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Travelling Salesman Problem

Problem

Input: An undirected graph G = (V ,E ), with each edge e ∈ E
attached with an integer cost w(e) > 0.

Objective: Find a Hamiltonian cycle of G with minimum cost.

Assumption: If for a pair of vertices u, v , (u, v) 6∈ E , then add an
edge (u, v) in E with cost ∞. Thus, G is a complete graph.

Status of the problem: The decision version is NP-complete.
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∆-TSP

A particular case

∆-TSP: Nodes can be placed on a Euclidean plane.
Weight of each edge is equal to the distnce between the
corresponding pair of nodes.

In other words, the weight of the edges
of the graph satisfies triangles
inequality,

i.e., for all triple of vertices u, v ,w ∈ V ,
we have w(u, v) + w(v ,w) ≥ w(u,w).
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Status

The problem still remains NP-complete
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∆-TSP

Approx-TSP-Tour(G ,w)

Step 1: Select a vertex r ∈ V as the root

Step 2: compute a minimum spanning tree T of G from root r .

Step 3: Let L be the list of vertices visited using the preorder traversal
of T .

Step 4: return the hamiltonian cycle H that visits the vertices in the
order L.

Time Complexity

Computing the minimum spanning tree using Prim’s Algorithm
needs O(n2) time (since G is a complete graph). All other works
can be done in O(n) time.
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Analysis of Approximation Ratio

Theorem

The approximation ratio of the Approx-TSP-Tour is 2 if the
graph G satisfies triangles inequality.

H∗ → Optimal Tour. H → Tour produced by our algorithm.
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Analysis of Approximation Ratio

To show w(H) ≤ 2× w(H∗)

T → MST of G . So, w(T ) ≤ w(H∗).

A full walk A of T visits every edge of T exactly twice.
Thus w(A) = 2× w(T ) ≤ 2× w(H∗).
Thus, A is within 2 factor of the optimal tour.
But, A is not a tour, since it visits some vertices more than once.

We get a tour H from the walk A as follows:

For each vertex, we remove its second occurance in the walk
except r .
By triangles inequality, we have w(H) ≤ w(A).
Thus we have w(H) ≤ 2× w(H∗). �
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Best Known Result on ∆-TSP

A 1.5-approximation algorithm for the ∆-TSP using maximum
matching (Christofides 1976).

Good approximation result may not exist for all NP-hard problems

Example: Travelling salesman problem for abtratily weighted graph.

Theorem

If P 6= NP and ρ ≥ 1, there is no polynomial time apprimation
algorithm for the general TSP with ratio bound ρ.
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Proof [By contradiction]

Suppose there is a ρ-approximation algorithm A for the general
TSP problem. Let us assume that ρ is an integer.
We show that A can solve the hamiltonian cycle problem for any
arbitrary graph G = (V ,E ) in polynomial time.
Let G ′ = (V ,E ′) be a complete graph, with E ′ = {(u, v)|u, v ∈ V
and u 6= v}
Assign w(u, v) = 1 if (u, v) ∈ E , and

ρ× |V |+ 1 otherwise.

If the original graph has a hamiltonian cycle, the optimal tour will
be of cost |V |.
Any non-optimal tour will be of cost at least
(ρ|V |+ 1) + (|V | − 1) ≥ ρ|V |.
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Proof (contd.)

Now we execute the algorithm A on the graph G ′.

If G has a Hamiltonian cycle, then A must produce a tour in G ′ of
cost at most ρ|V |.
But it is impossible unless it returns a tour in G ′ corresponding to
the actual Hamiltonian cycle in G .

Thus we have a polynomial time algorithm for the Hamiltonian
cycle problem.
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Rectangle Stabbing Problem1

Problem Statement:

Given a set R of n axis-parallel rectangles, find the minimum
number of axis-parallel lines to stab all the members in R.

A rectangle r ∈ R is given using a pair of coordinates
[(a, b), (c , d)] corresponding to its (bottom-left, top-right)
diagonal.

For the sake of simplicity, we assume that the coordinates are
integer valued.

