
CSL 630 Analysis and Design of Algorithms
Minor II, Sem I 2014 -15 Max 40, Time 1 hr

Name Entry No. Group

Note (i) The answers must be written in the space provided under each question including the back of the sheet. Do all

roughwork in separately provided paper.

(ii) Write your answers neatly and precisely. You won’t get a second chance to explain what you have written.

(iii) Every algorithm must be accompanied by proof of correctness and a formal analysis of running time and space bound.

Feel free to quote any result from the lectures without proof - for any anything new, you must prove it first.

1. A bottleneck spanning tree (BST) minimimizes the maximum weight edge among all spanning trees
of a weighted undirected graph G = (V,E). The value of BST = minT∈T (maxe∈T {weight(e)}) where
T is the set of all spanning trees of G. (5+8+2 )
(a) Design a linear time algorithm to determine if the BST has value ≤ b for a given b.

Let E′ be the set of edges whose weights are ≤ b. Construct a spanning tree (using DFS/BFS) on
E′. If it can be done then value is less than b else (if it is not connected) then the value is larger.
The time taken is clearly O(|E|+ |E′|+ |V |) where E′ ⊂ E.
(b) Design an efficient, preferably linear time algorithm for finding a BST.

Let the number of vertices be n and number of edges be m. We can pick the median weight among
m elements in O(m) steps and let this weight be denoted by a1. Run the previous algorithm using
b = a1. If the answer is Yes then the value is ≤ a1. Else the value is larger. If it is smaller try with
b = the m/4-th weight else with b = 3/4m-th weight. Thus we are doing a binary search to find the
value of the BST, where in stage i, we are constructing a spanning tree of mi edges, mi ≤ m.

To analyze the running time, first note that we will try to construct a spanning tree only if mi ≥ n−1
otherwise, we know that it cannot be connected. Since the spanning tree algorithm (DFS or BFS) is
invoked at most O(logm) = O(log n) times, the running time is at most O((m+ n) log n).

To improve this analysis, whenever there is a No answer, we retain the forest constructed so far
and run the spanning tree treating the forests as a super vertex. By careful implementation, we can
merge vertices into a single vertex in time proportional to the number of edges involved in each stage.
Rename all the vertices in a spanning tree and then relabel the end-points of all the edges (this is
not union find since we are merging the whole spanning tree). This way we do not repeat the work
on the edges and the total time is T (m) = T (m/2) +O(m) = O(m/2 +m/4 + . . . = O(m).
(c) Which of the following statements are true ? The weight of a BST is the sum of weights of all
the edges.
Negative 1 for each wrong tick.

(a) For all graphs, the weights of BST and MST are equal.

(b) Every MST is also a BST.

(c) Every BST is also an MST.

(d) There is no relation between the weights of MST and BST.

Every MST is also a BST since, the largest weight in a MST cannot be larger than BST. If you
consider all edges less than or equal to the value of of BST, that is also a matroid and a greedy
construction will yield an MST.

2. In a knapsack problem with n items, the profits are integers in the range [1 . . . n2 log n] but the
capacity of the knapsack may be very large (larger than a polynomial). Design an efficient polynomial
time algorithm for this version of the knapsack problem. (15 )
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Let pi, wi denote the profits and weights of the i-th item for 1 ≤ i ≤ n. Let P =
∑

i pi ≤ n3 log n
which is a polynomial. Let Q(i, j) = minimum weight of items among x1, x2 . . . xi to obtain a profit
of j and ∞ otherwise (if we cannot obtain a profit j). Then the solution of the knapsack problem is
argmaxj{Q(n, j) ≤ B}, where B is the capacity of knapsack. We define a recurrence as follows

Q(i, j) = min{Q(i− 1, j), wi +Q(i− 1, j − pi)

The base case Q(1, j) j ≤ P is easy to compute. Thus this can be solved using DP using a n × P
table where each entry can be computed in O(1) time in increasing order of rows. The space bound
can be improved to O(P ) since we need only the previous row.

3. Show that by using universal hash functions, we can hash any subset S of n elements in a table of size
αn2 elements for an appropriate constant α such that there are no collisions between the elements of
S.
Hint: It suffices to show that the probability of no collisions is greater than some constant, say 1/10.
(10 )

For elements x, y ∈ S, the universal hash function guarantees that the probablity that x, y collide for
a random choice of a hash function is c

m where c is a constant and m is the size of the table. So the

expected number of collisions for all the
(
n
2

)
pairs of S is cn·(n−1)

2m . For m ≥ cn2 this is < 1/2. So,
from Markov’s inequality, the probability that it is < 1 is greater than 1/2. So with probability at
least 1/2 there are no collisions.
We can choose a random hash function and if there is any collision then we can choose independently
another random hash function - the expected number of repetitions is 2.
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