CSL 356: Problem Set 0

1. Sort the functions given below from asymptotically smallest to asymptotically largest, indicating ties if there are any.

$$
\lg ((\sqrt{n})!), \lg (\sqrt{(n!)}), \sqrt{\lg (n!)},(\lg (\sqrt{n}))!,(\sqrt{(\lg n)})!, \sqrt{(\lg n)!}
$$

2. Solve the following recurrences. State tight asymptotic bounds for each function in the form $\Theta(f(n))$ for some standard mathematical function $f(n)$.
(a) $A(n)=2 A(n / 4)+\sqrt{n}$
(b) $B(n)=3 B(n / 3)+n / \lg n$
(c) $C(n)=\frac{2 C(n-1)}{C(n-2)}$
(d) $D(n)=D(n-1)+1 / n$
3. We are given 10 distinct numbers a_{1}, \ldots, a_{5} and b_{1}, \ldots, b_{5}. We know that $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}$ and $b_{1}<b_{2}<b_{3}<b_{4}<b_{5}$. Our aim is to find the median of these 10 numbers (i.e., the 5 -th smallest), using as few key comparisons in the worst-case as possible.

- Draw a decision tree for one such method.
- What is the worst-case number of comparisons made by your decision tree?

4. The $n^{\text {th }}$ Fibonacci binary tree \mathcal{F}_{n} is defined recursively as follows:

- \mathcal{F}_{1} is a single root node with no children.
- For all $n \geq 2, \mathcal{F}_{n}$ is obtained from \mathcal{F}_{n-1} by adding a right child to every leaf and adding a left child to every node that has only one child.
(a) Prove that the number of leaves in \mathcal{F}_{n} is precisely the $n^{t h}$ Fibonacci number: $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for all $n \geq 2$.
(b) How many nodes does \mathcal{F}_{n} have? For full credit, give an exact, closed-form answer in terms of Fibonacci numbers, and prove that your answer is correct.
(c) Prove that the left subtree of \mathcal{F}_{n} is a copy of \mathcal{F}_{n-2}.

