
CSL 630, Tutorial Sheet 1

1. Solve the following recurrence equations givenT (1) = O(1)

(a)T (n) = T (n/2) + bn log n
(b) T (n) = aT (n − 1) + bnc

2. Show that the solution to the recurrenceX(1) = 1 and

X(n) =
n

∑

i=1

X(i)X(n − i) for n > 1

is X(n + 1) = 1

n+1

(

2n
n

)

3. Instead of the conventional two-way mergesort, show how to implement a k-way (k ≥ 2) mergesort using
appropriate data structure inO(n log n) comparisons. Note thatk is not necessarily fixed (but can be a function
of n).

4. (Multiset sorting) Givenn elements among which there are onlyh distinct values show that you can sort in
O(n log h) comparisons.
Further show that if there arenα elements with valueα, where

∑

α nα = n, then we can sort in time

O(
∑

α

nα · log(
n

nα

+ 1))

5. Modify the integer multiplication algorithm to divide each integer into 4 parts and count the number of multi-
plications and additions required for the recursive approach. Write the recurrence and solve it and compare it
with the divide-by-2 approach.

6. In the selection algorithm, if we choose a random element as a splitter, then show that the expected running
time isO(n). Prove the correctness and analyse the algorithm rigorously.

Hint : Write a recurrence and solve for it which is similar to the expected time analysis of quicksort.

7. Given a setS of n numbers,x1, x2, . . . xn, and an integerk, 1 ≤ k ≤ n, design an algorithm to find
y1, y2 . . . yk−1 (yi ∈ S andyi ≤ yi+1) such that they induce partitions ofS of roughly equal size. Namely,
let Si = {xj |yi−1 ≤ xj ≤ yi} be thei − th partition and assumey0 = −∞ andyk = ∞. The number of
elements inSi is ⌊n/k⌋ or ⌊n/k⌋ + 1.
Note: If k = 2 then it suffices to find the median.

8. An element iscommon, if it occurs more thann/4 times in in a given set ofn elements. Design anO(n)
algorithm to find acommon element if one exists.

9. Construct an example to show that MSB first radix sort can beasymptotically worse than LSB first radix sort.

10. Given two polynomialsPA(n) = an−1x
n−1+an−2x

n−2+. . . a0 andPB(n) = bn−1x
n−1+bn−2x

n−2+. . . b0,
design a subquadratic (o(n2)) time algorithm to multiply the two polynomials. You can assume that the
coefficientsai andbi areO(log n) bits and can be multiplied inO(1) steps.
Note: Don’t use Fast Fourier Transform based methods since it has not been discussed in class.

1


