph $G=(V, E)$, with each edge $e \in E$ attached with an integer cost $w(e)>0$.

Objective: Find a Hamiltonian cycle of G with minimum cost.

Assumption: If for a pair of vertices $u, v,(u, v) \notin E$, then add an edge (u, v) in E with cost ∞. Thus, G is a complete graph.

Travelling Salesman Problem

Problem

Input: An undirected graph $G=(V, E)$, with each edge $e \in E$ attached with an integer cost $w(e)>0$.

Objective: Find a Hamiltonian cycle of G with minimum cost.

Assumption: If for a pair of vertices $u, v,(u, v) \notin E$, then add an edge (u, v) in E with cost ∞. Thus, G is a complete graph.

Status of the problem: The decision version is NP-complete.

Δ-TSP

> A particular case
> Δ-TSP: Nodes can be placed on a Euclidean plane.
> Weight of each edge is equal to the distnce between the corresponding pair of nodes.

Δ-TSP

A particular case
Δ-TSP: Nodes can be placed on a Euclidean plane.
Weight of each edge is equal to the distnce between the corresponding pair of nodes.

In other words, the weight of the edges of the graph satisfies triangles
 we have $w(u, v)+w(v, w) \geq w(u, w)$.
ie., for all triple of vertices $u, v, w \in V$,

Δ-TSP

A particular case

Δ-TSP: Nodes can be placed on a Euclidean plane.
Weight of each edge is equal to the distnce between the corresponding pair of nodes.

In other words, the weight of the edges of the graph satisfies triangles
(a)
 inequality,
i.e., for all triple of vertices $u, v, w \in V$, we have $w(u, v)+w(v, w) \geq w(u, w)$.

Status

The problem still remains NP-complete

Δ-TSP

Approx-TSP-Tour (G, w)
Step 1: Select a vertex $r \in V$ as the root

Δ-TSP

Approx-TSP-Tour (G, w)
Step 1: Select a vertex $r \in V$ as the root Step 2: compute a minimum spanning tree T of G from root r.

Δ-TSP

Approx-TSP-Tour (G, w)
Step 1: Select a vertex $r \in V$ as the root
Step 2: compute a minimum spanning tree T of G from root r.
Step 3: Let L be the list of vertices visited using the preorder traversal of T.

Δ-TSP

Approx-TSP-Tour (G, w)
Step 1: Select a vertex $r \in V$ as the root
Step 2: compute a minimum spanning tree T of G from root r.
Step 3: Let L be the list of vertices visited using the preorder traversal of T.

Step 4: return the hamiltonian cycle H that visits the vertices in the order L.

Δ-TSP

Approx-TSP-Tour(G,w)
Step 1: Select a vertex $r \in V$ as the root
Step 2: compute a minimum spanning tree T of G from root r.
Step 3: Let L be the list of vertices visited using the preorder traversal of T.

Step 4: return the hamiltonian cycle H that visits the vertices in the order L.

Time Complexity

Computing the minimum spanning tree using Prim's Algorithm needs $O\left(n^{2}\right)$ time (since G is a complete graph). All other works can be done in $O(n)$ time.

Analysis of Approximation Ratio

Theorem

The approximation ratio of the Approx-TSP-Tour is 2 if the graph G satisfies triangles inequality.

Analysis of Approximation Ratio

Theorem

The approximation ratio of the Approx-TSP-Tour is 2 if the graph G satisfies triangles inequality.
$H^{*} \rightarrow$ Optimal Tour.
$H \rightarrow$ Tour produced by our algorithm.

Analysis of Approximation Ratio

To show $w(H) \leq 2 \times w\left(H^{*}\right)$

$T \rightarrow$ MST of G. So, $w(T) \leq w\left(H^{*}\right)$.

Analysis of Approximation Ratio

To show $w(H) \leq 2 \times w\left(H^{*}\right)$

$T \rightarrow$ MST of G. So, $w(T) \leq w\left(H^{*}\right)$.
A full walk \mathbf{A} of T visits every edge of T exactly twice.
Thus $w(\mathbf{A})=2 \times w(T) \leq 2 \times w\left(H^{*}\right)$.
Thus, \mathbf{A} is within 2 factor of the optimal tour.
But, \mathbf{A} is not a tour, since it visits some vertices more than once.