1Gaur, Ibaraki and Krishnamurthy, J. of Algorithms, 2002
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Rectangle Stabbing Problem

Definition

An axis-parallel (horizontal/vertical) line ` stabs a rectangle
r = [(a, b), (c , d)] ∈ R if ` passes through the interior of the
rectangle r . if

Example:

(a, b)

(c, d)

y = β

Here the line y = β stabs the rectangle.
This implies a + 1 ≤ β ≤ c − 1
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Status of the Problem and Our Objective

Status:

The problem is NP-hard
Reference: Hasin and Megiddo, Discrete Appl. Math., 1991

Objective: To design a constant factor approximation algorithm

Result available:

A 2-factor approximation algorithm that runs in O(n5) time.

Tools used: LP-relaxation.
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Integer Programming Formulation

Solution Space: H
⋃

V .

H − Set of 2n horizontal lines at y = bi + ε and y = di − ε,
where bi and di are y -coordinates of bottom and top
boundaries of i-th rectangle.

V − Set of 2n vertical lines at x = ai + ε and y = ci − ε,
where ai and ci are x-coordinates of left and right boundaries
of i-th rectangle.

Take 4n decision variables, namely x1, x2, . . . , x2n, y1, y2, . . . , y2n.

xi − corresponds to i-th vertical line, and

yj − corresponds to j-th horizontal line.

These decision variables can assume values 0 and 1 only.
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Integer Programming Formulation

Hk − Set of horizontal lines that stab the rectangle rk , and

Vk − Set of vertical lines that stab the rectangle rk .

Integer Programming Problem – P
Objective Function:

min
∑

i∈V xi +
∑

j∈H yj

Constraints:

For each rectangle rk , k = 1, 2, . . . , n, we have the constraint∑
i∈Vk

xi +
∑

j∈Hk
yj ≥ 1

xi ∈ [0, 1], for all i = 1, 2, . . . , 2n, and

yj ∈ [0, 1], for all j = 1, 2, . . . , 2n.
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LP Relaxation

Linear Programming Problem – P̄
Objective Function:

min
∑

i∈V xi +
∑

j∈H yj

Constraints:∑
i∈Vk

xi +
∑

j∈Hk
yj ≥ 1, for all k = 1, 2, . . . , n

xi ≥ 0, for all i = 1, 2, . . . , 2n, and

yj ≥ 0, for all j = 1, 2, . . . , 2n.
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Analysis of LP Solution

Let x̄i , i = 1, 2, . . . , 2n and ȳj , j = 1, 2, . . . , 2n
be an optimal fractional solution of the LP problem P̄.

For each rectangle rk , k = 1, 2, . . . , n, we have

either
∑

i∈Vk
x̄i ≥ 1

2

or
∑

j∈Hk
ȳj ≥ 1

2 .

Vk

Hk rk
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Analysis of LP Solution

Let RH be the set of all k such that
∑

i∈Vk
x̄i ≥ 1

2 , and

RV be the set of all k such that
∑

j∈Hk
ȳj ≥ 1

2 .

Implication:

• The set of rectangles in RH will be stabbed by horizontal
lines, and

• The set of rectangles in RV will be stabbed by vertical lines.

Thus, we have the following two problems

PH : Compute the minimum clique cover of an interval graph with
the vertical intervals corresponding to the rectangles in RH ,
and

PV : Compute the minimum clique cover of an interval graph with
the horizontal intervals corresponding to the rectangles in RV .

PH and PV can be optimally solved in polynomial time.
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Analysis of Approximation Factor

Let

Q: Optimum solution of the integer programming problem P,

Q̂: Optimum solution of the linear programming problem P̂,

QH : Optimum solution of the clique cover problem PH ,

QV : Optimum solution of the clique cover problem PV .

Theorem

QH + QV ≤ 2Q.
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Analysis of Approximation Factor

Proof: Let Q̂ = (x̂ , ŷ) be an optimal fractional solution of P̂

=⇒ Q∗V = 2x̂ and Q∗H = 2ŷ are feasible solutions of PH and PV .

Reason: For every k ∈ RH , we have
∑

i∈Hk
ŷi ≥ 1

2
=⇒ ∑

i∈Hk
2ŷi ≥ 1.

We have,

• QH + QV ≤ Q∗H + Q∗V
[since QH and QV are optimum solutons and Q∗H and Q∗V are
feasible solutions of the same minimization problems.]

• Q∗H + Q∗V = 2(x̂ + ŷ) = 2Q̂.

• Q̂ ≤ Q
[Since optimum solution of an LP minimization problem is less
the optimum solution of its corresponding IP problem]

Thus, we have the proof of the result.
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