A map based data structure that supports
1. search
2. insertion

For any given n, we represent the n elements using a set of arrays A_i where $|A_i| = 2^i$ such that $\sum |A_i| = n$.

For eg. $n = 11$ then we have A_3, A_1, A_0.

The elements in A_i are sorted (but have no relation with $A_j, j \neq i$).

Given any n, we can determine A_i's from the binary rep of n, similar to Binary Heap.

$n = 12$ A_3, A_2
Search: for a given key \(x \), we will do binary searches in each of the arrays.

Time: in \(A_i \) we take: \(O(i) \).

Max. time: \(\sum_{i=1}^{n} i \leq O(\log n) \).

Insertion: \(n \rightarrow n+1 \)

\[A_{i_1}, A_{i_2}, \ldots, A_{i_k} \quad A_{j_1}, A_{j_2}, \ldots, A_{j_k} \]

Time to merge two sorted arrays \(S_1, S_2 \) with

\[|S_1| = n_1, \quad |S_2| = n_2 \]

\[= O(n_1 + n_2) \leq c \cdot (n_1 + n_2) \]

\[: O(16) \]
In general, if we have done this over \(j \) stages, then cost will be \(O(2^j) \).

"Worst case": \(n = 2^j \)

Call arrays were replaced.

Total cost is \(O(n) \).

How often will this happen?

How often will \(A_i \) be rebuilt?

Once every \(2^i \) insertions.

Cost of rebuilding \(A_i \) : \(O(2^i) \).

For inserting \(n \) elements, \(\frac{n}{2^i} \) rebuilds:

\[
\text{Total cost of inserting } \frac{n}{2^i} \text{ elements in all the arrays } \\
\leq \sum_{i=0}^{\log n} \frac{n}{2^i} \cdot O(2^i) \\
\leq O(n \cdot \log n)
\]

Average cost : \(O(\log n) \).
Stacks:

0. Insertion, push $O(1)$

1. Deletion, pop $O(1)$

2. Empty stack $O(\#\text{element})$
 pops all elements

Consider a sequence of push, pops and Empty Stack operations: $n \#\text{them}$

What is the total cost?

$\Rightarrow O(n^2)$

Consider a function

$\phi: \mathcal{D} \rightarrow \mathbb{Z}$

potential function

data structure

Amortised cost of an operation O, relevant to $D = \text{actual cost} +$

change in potential

Eg: Suppose for the stack, we define

$\phi(S) = (\#\text{elements in } S)^2$

A mostised cost of pop: $1 \cdot (\text{actual cost}) + 10^2 - 11^2$

if S had 10 elements
Total Amortized cost of a sequence of operations $O_1, O_2, O_3, \ldots, O_n$

$$\sum_{i} \left(T(O_i) + [\phi_{i+1} - \phi_i] \right)$$

actual cost

potential change in potential after i-th op.

$$\leq \sum_{i} T(O_i) + \phi_{n+1} - \phi_n + \phi_n - \phi_{n-1} + \phi_{n+1} - \phi_0$$

final pot.

initial pot.

Total actual cost: $T(n)$

another: $A(n)$

$$T(n) = A(n) + \phi_n - \phi_{n+1}$$

If $\phi_{n+1} - \phi_0 > 0$ then

$$T(n) \leq A(n)$$
Example: For the case of stacks, let us define
\[
\phi(S) = \# \text{ elements in stack}
\]
\[
\phi(\text{empty stack}) = 0 \quad \phi_k - \phi_0 \geq 0
\]
\[
A(\text{push}) = 1 + 1 = 2
\]
\[
A(\text{pop}) = 1 + (-1) = 0
\]
\[
A(\text{empty stack}) = K - (K) = 0
\]
The maximum amortized cost of any \(op_m \) is 2, so total amortized cost of \(n \) operations \(\leq 2n \)

h.w.: Try to come up with an appropriate potential function for the array-based search data structure
Problem: Given \(n \) strings over some finite alphabet \(\Sigma \), we want to arrange them in lexicographic order.

Strings \(S_1, S_2, \ldots, S_n \) have lengths \(l_1, l_2, \ldots, l_n \),

\[
\sum_{i=1}^{n} l_i = n
\]

Special case: all \(l_i \)'s are equal

Run radix sort