Analysis of Approximation Ratio

```
To show w(H)\leq2\timesw(H*)
```

$T \rightarrow$ MST of G. So, $w(T) \leq w\left(H^{*}\right)$.
A full walk \mathbf{A} of T visits every edge of T exactly twice.
Thus $w(\mathbf{A})=2 \times w(T) \leq 2 \times w\left(H^{*}\right)$.
Thus, \mathbf{A} is within 2 factor of the optimal tour.
But, \mathbf{A} is not a tour, since it visits some vertices more than once.

We get a tour H from the walk \mathbf{A} as follows:

For each vertex, we remove its second occurance in the walk except r.
By triangles inequality, we have $w(H) \leq w(\mathbf{A})$.
Thus we have $w(H) \leq 2 \times w\left(H^{*}\right)$.

Best Known Result on \triangle-TSP

A 1.5 -approximation algorithm for the Δ-TSP using maximum matching (Christofides 1976).

Best Known Result on \triangle-TSP

A 1.5-approximation algorithm for the Δ-TSP using maximum matching (Christofides 1976).

Good approximation result may not exist for all NP-hard problems

Example: Travelling salesman problem for abtratily weighted graph.

Best Known Result on \triangle-TSP

A 1.5-approximation algorithm for the Δ-TSP using maximum matching (Christofides 1976).

Good approximation result may not exist for all NP-hard problems

Example: Travelling salesman problem for abtratily weighted graph.

Theorem
 If $P \neq N P$ and $\rho \geq 1$, there is no polynomial time apprimation algorithm for the general TSP with ratio bound ρ.

Proof [By contradiction]

Suppose there is a ρ-approximation algorithm \mathcal{A} for the general TSP problem. Let us assume that ρ is an integer.
We show that \mathcal{A} can solve the hamiltonian cycle problem for any arbitrary graph $G=(V, E)$ in polynomial time.
Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a complete graph, with $E^{\prime}=\{(u, v) \mid u, v \in V$ and $u \neq v\}$

Assign $w(u, v)=1$ if $(u, v) \in E$, and
$\rho \times|V|+1$ otherwise.
If the original graph has a hamiltonian cycle, the optimal tour will be of cost $|V|$.

Any non-optimal tour will be of cost at least $(\rho|V|+1)+(|V|-1) \geq \rho|V|$.

Proof (contd.)

Now we execute the algorithm \mathcal{A} on the graph G^{\prime}.
If G has a Hamiltonian cycle, then \mathcal{A} must produce a tour in G^{\prime} of cost at most $\rho|V|$.

But it is impossible unless it returns a tour in G^{\prime} corresponding to the actual Hamiltonian cycle in G.

Thus we have a polynomial time algorithm for the Hamiltonian cycle problem.

Rectangle Stabbing Problem ${ }^{1}$

Problem Statement:

Given a set \mathcal{R} of n axis-parallel rectangles, find the minimum number of axis-parallel lines to stab all the members in \mathcal{R}.

A rectangle $r \in \mathcal{R}$ is given using a pair of coordinates $[(a, b),(c, d)]$ corresponding to its (bottom-left, top-right) diagonal.

For the sake of simplicity, we assume that the coordinates are integer valued.

[^0]
Rectangle Stabbing Problem

Definition

An axis-parallel (horizontal/vertical) line ℓ stabs a rectangle $\mathbf{r}=[(a, b),(c, d)] \in \mathcal{R}$ if ℓ passes through the interior of the rectangle r. if

Example:

Here the line $y=\beta$ stabs the rectangle.
This implies $a+1 \leq \beta \leq c-1$

Status of the Problem and Our Objective

Status:
The problem is NP-hard
Reference: Hasin and Megiddo, Discrete Appl. Math., 1991

Objective: To design a constant factor approximation algorithm

Result available:
A 2-factor approximation algorithm that runs in $O\left(n^{5}\right)$ time.
Tools used: LP-relaxation.

Integer Programming Formulation

Solution Space: $H \bigcup V$.
H - Set of $2 n$ horizontal lines at $y=b_{i}+\epsilon$ and $y=d_{i}-\epsilon$, where b_{i} and d_{i} are y-coordinates of bottom and top boundaries of i-th rectangle.
V - Set of $2 n$ vertical lines at $x=a_{i}+\epsilon$ and $y=c_{i}-\epsilon$, where a_{i} and c_{i} are x-coordinates of left and right boundaries of i-th rectangle.

Take 4 n decision variables, namely $x_{1}, x_{2}, \ldots, x_{2 n}, y_{1}, y_{2}, \ldots, y_{2 n}$.
x_{i} - corresponds to i-th vertical line, and
$y_{j}-$ corresponds to j-th horizontal line.
These decision variables can assume values 0 and 1 only.

