Scheduling problem

Given a set of n jobs J1, J2, ..., Jn with processing requirements 1 unit
and (integral) deadlines, we want to schedule them in a way so that
they get completed before deadlines.
If not, then job Ji incurs a penalty pi. Goal: Minimize penalty.

Eg. J1, J2, J3
 deadline 1 2 1
 penalty 5 2 8

 T | O | 1 | 2 | 3 | 4 |
 J3 | J2 | J1 |
 penalty: 5

Strategy: Earliest deadline first
break ties on the basis of penalty
Suppose we have a schedule $t_i \geq t_k \geq t_j \geq t_k \geq \ldots$

$d_i > d_k$ \[\Rightarrow \]

If $d_i < t_k$ then we may incur penalty

Suppose the given schedule is "feasible" (no job incurs penalty) then

$d_k > t_k \quad d_i > d_k \Rightarrow d_i > t_k$

Objective: Minimize the penalty of the jobs that missed the deadline

\(\Rightarrow \) maximize the penalty of the "feasible" schedule

To apply "generic greedy" we must define "the subset system framework"
$S = \{ J_1, J_2, \ldots, J_n \}$

J_i: subset of S that are "feasible" i.e. they can be scheduled without missing any deadline.

Moreover, any subset of a feasible set of Jobs is also feasible.

We would like to see if we can satisfy properties (2) or (3) of the mollard theorem.

Exchange property.

Given feasible sets A and B with $|B| > |A|$, can we add a job $j \in B - A$ to A and still keep $A \cup \{j\}$ feasible?
Case 1: \(J_{k+1} \notin A \) and \(J_{k+1} \notin A \)

Case 2: \(J_{k+1} \in A \Rightarrow J_{k+1} = J_i \)

Repeal the same argument with one job less in \(A \) and \(B \).

Either we terminate with case 1 or we are in a similar state where \(A = \emptyset \) and \(B \) has 1 job.

H.W.: Find a feasible schedule (the above argument gives a feasible set).

"Generic greedy works"
How about minimizing in the matroid framework?

Since \emptyset is independent by defn \emptyset is the min wt $= 0$

To deal with min. spanning trees, the underlying graph must be connected.

Then max. spanning forest is a max. spanning Tree.

Redefine the wt function as $W(e) = W_{\text{max}} - w(e)$

W_{max} is the maximum wt of any edge.