CSL 630, Tutorial Sheet 1

1. Solve the following recurrence equations given $T(1)=O(1)$
(a) $T(n)=T(n / 2)+b n \log n$
(b) $T(n)=a T(n-1)+b n^{c}$
2. Show that the solution to the recurrence $X(1)=1$ and

$$
X(n)=\sum_{i=1}^{n} X(i) X(n-i) \text { for } n>1
$$

is $X(n+1)=\frac{1}{n+1}\binom{2 n}{n}$
3. Instead of the conventional two-way mergesort, show how to implement a k-way $(k \geq 2)$ mergesort using appropriate data structure in $O(n \log n)$ comparisons. Note that k is not necessarily fixed (but can be a function of n).
4. (Multiset sorting) Given n elements among which there are only h distinct values show that you can sort in $O(n \log h)$ comparisons.
Further show that if there are n_{α} elements with value α, where $\sum_{\alpha} n_{\alpha}=n$, then we can sort in time

$$
O\left(\sum_{\alpha} n_{\alpha} \cdot \log \left(\frac{n}{n_{\alpha}}+1\right)\right)
$$

5. Modify the integer multiplication algorithm to divide each integer into 4 parts and count the number of multiplications and additions required for the recursive approach. Write the recurrence and solve it and compare it with the divide-by- 2 approach.
6. In the selection algorithm, if we choose a random element as a splitter, then show that the expected running time is $O(n)$. Prove the correctness and analyse the algorithm rigorously.
Hint : Write a recurrence and solve for it which is similar to the expected time analysis of quicksort.
7. Given a set S of n numbers, $x_{1}, x_{2}, \ldots x_{n}$, and an integer $k, 1 \leq k \leq n$, design an algorithm to find $y_{1}, y_{2} \ldots y_{k-1}\left(y_{i} \in S\right.$ and $\left.y_{i} \leq y_{i+1}\right)$ such that they induce partitions of S of roughly equal size. Namely, let $S_{i}=\left\{x_{j} \mid y_{i-1} \leq x_{j} \leq y_{i}\right\}$ be the $i-t h$ partition and assume $y_{0}=-\infty$ and $y_{k}=\infty$. The number of elements in S_{i} is $\lfloor n / k\rfloor$ or $\lfloor n / k\rfloor+1$.
Note: If $k=2$ then it suffices to find the median.
8. An element is common, if it occurs more than $n / 4$ times in in a given set of n elements. Design an $O(n)$ algorithm to find a common element if one exists.
9. Construct an example to show that MSB first radix sort can be asymptotically worse than LSB first radix sort.
10. Given two polynomials $P_{A}(n)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots a_{0}$ and $P_{B}(n)=b_{n-1} x^{n-1}+b_{n-2} x^{n-2}+\ldots b_{0}$, design a subquadratic $\left(o\left(n^{2}\right)\right)$ time algorithm to multiply the two polynomials. You can assume that the coefficients a_{i} and b_{i} are $O(\log n)$ bits and can be multiplied in $O(1)$ steps.
Note: Don't use Fast Fourier Transform based methods since it has not been discussed in class.