Integer Programming Formulation

H_{k} - Set of horizontal lines that stab the rectangle r_{k}, and
$V_{k}-$ Set of vertical lines that stab the rectangle r_{k}.

Integer Programming Problem - P

Objective Function:

$$
\min \sum_{i \in V} x_{i}+\sum_{j \in H} y_{j}
$$

Constraints:

For each rectangle $r_{k}, \quad k=1,2, \ldots, n$, we have the constraint
$\sum_{i \in V_{k}} x_{i}+\sum_{j \in H_{k}} y_{j} \geq 1$
$x_{i} \in[0,1]$,
for all $i=1,2, \ldots, 2 n$, and
$y_{j} \in[0,1]$, for all $j=1,2, \ldots, 2 n$.

LP Relaxation

Linear Programming Problem $-\bar{P}$

Objective Function:

```
min }\mp@subsup{\sum}{i\inV}{}\mp@subsup{x}{i}{}+\mp@subsup{\sum}{j\inH}{}\mp@subsup{y}{j}{
```


Constraints:

$$
\begin{array}{ll}
\sum_{i \in V_{k}} x_{i}+\sum_{j \in H_{k}} y_{j} \geq 1, & \text { for all } k=1,2, \ldots, n \\
x_{i} \geq 0, & \text { for all } i=1,2, \ldots, 2 n, \text { and } \\
y_{j} \geq 0, & \text { for all } j=1,2, \ldots, 2 n .
\end{array}
$$

Analysis of LP Solution

Let $\bar{x}_{i}, i=1,2, \ldots, 2 n \quad$ and $\quad \bar{y}_{j}, j=1,2, \ldots, 2 n$ be an optimal fractional solution of the LP problem \bar{P}.

For each rectangle $r_{k}, k=1,2, \ldots, n$, we have either $\sum_{i \in V_{k}} \bar{x}_{i} \geq \frac{1}{2}$
or

$$
\sum_{j \in H_{k}} \bar{y}_{j} \geq \frac{1}{2} .
$$

Analysis of LP Solution

Let R_{H} be the set of all k such that $\sum_{i \in V_{k}} \bar{x}_{i} \geq \frac{1}{2}$, and R_{V} be the set of all k such that $\sum_{j \in H_{k}} \bar{y}_{j} \geq \frac{1}{2}$.

Implication:

- The set of rectangles in R_{H} will be stabbed by horizontal lines, and
- The set of rectangles in R_{V} will be stabbed by vertical lines.

Thus, we have the following two problems
P_{H} : Compute the minimum clique cover of an interval graph with the vertical intervals corresponding to the rectangles in R_{H}, and
P_{V} : Compute the minimum clique cover of an interval graph with the horizontal intervals corresponding to the rectangles in R_{V}.
P_{H} and P_{V} can be optimally solved in polynomial time.

Analysis of Approximation Factor

Let
Q: Optimum solution of the integer programming problem P,
\hat{Q} : Optimum solution of the linear programming problem \hat{P},
Q_{H} : Optimum solution of the clique cover problem P_{H},
Q_{V} : Optimum solution of the clique cover problem P_{V}.
$Q_{H}+Q_{V} \leq 2 Q$.

Analysis of Approximation Factor

Proof: Let $\hat{Q}=(\hat{x}, \hat{y})$ be an optimal fractional solution of \hat{P}
$\Longrightarrow Q_{V}^{*}=2 \hat{x}$ and $Q_{H}^{*}=2 \hat{y}$ are feasible solutions of P_{H} and P_{V}.
Reason: For every $k \in R_{H}$, we have $\sum_{i \in H_{k}} \hat{y}_{i} \geq \frac{1}{2}$

$$
\Longrightarrow \sum_{i \in H_{k}} 2 \hat{y}_{i} \geq 1
$$

We have,

- $Q_{H}+Q_{V} \leq Q_{H}^{*}+Q_{V}^{*}$ [since Q_{H} and Q_{V} are optimum solutons and Q_{H}^{*} and Q_{V}^{*} are feasible solutions of the same minimization problems.]
- $Q_{H}^{*}+Q_{V}^{*}=2(\hat{x}+\hat{y})=2 \hat{Q}$.
- $\hat{Q} \leq Q$
[Since optimum solution of an LP minimization problem is less the optimum solution of its corresponding IP problem]

Thus, we have the proof of the result.

[^0]: ${ }^{1}$ Gaur, Ibaraki and Krishnamurthy, J. of Algorithms,2002

