Function approximation

Given function in n steps

Minimize sum of squares: \(\sum_{i=1}^{n} (g(i) - f(i))^2 \)

Special case: \(g(i) \) is constant

Minimized when \(g = \frac{1}{n} \sum_{i=1}^{n} f(i) \)

Prove this.
Obs: For the optimal \(g^* \), the value at the \(k \)th step is average of the \(i_k \) values greater than \(i_k(?) \).

\(g \) is defined at \(i_1, i_2, \ldots, i_k \) where \(i_1, i_2, \ldots, i_k \in \{1 \ldots n\} \).

If we knew \(i_k \), we can define \(g^*(i_k) \).

Try all possibilities \(i_k \in \{1 \ldots n\} \), \(\{n-k \ldots n\} \) will suffice.

For each value of \(i_k \), we need an optimal \(g^* \) to approximate \(f \) between 1 .. \(i_k \).

\(g_{i,j} \) is the optimal \(i \) step function that approximates \(f(1) - f(2) \ldots f(j) \).

We are interested in \(g_{i,k,n} \).
\[g^*_{i,j} = \frac{1}{d} \sum_{i=1}^{d} f(i) \] base case

Time : ?

\[g^*_{i+1,j} : \text{Assume that we have computed } g^*_{i,j} \text{ for all } i \leq j \leq n \]

Find the optimal \((i+1)^{st}\) step for \(g^*_{i+1,j}\) using all possibilities between \(i\) and \(j\) and choose the best.

Let \(t(i,j)\) be the optimal \((i+1)^{st}\) step.

Then \(g^*_{i+1,j} = g^*_{i,t(i,j)} \frac{\text{average of values between } t(i,j) \text{ and } j}{j \leq n}\) we have from prior computation \(t(i,j)\) terms

In increasing \(i\) and for a fixed \(i \leq k \leq j \leq n\)

\(A(i,j)\) is the avg of value for \(i \leq j \leq i\)
If we compute $A(i,j)$ in advance
the running time is
\[\sum_{i=1}^{k} \sum_{j=i}^{n} (j-i) \]
Total time.

\[\sum_{i=1}^{k} \sum_{j=i}^{n} j = O(kn^2) \]
An edge labelled graph on some finite alphabet with \(|V| \) vertices and \(|E| \) edges. Each edge also has a \(\phi_\theta \) associated with it.

We want to find a path starting from \(v_0 \) with labels \(\sigma_0, \sigma_1, \ldots, \sigma_n \) \(\in \) alphabet such that \(\phi(v_0, v_1) \cdot \phi(v_1, v_2) \cdots \cdot \phi(v_n, v) \) is maximized.

If the string was length 1, we choose the edge with the correct label and mass prob
If we can solve the problem for lengths up to \(l \), then for length \(l+1 \) we can apply induction.